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Data Model

source wavelet sparse re�ectivity series

convolution w ∗ uj noisy data fj = w ∗ uj + η , j = 1, ...,M
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Autocorrelation Estimate

Assuming uj is white,

1

M

M∑
j=1

|f̂j |2 =
1

M

M∑
j=1

|ŵ|2|ûj |2 ≈ c|ŵ|2 for some c

where ˆ denotes the Discrete Fourier Transform.

Assuming ‖w‖ = 1, we can then estimate

|ŵ|2 ≈
∑M

j=1 |f̂j |2

mean(
∑M

j=1 |f̂j |2)
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Quality of Autocorrelation Estimate

Generate synthetic data fj by convolving a �xed wavelet w with randomly generated ui and
adding Gaussian noise. Visualize relative error

∥∥∥∥|ŵ| − denoise

(√ ∑M
j=1 |f̂j |2

mean(
∑M

j=1 |f̂j |2)

)∥∥∥∥
√
N

Relative error vs SNR and M

The high frequency part can be used to estimate noise statistics of the raw estimate, which
can then be further improved by applying a denoising method.
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A Phase Retrieval Problem

Given an estimate for |ŵ|, estimate w.

Problem is not well posed

w is only determined up to convolution with an all pass �lter (magnitude response = 1)

In particular, w is not determined up to arbitrary shifts
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Minimum Phase Approximation

A common assumption is that most of the energy in w is near the beginning. This leads to
a strategy of computing a minimum phase �lter (minimum group delay) whose magnitude
response is the estimate for |ŵ|.

Ricker wavelet Minimum phase approximation |ŵ|
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Computation

Computing a minimum phase approximation can be tricky:

Can �ip zeros of the �lter's transfer function inside the unit circle, but working with roots
of a high order polynomials is numerically unstable
Can apply the Discrete Hilbert Transform to log(

√
b) where b ≈ |ŵ|2, but this can be

sensitive to errors.
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Regularization

One might also consider, given an estimate b for |ŵ|2, solving

min
w

∑
n

n2w2
n such that |ŵ| =

√
b

to directly encourage energy to be concentrated at the beginning. [Lamoureux, Margrave]

This problem can be relaxed to a convex semi-de�nite program (SDP) and robustly solved.
[Lemaréchal, Oustry], [Candes, Strohmer, Voroninski]
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SDP Lifting

Let b = |ŵ|2. These measurements are linear in wwT .

Relax wwT to a symmetric positive semi de�nite matrix W � 0 and let F be the DFT matrix.

We can de�ne a linear operator by A(W ) = diag(FWF ∗) so that A(wwT ) = b.

9 / 24



Convex Model

A possible convex relaxation of the problem of determining w from b is

min
W�0,tr(W )=1

1

2
‖A(W )− b‖2 + γ tr(CW )

where γ > 0, C is a diagonal matrix and diag(C) = [1, 2, . . . , N ]2. The tr(CW ) penalty
encourages the energy in the source wavelet to be near the beginning.

Advantages of convex reformulation:

Any local minimum is a global minimum

We can apply robust methods guaranteed to converge to a minimizer

Disadvantages:

The number of unknowns increased from N to N2

We need a rank one minimizer to solve the original problem (but this is empirically
observed!)
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Gradient Projection

Applying a simple gradient projection method yields the iterations

W k+1 = Π4(W k − αA∗(A(W k)− b)− αγC)

where α > 0 is a time step and Π4 is the orthogonal projection onto symmetric positive semi
de�nite matrices with trace equal to one.

Let W = V ΛV ∗ =
∑N

i=1 λiviv
∗
i denote an eigenvalue decomposition of W .

Then

Π4(W ) =

N∑
i=1

max(λi − θ, 0)viv
∗
i

for some θ that can be easily computed using a bisection strategy.
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Douglas Rachford for Constrained l2 Model

Alternatively, the Douglas Rachford method can be used to solve a constrained form of the
problem: [Demanet, Hand]

min
W�0,tr(W )=1

tr(CW ) such that ‖A(W )− b‖ ≤ ε

which yields the iterations

V k+1 = Π‖A(·)−b‖≤ε(2W
k − V k)−W k + V k

W k+1 = Π4(V k+1 − αC)

