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Main messages

We incorporate prior support information into the approximate message passing (AMP)
algorithm which is a fast iterative algorithm for sparse recovery.

Using weighted AMP as a pre-processor we can improve the results of seismic trace
interpolation via

1

recovery in terms of both accuracy and convergence time.
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A simple example

5 4 2 9 3
7 6
9 8 2 4

3 1

7 5
6 7 9 3
5 2

9 6 8 7 5

( 1
9 , 1

9 , 1
9 , 1

9 , 1
9 , 1

9 , 1
9 , 1

9 , 1
9 )

( 1
9 , 1

9 , 1
9 , 1

9 , 1
9 , 1

9 , 1
9 , 1

9 , 1
9 ) ( 1

9 , 1
9 , 1

9 , 1
9 , 1

9 , 1
9 , 1

9 , 1
9 , 1

9 )

(0, 0, 1, 0, 0, 0, 0, 0, 0)

3 / 40



First iteration
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Second iteration
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Third iteration

6 1 5 4 2 9 3
7 3 6
9 8 2 4

3 1

7 5
6 7 9 3
5 2

9 6 8 7 1 5

(0, 7
9 , 2

9 , 0, 0, 0, 0, 0, 0)

(0, 0, 1, 0, 0, 0, 0, 0, 0)

(1, 0, 0, 0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 1, 0, 0, 0)

5 9
3

2
7

6 / 40



Fourth iteration
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8th iteration
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12th iteration
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Example: Revisiting 1 for randomized acquisition of seismic lines

Consider a seismic line with 64 sources, 64 receivers, and 256 time samples.

The receiver spread is randomly subsampled using the mask R .
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Using 1 for seismic trace interpolation

We want to recover a high dimensional seismic data volume f by interpolating between a
smaller number of measurements b = RMf .

Let S be a sparsifying operator that characterizes the transform domain of f, such that
S CP N with P N. In the case of the redundant curvelet transform S

H
S = I.

Then b =RMS

H
x , where x can be recovered by sparse recovery algorithms like

1

minimization.
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Using 1 for seismic trace interpolation

To recover f from the measurements b =RMS

H
x , we solve the

1

minimization problem

x

1 := minimize
z RP

z

1

subject to RMS

H
z b

2

and approximate f by S

H
x

1 .
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Recovery using 1 minimization on frequency slices (shotgather # 32)

Shotgather number 32 from the seismic line:
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Recovery results: 1 minimization
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Using weighted 1 for seismic trace interpolation

Adjacent frequency slices and have highly correlated curvelet domain support sets. Hence we
can use the support set of each slice as an estimate for the support of the next slice.
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Weighted 1 for seismic trace interpolation

x

w
1 := minimize

z RP
z

1

subject to RMS

H
z b

2

1 N is the weight vector and z

1

:= ⌃i i z i is the weighted
1

norm.
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Recovery error: 1 vs weighted 1
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Iterative thresholding algorithms

The
1

minimization problem is perhaps the most common approach to recover x and can
be solved by linear programming algorithms.

1

has high computational complexity.

Iterative thresholding algorithms is an appealing alternative

x

t+1 = (x t + A z

t ˆt)

z

t = y Ax

t (1)
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Approximate message passing (AMP)

Donoho, Maleki and Montanari proposed a new iterative thresholding algorithm which is
referred to as approximate message passing (AMP).

This algorithm enjoys both the low complexity of IT algorithms and the superior recovery
conditions of BP.

The AMP algorithm starts from an initial x0 and an initial threshold ˆ0 = 1 and
iteratively goes by

x

t+1 = (x t + A z

t ; t)

z

t = y Ax

t + 1

z

t 1 (x t 1 + A z

t 1; t 1)
(2)
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Simple example with a 2-sparse signali Iteration t = 1

Soft thresholding: x
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Iteration t = 2

Soft thresholding: x
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Iteration t = 3

Soft thresholding: x
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Weighted AMP

Given a support estimate T 1 N , assume j = 1 for j T and = for j T .

We incorporate this information into the AMP algorithm by the following weighted AMP
algorithm:

x
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z
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z
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t 1; ˆt 1 )

ˆt =
ˆt 1

(x t 1 + A z

t 1; ˆt 1 )

(3)
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How does AMP work?

Assume [ ] are the weights we use for the coe�cients of the signal s.

Consider the following distribution over variables s
1

s

2

sN :

(ds) =
1

Z

N

i=1

exp( i si )
m

a=1

ya=(As)a (4)

where ya=(As)a denotes a Dirac distribution on the hyperplane ya = (As)a.

As the mass of this distribution concentrates around the solutions of y = As with
smaller

1

norm.
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AMP and WAMP for seismic trace interpolation

In order to use AMP and WAMP for seismic trace interpolation we use a 2-D DFT matrix as
our sparsifying matrix.

Then b =RMF

H
s Fs f , where Fs is a 2-D DFT matrix in the source-receiver domain.
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Recovery error: AMP vs weighted AMP

AMP error image in SR
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A 2-stage algorithm for seismic trace interpolation

By using simple calculations we can use the fast AMP algorithm to improve the recovery
results of

1

minimization.

b =RMF

H
s Fs f is the measurements used for AMP algorithms

b =RMS

H
Sf are the measurements used for

1

minimization.

Let x be the approximation obtained by solving the AMP algorithm then we have:

x Fs f

F

H
s x f

SF

H
s x Sf

(5)

Hence we can use SF

H
s x as an approximation for the

1

solver.
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Flowchart of the 2-stage algorithm WAMP+weighted 1
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Weighted 1 vs 2-stage WAMP+weighted 1

In the 2-stage algorithm, for each frequency slice we first apply a fast WAMP algorithm and
use the result to derive new weights for weighted

1

minimizer with Curvelet coe�cients.
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Recovery error: AMP vs weighted AMP
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Comparison of shotgather SNRs
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Results on the Gulf of Suez data

In the next slides we show the results of applying these algorithms on a seismic line from the
Gulf of Suez.

The Seismic line at full resolution has Ns = 178 sources, Nr = 178 receivers with a sample
distance of 12.5 meters, and Nt = 512 time samples acquired with a sampling interval of 4
milliseconds. Consequently, the seismic line contains samples collected in a 2s temporal
window with a maximum frequency of 125 Hz.
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Results on the Gulf of Suez data

Shotgather number 84 from the seismic line:
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1 minimization
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Weighted 1 minimization
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AMP

AMP in SR
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Weighted AMP

Weighted AMP in SR
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Weighted AMP+Weighted 1
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Shotgather SNRs
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