Swift FWI
Swift Team (Felix J. Herrmann, Henryk Modzelewski, Tristan van Leeuwen, Thomas Lai, Harsh Juneja, Bas Peters, Zhilong Fang)
2013. 12. 04
Motivation

Matlab Parallel Computing Toolbox

- forward modeling
- linearized modeling
- full waveform inversion
- ...

Bottleneck licenses

Domain Decomposition
Parallel Over Shots

price = $$$ * nlabs
Motivation

Solution:

+ MapReduce
MapReduce:

MapReduce is a programming model for processing large data sets with a parallel, distributed algorithm on a cluster.
Swift

The Swift parallel scripting language. Fast easy parallel scripting - on multicores, clusters, clouds and supercomputers

The RDCEP project employs Swift as part of a large-scale integrated modeling framework for decision makers in climate and energy policy.
Swift

Original Data

Separated data files

Executable function file

Swift

Output

Map function
3D Full waveform inversion

Optimization problem:

$$\min_{\mathbf{m}} f(\mathbf{m}) = \sum_{i=1}^{M} f_i(\mathbf{m}) = \sum_{i=1}^{M} \|F_i(\mathbf{m}) - \mathbf{d}_i\|_2^2$$

Gradient: $g(\mathbf{m}) = \sum_{i=1}^{M} g_i(\mathbf{m})$

Map: $(\mathbf{m}, \mathbf{d}_i) \rightarrow (f_i, g_i)$

Reduce: $(f_i, g_i)_{1 \leq i \leq M} \rightarrow f(\mathbf{m}) = \sum_{i=1}^{M} f_i(\mathbf{m}), g(\mathbf{m}) = \sum_{i=1}^{M} g_i(\mathbf{m})$
3D full waveform inversion with Swift

Workflow

Original Data → Separated data

LBFGS → Swift

misfit function → Executable function file

randomly selected shots

f and g
3D full waveform inversion with Swift

Swift

Separated data

Executable function file

Map

\[f_1, g_1 \]
work 1

\[f_2, g_2 \]
work 2

\[f_i, g_i \]
work i

\[f_{n-1}, g_{n-1} \]
work n-1

\[f_n, g_n \]
work n

Reduce

\[f, g \]
3D full waveform inversion with Swift

Workflow in detail

LBFGS → Misfit → Misfit

f.rsf & g.rsf

Replace it with any other optimization solver which only uses f and g
Numerical Experiment

Overthrust model

Model Information:
- Model size: 26*51*51
- Model size: 2.5*5*5 km
- Number of shots: 121
- Number of receivers: 2601
- Source depth: 100 m
- Receiver depth: 100 m
- Frequency: 4 Hz

v (m/s)
Parallel performance

Number of shots: 121
Number of processes: 4, 8, 16, 32
Randomly Selected Shots

Initial model

All Shots

True model

z = 100m
Randomly Selected Shots

All Shots

Initial model

True model

$z = 400m$

$z = 500m$
z = 2000m

Randomly Selected Shots

All Shots

Initial model

True model
Comparison of Model Relative Error
Conclusion

- Swift is a powerful parallel computing tool which can be combined with matlab perfectly.

- Using swift, we can run matlab code on large cluster without the requirement of huge number of licenses.
Future work

- Test 3D FWI using swift with larger problem;
- Apply simultaneous shots for 3D FWI using swift;
- Combine adaptive 3D FWI with swift.
Acknowledgements

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, BP, CGG, Chevron, ConocoPhillips, ION, Petrobras, PGS, Total SA, WesternGeco, and Woodside.

Thank you for your attention!

https://www.slim.eos.ubc.ca/