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Assuming u; is white,

1 X 1M
M Z fil* = Vi Z |0|2|4d5]? = clw]? for some ¢
Jj=1 j=1
where ~ denotes the Discrete Fourier Transform.

Assuming ||w|| = 1, we can then estimate

v
PP /< 1

" mean(YX1 |£2)

3/24



Quality of Autocorrelation Estimate

Generate synthetic data f; by convolving a fixed wavelet w with randomly generated u; and
adding Gaussian noise. Visualize relative error

Relative error vs SNR and M

3 o o

&
by

lel denoise ( mean(3 1, fj|2)> H

VN

Average SNR

10 20 60 70 80 0 100

30 40 50
Number of traces used

The high frequency part can be used to estimate noise statistics of the raw estimate, which
can then be further improved by applying a denoising method.



A Phase Retrieval Problem

Given an estimate for ||, estimate w.

o Problem is not well posed
o w is only determined up to convolution with an all pass filter (magnitude response = 1)

o In particular, w is not determined up to arbitrary shifts



Minimum Phase Approximation

A common assumption is that most of the energy in w is near the beginning. This leads to
a strategy of computing a minimum phase filter (minimum group delay) whose magnitude
response is the estimate for |w|.

Ricker wavelet Minimum phase approximation o]
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Computation

Computing a minimum phase approximation can be tricky:
o Can flip zeros of the filter’s transfer function inside the unit circle, but working with roots
of a high order polynomials is numerically unstable
o Can apply the Discrete Hilbert Transform to log(v/b) where b ~ ||?, but this can be
sensitive to errors.

minimum phase wavelet estimated using sqrt(b) + d
‘ ‘ ‘ ---d=1e-16
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Regularization

One might also consider, given an estimate b for |@|?, solving
minZanrzL such that |w| = Vb
w
n
to directly encourage energy to be concentrated at the beginning. [Lamoureux, Margrave]

This problem can be relaxed to a convex semi-definite program (SDP) and robustly solved.
[Lemaréchal, Oustry], [Candes, Strohmer, Voroninski]



Let b = ||, These measurements are linear in ww’ .

Relax ww? to a symmetric positive semi definite matrix W = 0 and let F' be the DFT matrix.

We can define a linear operator by A(W) = diag(FW F*) so that A(ww’) = b.
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Convex Model

A possible convex relaxation of the problem of determining w from b is

1
i ~JA(W) — b|? tr(CW
Wtol,{lrl(II}V):12HA( ) = bl|F +ytr(CW)

where v > 0, C' is a diagonal matrix and diag(C) = [1,2,..., N]?. The tr(CW) penalty
encourages the energy in the source wavelet to be near the beginning.

Advantages of convex reformulation:

@ Any local minimum is a global minimum

o We can apply robust methods guaranteed to converge to a minimizer
Disadvantages:

o The number of unknowns increased from N to N2

@ We need a rank one minimizer to solve the original problem (but this is empirically
observed!)



Gradient Projection

Applying a simple gradient projection method yields the iterations

WhH =TI (W — aA*(A(WF) = b) — anO)

where oo > 0 is a time step and IIx is the orthogonal projection onto symmetric positive semi
definite matrices with trace equal to one.

Let W = VAV* = Zf\il Aiviv] denote an eigenvalue decomposition of .
Then

N
A (W) =) max(X; — 0,0)vv]
=1

for some 6 that can be easily computed using a bisection strategy.



Douglas Rachford for Constrained [, Model

Alternatively, the Douglas Rachford method can be used to solve a constrained form of the
problem: [Demanet, Hand]

min  tr(CW)  such that || A(W) —b]| <e
W=0,tr(W)=1

which yields the iterations

VIR =TTy p<e@WF = VE) = Wh 4 v
Wk+1 _ HA(Vk+1 _ OZC)

The special structure of the measurement operator A can be used to efficiently compute the
projection onto ||A(W) —b|| <e.



