Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

### **Frugal FWI** Felix J. Herrmann and Tristan van Leeuwen

#### SLIM University of British Columbia

Frugal full-waveform inversion: from theory to a practical algorithm, Andrew J. Calvert, Ian Hanlon, Mostafa Javanmehri, Rajiv Kumar, Tristan van Leeuwen, Xiang Li, Brendan Smithyman, Eric Takam Takougang, Haneet Wason, The Leading Edge, Volume, 32, Page1082-1092
3D Frequency-domain seismic inversion with controlled sloppiness. Tristan van Leeuwen and Felix J. Herrmann. Submitted for publication. 2013

## Motivation

FWI is a relatively *immature* technology in need of

- less reliance on accurate starting models
- automated & versatile workflows
- better theoretical understanding

Today's focus is the development of *resourceful* FWI

- small subsets & dynamic accuracy
- turnaround times that may allow for QC & UQ



# **Computational costs**



Visco-elastic aniso waveform inversion and CSEM inversion (2018)





## Challenges

#### Computational costs increase

- Inearly w/ # of sources
- exponentially with sample density, frequency & survey area

#### Move to 3D elastic

- sky rocketing costs (X 1000)
- can no longer be met by Moore's law...



# Today's agenda

#### Goals are

- introduction of *fast* simulation & optimization framework
- Integration into versatile FWI framework that spends your computational resources only when needed...

### Challenges & opportunities





## $A(\mathbf{m})\mathbf{u} = \mathbf{q}$ versatile

modelling



# Fast optimization

#### **Strategy:**

- reduce costs by working w/ random subsets of sources
- allow for *inaccurate* physics (e.g., PDE solves)
- convergence guarantees via dynamic accuracy control
  - *dynamic* increase *size* subsets & *accuracy* PDE solves

#### **Outcome:**

computationally affordable scheme for FWI & WEMVA







### solution with steepest descent

$$\mathbf{m}_{k+1} = \mathbf{m}_k - \lambda_k$$

requires evaluation of *full* misfit and is very expensive

### $abla \Phi(\mathbf{m}_k)$



[Bertsekas '96,'08; Nemirovski '00]





- draw independent source aggregates (supershots) or subsets of sequential sources after each model update
- stochastic/incremental gradient

Leads to *sub*linear *convergence* & to *instabilities* due to *noise* 



[Friedlander & Schmidt '12, Aravkin et.al. '12]

### Fast optimization with convergence guarantees

Approximate gradients by sample averages-i.e.,

$$\nabla \Phi \approx \nabla \widetilde{\Phi} = \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} \nabla \phi_i \quad \nabla \phi_i$$
  
Guarantee convergence by boun  
iteration k by growing the sample

$$b_k \sim \min\{(e_k + M)\}$$

with 
$$e_k = \|\mathbf{e}_k\|_2^2$$
 .

with  $\mathcal{I} \subseteq \{1, 2, \dots, M\}$ 

*ding* errors at *le size* of *subsets* 

 $(I^{-1})^{-1}, M$ 



# Fast optimization increase sample size

#### Select sources

- in a pre-scribed order
- random *without* replacement
- random-*amplitude* source encoding





## Fast optimization



[van Leeuwen & FJH '11]







# Fast optimization w/approximate misfits & gradients

#### Frame work:

- allows for *errors* in *misfit* & *gradient* calculations
  - *limited* sample size and/or *imprecision* wave simulator
- *convergence* when error *bounded* by convergence *rate* 
  - *inaccurate* calculations in *beginning* / when problem *ill-posed*

#### **Challenge:**

translate into practice 







# Versatile modelling

### **Strategy:**

- avoid large setup, memory costs & tuning parameters
- offer control on precision wave simulations
  - by *increasing* number of *iterations* indirect Krylov solvers

#### **Outcomes:**

- scalable parallel wave simulations w/ prescribed tolerance
- simple preconditioner that works for different WE's



Gordon & Gordon '11-'12 van Leeuwen et. al. '12

## CGMN & CARP-BCG

Use *simple* Kaczmarz *row* projections  $\mathbf{x} := \mathbf{x} + \frac{\lambda}{||\mathbf{a}_i||_2^2} \left(b_i\right)$ 

### to form a *preconditioner* with *double* sweeps that deals with *multiple* right-hand-sides *simultaneously* is parallelizible by projecting row blocks independently

- can be accelerated by CG

Simple *scalable* algorithm with *controllable* accuracy...

$$\mathbf{a}_i - \mathbf{a}_i^T \mathbf{x} \mathbf{a}_i,$$





## 27 point stencil 10 pts per wavelength PML 5km X 5km X 2.5Km











|        |          | CGMN |          | BiCGstab |          | $\mathrm{GMRES}(5)$ |          |
|--------|----------|------|----------|----------|----------|---------------------|----------|
| f [Hz] | N        | iter | time [s] | iter     | time [s] | iter                | time [s] |
| 0.5    | 31212    | 324  | 7.3      | 77       | 1.4      | 135                 | 1.8      |
| 1.0    | 244824   | 599  | 117.5    | 146      | 26.9     | 150                 | 43.0     |
| 2.0    | 1898847  | 1077 | 1575.7   | 659      | 848.2    | 747                 | 1048.3   |
| 4.5    | 15115294 | 2259 | 28220.7  | 817*     | 12174.9  | 5000*               | 38340.8  |