The special structure of the measurement operator A can be used to e�ciently compute the
projection onto ‖A(W )− b‖ ≤ ε.
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Recovered Source Wavelet (no noise)

True source: Minimum phase wavelet with same magnitude response as Ricker wavelet

Using Douglas Rachford with ε = .001‖b‖ ≈ .2

True and estimated source wavelet Comparison of magnitude response
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Recovered Source Wavelet (with noise, SNR ≈ 10)

Using Douglas Rachford with ε = .001‖b‖ ≈ .2

True and estimated source wavelet Comparison of magnitude response
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Recovered Source Wavelet (no noise)

True source: A minimum phase wavelet with similar magnitude response as Ricker wavelet

Using Douglas Rachford with ε = .001‖b‖ ≈ .2

True and estimated source wavelet Comparison of magnitude response
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Recovered Source Wavelet (with noise, SNR ≈ 10)

Using Douglas Rachford with ε = .001‖b‖ ≈ .2

True and estimated source wavelet Comparison of magnitude response
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Recovered Source Wavelet (no noise)

True source: A more impulsive minimum phase wavelet

Using Douglas Rachford with ε = .001‖b‖ ≈ .2

True and estimated source wavelet Comparison of magnitude response
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Recovered Source Wavelet (with noise, SNR ≈ 10)

Using Douglas Rachford with ε = .001‖b‖ ≈ .2

True and estimated source wavelet Comparison of magnitude response
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Sparse Blind Deconvolution

To recover w that is not minimum phase and/or if we don't have a good estimate of |ŵ|, we
need to use more information and assumptions such as sparsity of uj .

A classical approach is to solve a problem of the general form

min
w,u

M∑
j=1

1

2
‖w ∗ uj − fj‖2 +R(uj) ,

by alternating minimization or variable projection, where R is a penalty designed to promote
sparsity of u.

Is lifting another viable strategy here?
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Lifting for Blind Deconvolution

The previous model can also be lifted to a convex model by noting that the bilinear convolution
measurements w ∗ uj are linear measurements of the matrix

X =

[
w
u

] [
wT uT

]
.

If w and u belong to certain known lower dimensional subspaces, then minimizing the nuclear
norm of X subject to data constraints can recover w and u up to a scalar multiple. [Ahmed,
Recht, Romberg]

From b ≈ |ŵ|2, we can estimate the support of w in the frequency domain.

Di�culty: The supports of the sparse uj are unknown.
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Goals for Lifted Model

With wwT and w(flip(uj))
T lifted to matrices W and Vj , we want the following:

W should be positive semi-de�nite

tr(W ) = 1[
W V1 · · · VM

]
should have rank 1

A(W ) ≈ b (agrees with autocorrelation estimate)

A(Vj) ≈ f̂j (data �delity)

Vj should be sparse

It is di�cult to �nd V that is simultaneously sparse and low rank.

Convex relaxation for simultaneously sparse and low rank matrices has limits [Oymak, Jalali,
Fazel, Eldar, Hassibi]
but might work with the right formulation as with SDP for sparse PCA [D'Aspremont, Ghaoui,
Jordan, Lanckriet]
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Conclusions

Lifting to convexify blind deconvolution can work when the unknowns are restricted to
certain known lower dimensional subspaces (as in [Ahmed, Recht, Romberg]), but so far it
does not appear to be a good strategy when combining with an l1 penalty to promote
sparsity.

SDP relaxation does, however, yield an interesting method for approximating the source
wavelet from an estimate of its magnitude response and the assumption that most of its
energy is concentrated near the beginning.

Lifted problem with 1 million unknowns can be solved in minutes

Robust to noise

Potentially a good strategy if the true source wavelet has its energy concentrated at the start

Future Work:

Show minimizer is rank one and corresponds to a minimum phase �lter

Continue to explore models for lifted blind deconvolution
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Application to Gulf of Suez Data

Select 100 random traces from the Gulf of Suez data set as input noisy data fn and apply
Douglas Rachford to the l2 constrained lifted convex model with ε = .001‖b‖ ≈ .04.

True and estimated source wavelet Comparison of magnitude response
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Deconvolution Using Estimated Source Wavelet

Estimate sparse uj by solving

min
u
µ‖u‖1 +

1

2
‖w ∗ u− fj‖2 ,

then debias by solving a least squares problem on the recovered support.
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