Recovered Source Wavelet (no noise)

True source: Minimum phase wavelet with same magnitude response as Ricker wavelet

Using Douglas Rachford with ¢ = .001||b|| ~ .2
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Recovered Source Wavelet (with noise, SNR ~ 10)

Using Douglas Rachford with ¢ = .001||b|| ~ .2

True and estimated source wavelet
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Recovered Source Wavelet (no noise)

True source: A minimum phase wavelet with similar magnitude response as Ricker wavelet

Using Douglas Rachford with ¢ = .001||b|| ~ .2

True and estimated source wavelet

——true source wavelet
o1 — estimated source wavelet
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Recovered Source Wavelet (with noise, SNR ~ 10)

Using Douglas Rachford with ¢ = .001||b|| ~ .2

True and estimated source wavelet

——true source wavelet
o1 — estimated source wavelet
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Recovered Source Wavelet (no noise)

True source: A more impulsive minimum phase wavelet

Using Douglas Rachford with ¢ = .001||b|| ~ .2

True and estimated source wavelet Comparison of magnitude response
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Recovered Source Wavelet (with noise, SNR ~ 10)

Using Douglas Rachford with ¢ = .001||b|| ~ .2

True and estimated source wavelet

——true source wavelet
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Sparse Blind Deconvolution

To recover w that is not minimum phase and/or if we don't have a good estimate of ||, we
need to use more information and assumptions such as sparsity of u;.

A classical approach is to solve a problem of the general form
M
- 2
Igglzl g lwxu; = flI° + Rluy)
j:

by alternating minimization or variable projection, where R is a penalty designed to promote
sparsity of u.

Is lifting another viable strategy here?



Lifting for Blind Deconvolution

The previous model can also be lifted to a convex model by noting that the bilinear convolution
measurements w * u; are linear measurements of the matrix

If w and u belong to certain known lower dimensional subspaces, then minimizing the nuclear
norm of X subject to data constraints can recover w and u up to a scalar multiple. [Ahmed,
Recht, Romberg]

From b = |w|?, we can estimate the support of w in the frequency domain.

Difficulty: The supports of the sparse u; are unknown.



Goals for Lifted Model

With ww? and w(flip(u;))T lifted to matrices W and V;, we want the following:
o W should be positive semi-definite
o tr(W)=1
o [W Vi o V]\d should have rank 1
o A(W) =~ b (agrees with autocorrelation estimate)
o A(Vj) ~ f; (data fidelity)

o V; should be sparse

It is difficult to find V that is simultaneously sparse and low rank.

Convex relaxation for simultaneously sparse and low rank matrices has limits [Oymak, Jalali,
Fazel, Eldar, Hassibi]

but might work with the right formulation as with SDP for sparse PCA [D’Aspremont, Ghaoui,
Jordan, Lanckriet]



Conclusions

o Lifting to convexify blind deconvolution can work when the unknowns are restricted to
certain known lower dimensional subspaces (as in [Ahmed, Recht, Romberg]), but so far it
does not appear to be a good strategy when combining with an [y penalty to promote
sparsity.

o SDP relaxation does, however, yield an interesting method for approximating the source
wavelet from an estimate of its magnitude response and the assumption that most of its
energy is concentrated near the beginning.

o Lifted problem with 1 million unknowns can be solved in minutes

o Robust to noise
o Potentially a good strategy if the true source wavelet has its energy concentrated at the start

Future Work:
o Show minimizer is rank one and corresponds to a minimum phase filter

o Continue to explore models for lifted blind deconvolution



Application to Gulf of Suez Data

Select 100 random traces from the Gulf of Suez data set as input noisy data f,, and apply
Douglas Rachford to the Iy constrained lifted convex model with ¢ = .001]b|| ~ .04.

True and estimated source wavelet Comparison of magnitude response
35| —— from estimated wavelet
— ; o R
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Estimate sparse u; by solving
. 1
min plfufly + 5w u = £

then debias by solving a least squares problem on the recovered support.

— one original trace
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