Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Using prior support information in approximate message passing algorithm

Navid Ghadermarzy

University of British Columbia

December 2, 2013

- algorithm which is a fast iterative algorithm for sparse recovery.
- interpolation via ℓ_1 recovery in terms of both accuracy and convergence time.

• We incorporate prior support information into the approximate message passing (AMP)

• Using weighted AMP as a pre-processor we can improve the results of seismic trace

A simple example

First iteration

(1,0,0,0,0,0,0,0,0)

Second iteration

 $(1,0,0,0,\dot{0},0,0,0,0)$

Third iteration

Fourth iteration

	(0,0,1,0,0,0,0,0,0,0)					
4	2	9	3			
		3	5	6	9	
	7	6	2	4	1	
	3	1				
		4				
7		5				
	5	2	9	3		
	9	7		2		
6	4	8	7	1	5	

(1,0,0,0,0,0,0,0,0,0)

8th iteration

(0,0,1,0,0,0,0,0,0)						
4	2	9	3	7		
8	1	3	5	6	9	
5	7	6	2	4	1	
	3	1	4			
		4				
7	6	5		8		
1	5	2	9	3	4	
3	9	7		2		
6	4	8	7	1	5	

(1,0,0,0,0,0,0,0,0,0)

12th iteration

(0,0,0,0,0,1,0,0,0)				(0,0,1,0,0,0,0,0,0)					
	6	1	5	4	2	9	3	7	8
	4	7	2	8	1	3	5	6	9
	3	9	8	5	7	6	2	4	1
	5	8	6	2	3	1	4	9	7
	7	2	1	9	8	4	6	5	3
	9	4	3	7	6	5	1	8	2
	8	6	7	1	5	2	9	3	4
	1	5	4	3	9	7	8	2	6
	2	3	9	6	4	8	7	1	5
(0, 1, 0, 0, 0, 0, 0, 0, 0)						(1,0,0,0,0,0,0,0,0			

),0)

Example: Revisiting ℓ_1 for randomized acquisition of seismic lines

Consider a seismic line with 64 sources, 64 receivers, and 256 time samples.

The receiver spread is randomly subsampled using the mask R.

Example: Revisiting ℓ_1 for randomized acquisition of seismic lines

Consider a seismic line with 64 sources, 64 receivers, and 256 time samples.

The receiver spread is randomly subsampled using the mask R.

Example: Revisiting ℓ_1 for randomized acquisition of seismic lines

Consider a seismic line with 64 sources, 64 receivers, and 256 time samples.

The receiver spread is randomly subsampled using the mask R.

We want to recover a high dimensional seismic data volume f by interpolating between a smaller number of measurements b = RMf.

Let S be a sparsifying operator that characterizes the transform domain of f, such that $S \in \mathbb{C}^{P \times N}$ with P > N. In the case of the redundant curvelet transform $S^H S = \mathbb{I}$.

11 / 40

smaller number of measurements b = RMf.

Let S be a sparsifying operator that characterizes the transform domain of f, such that $S \in \mathbb{C}^{P \times N}$ with P > N. In the case of the redundant curvelet transform $S^H S = \mathbb{I}$.

Then $b = RMS^{H}x$, where x can be recovered by sparse recovery algorithms like ℓ_1 minimization.

We want to recover a high dimensional seismic data volume f by interpolating between a

11 / 40

smaller number of measurements b = RMf.

Let S be a sparsifying operator that characterizes the transform domain of f, such that $S \in \mathbb{C}^{P \times N}$ with P > N. In the case of the redundant curvelet transform $S^H S = \mathbb{I}$.

Then $b = RMS^{H}x$, where x can be recovered by sparse recovery algorithms like ℓ_1 minimization.

We want to recover a high dimensional seismic data volume f by interpolating between a

11 / 40

Using ℓ_1 for seismic trace interpolation

To recover f from the measurements $b = RMS^{H}x$, we solve the ℓ_1 minimization problem

$$x^{\ell_1} := \min_{z \in R^P} ||z||_1$$
 s

and approximate f by $S^{H}x^{\ell_1}$.

subject to $||RMS^{H}z - b||_{2} \leq \epsilon$,

Recovery using ℓ_1 minimization on frequency slices (shotgather # 32)

Shotgather number 32 from the seismic line:

Recovery results: ℓ_1 minimization

Using weighted ℓ_1 for seismic trace interpolation

Adjacent frequency slices and have highly correlated curvelet domain support sets. Hence we can use the support set of each slice as an estimate for the support of the next slice.

Weighted ℓ_1 for seismic trace interpolation

$$x^{w\ell_1} := \min_{z \in R^P} ||z||_{1,w}$$

 $w \in \{\omega, 1\}^N$ is the weight vector and $||z||_{1,w} := \sum_i w_i |z_i|$ is the weighted ℓ_1 norm.

subject to $||RMS^{H}z - b||_{2} \leq \epsilon$,

Recovery error: ℓ_1 vs weighted ℓ_1

Iterative thresholding algorithms

- be solved by linear programming algorithms.
- ℓ_1 has high computational complexity.