Experiments were done with Matlab 2012 on a Dual-Core SuperMicro system with 2 Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz and 128 GB RAM



#### Block CG 0.5,1,2 Hz sources selected randomly

#### multiple right-hand-sides





#### Block CG 0.5,1, 2 Hz sources selected randomly

| f [Hz] | N       | blocksize | iter | time [s] |
|--------|---------|-----------|------|----------|
| 0.5    | 23276   | 1         | 291  | 35.9     |
|        |         | 2         | 278  | 43.3     |
|        |         | 5         | 200  | 29.7     |
|        |         | 10        | 115  | 15.2     |
| 1.0    | 186208  | 1         | 484  | 2859.9   |
|        |         | 5         | 477  | 2419.8   |
|        |         | 10        | 456  | 2279.7   |
|        |         | 50        | 220  | 1067.7   |
| 2.0    | 1455808 | 1         | 828  | 125358.2 |
|        |         | 10        | 811  | 122732.7 |
|        |         | 50        | 716  | 109424.7 |
|        |         | 100       | 559  | 82938.2  |



#### CARP-CG parallel over blocks of rows averaging guarantees convergence

#### multiple cores





Gordon & Gordon '11-'12



# Versatile modelling w/approximate PDE solves

#### Framework:

- smooth errors as a function of # of iterations
  - allows for *dynamic* precision *control*
- multiple right-hand-sides & easily parallelizable
  - scales to 3D FWI

### **Challenge:**

translate into practice when errors & convergence unknown



### **FWI** w/ controlled sloppiness





# Frugal misfit w/approximate PDE solves

*Heuristic* based on *behavior* of the *misfit* as a function of  $\epsilon$  $\phi_i(\mathbf{m}, \epsilon) = \rho(P_i \mathbf{u}_i(\epsilon) - \mathbf{d}_i)$ by solving PDEs to tolerance  $\epsilon$ . *Ideally* find  $\epsilon$  by guaranteeing

for some fraction  $\eta$ .

[van Leeuwen & FJH '13]

# true solution

## $|\phi_i(\mathbf{m},\epsilon) - \phi_i(\mathbf{m},0)| \le \eta \phi_i(\mathbf{m},0)$



#### **Frugal misfit** w/ approximate PDE solves

# Instead find k such that $|\phi_i(\mathbf{m}, \alpha^k \epsilon) - \phi_i(\mathbf{m}, \alpha^{k+1} \epsilon)| \le \eta \phi_i(\mathbf{m}, \alpha^{k+1} \epsilon) \quad 0 < \alpha < 1$

by increasing the precision, i.e.,  $\epsilon\mapsto\alpha\epsilon$  , if this inequality does not hold.



# Frugal misfit

Algorithm 1  $\{f, g\} = misfit(m, \mathcal{I}, \eta)$ 1:  $\epsilon = 10^{-2}$ ,  $\alpha = 0.5//$  Initialization 2: for  $i \in \mathcal{I}$  do for  $k = 0 \rightarrow 10$  do 3: solve  $A(\mathbf{m})\mathbf{u} = \mathbf{s}_i$  up to  $\epsilon //$  solve forward equation 4:  $r_k = \rho(P_i \mathbf{u} - \mathbf{d}_i) / / \text{ compute residual}$ 5: if  $|r_k - r_{k-1}| \leq \eta r_k$  then 6: break 7:else 8: 9:  $\epsilon = \alpha \epsilon$ end if 10: end for 11: solve  $A(\mathbf{m})^* \mathbf{v} = P_i^* \nabla \rho (P_i \mathbf{u} - \mathbf{d}_i)$  up to  $\epsilon$ 12:13:  $f = f + |\mathcal{I}|^{-1}\rho(P_i\mathbf{u} - \mathbf{d}_i) // \text{misfit}$ 14:  $\mathbf{g} = \mathbf{g} + |\mathcal{I}|^{-1} G(\mathbf{m}, \mathbf{u})^* \mathbf{v} // \text{ gradient}$ 

15: **end for** 



#### **Stochastic Quasi-Newton**

### Final algorithm has the following key ingredients: In draws independent random subsets for each misfit & gradient calculation

- decrease-i.e, if  $(f_{k+1} + f'_{k+1}) \ge (f_k + f'_k)$
- calculation for the same sample