• The ℓ_1 minimization problem is perhaps the most common approach to recover x and can

Iterative thresholding algorithms

- be solved by linear programming algorithms.
- ℓ_1 has high computational complexity.
- Iterative thresholding algorithms is an appealing alternative

• The ℓ_1 minimization problem is perhaps the most common approach to recover x and can

 $x^{t+1} = \eta(x^t + A^* z^t, \hat{\tau}^t),$ $z^t = y - Ax^t$.

Iterative thresholding algorithms

- The ℓ_1 minimization problem is perhaps the most common approach to recover x and can be solved by linear programming algorithms.
- ℓ_1 has high computational complexity.
- **Iterative thresholding** algorithms is an appealing alternative

- $x^{t+1} = \eta(x^t + A^* z^t, \hat{\tau}^t),$
- $z^t = y Ax^t$.

(1)

Approximate message passing (AMP)

- referred to as approximate message passing (AMP).
- conditions of BP.

• Donoho, Maleki and Montanari proposed a new iterative thresholding algorithm which is

• This algorithm enjoys both the low complexity of IT algorithms and the superior recovery

Approximate message passing (AMP)

- referred to as approximate message passing (AMP).
- conditions of BP.
- The AMP algorithm starts from an initial x^0 and an initial threshold $\hat{\tau}^0 = 1$ and iteratively goes by

 $x^{t+1} = \eta(x^t + A^* z^t; \tau^t),$

Onobo, Maleki and Montanari proposed a new iterative thresholding algorithm which is

• This algorithm enjoys both the low complexity of IT algorithms and the superior recovery

 $z^{t} = y - Ax^{t} + \delta^{-1}z^{t-1}\langle \eta'(x^{t-1} + A^{*}z^{t-1}; \tau^{t-1}) \rangle.$

Approximate message passing (AMP)

- referred to as approximate message passing (AMP).
- conditions of BP.
- The AMP algorithm starts from an initial x^0 and an initial threshold $\hat{\tau}^0 = 1$ and iteratively goes by

$$x^{t+1} = \eta(x^t + A^* z^t;$$
$$z^t = y - A x^t + \delta^-$$

Onobo, Maleki and Montanari proposed a new iterative thresholding algorithm which is

• This algorithm enjoys both the low complexity of IT algorithms and the superior recovery

 $\tau^{t}),$ $^{-1}z^{t-1}\langle \eta'(x^{t-1}+A^*z^{t-1};\tau^{t-1})\rangle.$

Simple example with a 2-sparse signali Iteration t = 1

Iteration t = 3

Given a support estimate $\tilde{T} \subseteq \{1, ..., N\}$, assume $w_i = \omega < 1$ for $j \in \tilde{T}$ and $w_i = 1$ for $j \notin \tilde{T}$.

We incorporate this information into the AMP algorithm by the following weighted AMP algorithm:

$$egin{aligned} &x^{t+1} &= \eta(x^t + A^* z^t; \hat{ au}^t \mathbf{w}), \ &z^t &= y - A x^t + \delta^{-1} z^{t-1} \langle \eta'(x^{t-1} + A^* z^{t-1}; \hat{ au}^{t-1} \mathbf{w})
angle, \ &\hat{ au}^t &= rac{\hat{ au}^{t-1}}{\delta} \langle \eta'(x^{t-1} + A^* z^{t-1}; \hat{ au}^{t-1} \mathbf{w})
angle. \end{aligned}$$

Given a support estimate $\tilde{T} \subseteq \{1, ..., N\}$, assume $w_i = \omega < 1$ for $j \in \tilde{T}$ and $w_i = 1$ for $j \notin \tilde{T}$.

We incorporate this information into the AMP algorithm by the following weighted AMP algorithm:

$$egin{aligned} &x^{t+1}&=\eta(x^t+A^*z^t;\hat{ au}^t w),\ &z^t&=y-Ax^t+\delta^{-1}z^{t-1}\langle\eta'(x^{t-1}+A^*z^{t-1};\hat{ au}^{t-1} w)
angle,\ &\hat{ au}^t&=rac{\hat{ au}^{t-1}}{\delta}\langle\eta'(x^{t-1}+A^*z^{t-1};\hat{ au}^{t-1} w)
angle. \end{aligned}$$

How does AMP work?

Assume $[w_1, ..., w_N]^T$ are the weights we use for the coefficients of the signal s.

Consider the following distribution over variables s_1, s_2, \ldots, s_N :

$$\mu(ds) = \frac{1}{Z} \prod_{i=1}^{N} \exp(-\beta w_i |s_i|) \prod_{a=1}^{m} \delta_{\{y_a = (As)_a\}},$$

where $\delta_{\{y_a=(As)_a\}}$ denotes a Dirac distribution on the hyperplane $y_a = (As)_a$.

Assume $[w_1, ..., w_N]^{'\Gamma}$ are the weights we use for the coefficients of the signal s.