### • decreases fraction $\eta \mapsto \eta/2$ when linesearch fails

increases sample size when average objective does not

Quasi-Newton Hessian w/ IBFGS & a single extra gradient



#### **Stochastic Quasi-Newton**

#### Algorithm 1 Stochastic L-BFGS method

1:  $\eta = 0.1, b = 1, \beta = 1, b_{\text{max}} = M //$  Initialize 2: choose  $\mathcal{I}_0 \subseteq \{1, 2, ..., M\}$  s.t.  $|\mathcal{I}_0| = b$ 3:  $\{f_0, \mathbf{g}_0\} = \mathsf{misfit}(\mathbf{m}_0, \mathcal{I}_0, \eta) / / frugal \text{ misfit & gradient at initial guess}$ 4: while not converged do 5:  $\delta \mathbf{m}_k = \mathsf{lbfgs}(-\mathbf{g}_k, \{\mathbf{t}_l\}_{l=k-m}^k, \{\mathbf{y}_l\}_{l=k-m}^k) / \mathsf{low-rank} \text{ inverse Hessian}$  $\{\mathbf{m}_{k+1}, f_{k+1}, \mathbf{g}_{k+1}\} = \mathsf{linesearch}(f_k, \mathbf{g}_k, \delta \mathbf{m}_k)$ 6: if linesearch successfull then 7:  $\mathbf{t}_{k+1} = \mathbf{m}_{k+1} - \mathbf{m}_k, \, \mathbf{y}_{k+1} = \mathbf{g}_{k+1} - \mathbf{g}_k /$  update L-BFGS vectors 8: choose  $\mathcal{I}_{k+1} \subseteq \{1, 2, \dots, M\}$  s.t.  $|\mathcal{I}_{k+1}| = b //$  draw new sample 9:  $\{f'_{k+1}, \mathbf{g}'_{k+1}\} = \mathsf{misfit}(\mathbf{m}_{k+1}, \mathcal{I}_{k+1}, \eta) / / \mathsf{misfit} \& \mathsf{gradient} \mathsf{new} \mathsf{sample}$ 10:if  $(f_{k+1} + f'_{k+1}) \ge (f_k + f'_k)$  then 11: $b = \min(b + \beta, b_{\max}) /$  increase batch 12:end if 13: $f_{k+1} = f'_{k+1}, \mathbf{g}_{k+1} = \mathbf{g}'_{k+1}, k = k+1 // \text{Use new misfit & gradient}$ 14:15: **else**  $\eta = \eta/2 //$  narrow tolerenance 16:17: **end if** 18: end while



#### Overthrust model true model 5km X 5km X 2.5Km 121 sources & 2601 receivers



#### z = 1.25 km

#### 2502 2504 x [km]





#### **Overthrust model** initial model







#### **Overthrust model** recovered model w/ b=1 2 passes through data for each (4,6,8) Hz



z = 1.25 km



#### **Overthrust model** recovered model w/b=121 2 passes through data for each (4,6,8) Hz



z = 1.25 km



## **Overthrust model** growing sample size 2 passes through data for each (4,6,8) Hz



z = 1.25 km





### **Overthrust model** growing sample size 10 passes through data for each (4,6,8) Hz



z = 1.25 km





#### Performance misfit & relative model error

#### misfit



#### model error





#### Performance tolerance & # CARP-CG iterations

#### accuracy



#### # of iterations





### Performance sample size



### sample size



# Performance input data @ 4Hz













#### 4 hours













#### Performance initial data @ 4Hz



















#### Performance initial residual @ 4Hz











10

20

30

40

50 l















# Performance final data @ 4Hz



# **Performance** final residual @ 4Hz

















# Performance input data @ 6Hz



30

40

50







#### 15 hours

















# Performance initial data @ 6Hz















# Performance initial residual @ 6Hz





10 20 30 40 50

50





50 l











# Performance final data @ 6Hz

















# **Performance** final residual @ 6Hz





10







# Performance input data @ 8Hz









10 20 30 40 50











# Performance initial data @ 8Hz









10

50



10 20 30 40 50





# Performance initial residual @ 8Hz



#### Performance final data @ 8Hz















# **Performance** *final* residual @ 8Hz















### **Observations**

#### Able to carry out 3-D FWI with *dynamic* growth of sample size

tolerance PDE solves

Model error decays much *faster* compared to *working* with *all* data Opens possibilities to use *sophisticated* regularizations



### Summary

### Main *ingredients* for a *scalable* approach to 3D FWI:

- *iterative* Helmholtz solver w/ *little* memory imprint,
   computational overhead, and model-dependent tuning
- practical stopping criterion for wave simulator
- (stochastic) optimization technique that exploits the separable structure of FWI by working w/ small subsets
- strategy to increase sample size and accuracy as needed



### Future plans

#### Use the same *heuristic*

- FWI w/ penalty method (Bas)
- WEMVA w/ random probing (Rajiv)

### Incorporate composite shots from sim. marine

Build in adaptive (stratified) sampling



# Carry home message

#### Insisting on working w/ • *all* data

• *full* accuracy

can be *detrimental* to FWI.

When *ill*-conditioned use *less* rather than *more* data & *accuracy*. Better to *call* for *more* data & *accuracy* only when *strictly* needed.

Less is really more...

![](_page_56_Picture_7.jpeg)

# Acknowledgements Thank you for your attention ! https://www.slim.eos.ubc.ca/

![](_page_57_Picture_1.jpeg)

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, BP, CGG, Chevron, ConocoPhillips, ION, Petrobras, PGS, Statoil, Total SA, WesternGeco, and Woodside.

![](_page_57_Picture_3.jpeg)