Consider the following distribution over variables s_1, s_2, \ldots, s_N :

$$\mu(ds) = rac{1}{Z} \prod_{i=1}^{N} exp(-eta w_i |s_i|) \prod_{a=1}^{m} \delta_{\{y_a = (As)_a\}},$$

where $\delta_{\{y_a=(As)_a\}}$ denotes a Dirac distribution on the hyperplane $y_a = (As)_a$.

As $\beta \to \infty$ the mass of this distribution concentrates around the solutions of y = As with smaller ℓ_1 norm.

Assume $[w_1, ..., w_N]^{T}$ are the weights we use for the coefficients of the signal s.

Consider the following distribution over variables s_1, s_2, \ldots, s_N :

$$\mu(ds) = rac{1}{Z} \prod_{i=1}^{N} exp(-eta w_i |s_i|) \prod_{a=1}^{m} \delta_{\{y_a = (As)_a\}},$$

where $\delta_{\{y_a=(As)_a\}}$ denotes a Dirac distribution on the hyperplane $y_a=(As)_a$.

smaller ℓ_1 norm.

As $\beta \to \infty$ the mass of this distribution concentrates around the solutions of y = As with

our sparsifying matrix.

Then $b = RMF_s^HF_sf$, where F_s is a 2-D DFT matrix in the source-receiver domain.

In order to use AMP and WAMP for seismic trace interpolation we use a 2-D DFT matrix as

AMP and WAMP for seismic trace interpolation

our sparsifying matrix.

Then $b = RMF_s^HF_sf$, where F_s is a 2-D DFT matrix in the source-receiver domain.

In order to use AMP and WAMP for seismic trace interpolation we use a 2-D DFT matrix as

Recovery error: AMP vs weighted AMP

AMP error image in SR

Weighted AMP error image in SR

- results of ℓ_1 minimization.
- $b = RMF_s^H F_s f$ is the measurements used for AMP algorithms

• By using simple calculations we can use the fast AMP algorithm to improve the recovery

- By using simple calculations we can use the fast AMP algorithm to improve the recovery results of ℓ_1 minimization.
- $b = RMF_{s}^{H}F_{s}f$ is the measurements used for AMP algorithms
- $b = RMS^H Sf$ are the measurements used for ℓ_1 minimization.

- By using simple calculations we can use the fast AMP algorithm to improve the recovery results of ℓ_1 minimization.
- $b = RMF_s^HF_sf$ is the measurements used for AMP algorithms
- $b = RMS^H Sf$ are the measurements used for ℓ_1 minimization.
- Let x^* be the approximation obtained by solving the AMP algorithm then we have:

Hence we can use $SF_s^H x^*$ as an approximation for the ℓ_1 solver.

 $x^* \approx F_s f$ $F_s^H x^* \approx f$ $SF_{c}^{H}x^{*}\approx Sf$

- By using simple calculations we can use the fast AMP algorithm to improve the recovery results of ℓ_1 minimization.
- $b = RMF_{s}^{H}F_{s}f$ is the measurements used for AMP algorithms
- $b = RMS^H Sf$ are the measurements used for ℓ_1 minimization.
- Let x^* be the approximation obtained by solving the AMP algorithm then we have:
 - $x^* \approx F_s f$ $F_{s}^{H}x^{*}\approx f$ $SF_{s}^{H}x^{*}\approx Sf$

 - Hence we can use $SF_s^H x^*$ as an approximation for the ℓ_1 solver.

Flowchart of the 2-stage algorithm WAMP+weighted ℓ_1

Weighted ℓ_1 vs 2-stage WAMP+weighted ℓ_1

In the 2-stage algorithm, for each frequency slice we first apply a fast WAMP algorithm and use the result to derive new weights for weighted ℓ_1 minimizer with Curvelet coefficients.

Recovery error: AMP vs weighted AMP

Comparison of shotgather SNRs

In the next slides we show the results of applying these algorithms on a seismic line from the Gulf of Suez.

milliseconds. Consequently, the seismic line contains samples collected in a 2s temporal window with a maximum frequency of 125 Hz.

The Seismic line at full resolution has $N_s = 178$ sources, $N_r = 178$ receivers with a sample distance of 12.5 meters, and $N_t = 512$ time samples acquired with a sampling interval of 4

Results on the Gulf of Suez data

Shotgather number 84 from the seismic line:

Subsampled shot gather

ℓ_1 minimization

34 / 40

L_1 error image in SR

Weighted ℓ_1 minimization

Weighted L₁ error image in SR

AMP

AMP error image in SR

Weighted AMP

Weighted AMP error image in SR

Weighted AMP+Weighted ℓ_1

WAMP+W–L₁ error image in SR

Shotgather SNRs

Acknowledgements Thank you for your attention ! <u>https://www.slim.eos.ubc.ca/</u>

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, BP, CGG, Chevron, ConocoPhillips, ION, Petrobras, PGS, Statoil, Total SA, WesternGeco, and Woodside.

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, BP, Chevron, ConocoPhillips, Petrobras, PGS, Total SA, and WesternGeco.