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Quick Summary
• Problem: Large Scale Seismic Data Interpolation

• Approach: Matrix completion and tensor completion 
on different representations of seismic data

• Contribution: Posing the interpolation problem in the 
compressed sensing framework that allows scalable 
algorithms

• Outcome: Large scale interpolation problems can 
be solved efficiently by simple scalable algorithms
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Seismic Data Interpolation 
Problem

• Data is poorly sampled along a subset of modes

• Different from classical interpolation due to the 
nature of seismic data

• Incomplete

• Large volume

• High dimensional

• Hence we need a space and time efficient algorithm 
for feasible analysis



Problem Setting
• 5-D data. Modes are time, source and receiver 

coordinates.

• Fourier transform is taken in time domain and a 
certain frequency slice is selected.

• 4.68Hz downsampled to 68x68x101x101

• 7.34Hz downsampled to 68x68x101x101

• 12.3Hz downsampled to 68x68x201x201



Structured Signal Recovery

• Fundamentally different from Shannon-Nyquist 
based approaches:

• Shannon-Nyquist based methods: periodic 
sampling with costly sampling rate

• Structured recovery methods: impose stronger 
structural requirements with milder sampling rates



CS-Based Recovery
• Every successful compressed sensing recovery scheme 

consists of three main components:

• Signal structure - sparsity: a sparse signal in some 
dictionary

• Seismic images tend to be sparse in curvelet domain

• Structure-destroying sampling operator: a sampling 
operator that breaks the assumed structure of the signal

• Structure-promoting optimization program: a 
formulation which favors the sparsest signal that fits our 
data
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Matrix Completion

• Matrix completion is the problem of filling the 
missing entries based on the observations

• Ill posed unless we assume structure: low-rank!

• The CS framework can be easily extended for the 
matrix completion problem.



Matrix Completion

• The original matrix completion problem

• Its convex relation that is tractable
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Matrix Completion
• Three pillars:

• Signal Structure - Low Rank: For a matrix, a 
direct analogue of sparsity in the signal domain is 
sparsity in singular value spectrum

• Structure-destroying sampling operator: 
Random sampling of entries!

• Structure-promoting optimization program: 



Matrix Completion
• Three different formulations:

• Basis Pursuit Denoising (BPDN) formulation

• Quadratic Programming (QP) Formulation

• LASSO Formulation



Matrix Completion

• Basis Pursuit Denoising (BPDN) formulation

• The parameter σ can be naturally interpreted as 
the noise level

• Challenging to solve



Matrix Completion
• (Quadratic Programming) QP Formulation

• λ parameter does not have a natural 
interpretation, hard to pick in the noisy case

• Time and space efficient scalable algorithms 
exist to solve the QP formulation



Matrix Completion
• LASSO Formulation

• Needs an estimate on the rank of the matrix, 
much harder than the estimation of the noise 
level

• Can be solved efficiently
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Tensor Completion
• The low rank idea can also be applied in the tensor 

completion setting.

• However the problem is much harder:

• Even tensor rank is very hard to compute (NP-
Complete!)

• Fixed rank tensors do not form a closed set (a 
lowest rank approximation may not exist at all!)

• A lack of theoretical framework for the completion 
problem



Tensor Completion
• An alternative (and popular) method is penalizing the 

rank of matricizations of the tensor

• Since this formulation uses nuclear norm, the problem is 
tractable

• It is unclear why this combination of nuclear norms is 
supposed to work



Tensor Completion
• Actually when the sampling operator is Gaussian, 

the sample complexity can be bounded below by 
the greatest sample complexity amongst all 
matricizations

• It is impossible to outperform the single most 
successful matricization

• Gaussian sampling does not fit in the tensor 
completion framework, however empirical evidence 
suggests a similar argument might still hold. 

Oymak, S., Jalali, A., Fazel, M., Eldar, Y. C., & Hassibi, B. (2012). Simultaneously structured models with 
application to sparse and low-rank matrices. arXiv preprint arXiv:1212.3753.
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(src x, src y)=(10,12)

Fixing source coordinates, we obtain a specific shot

Low Rank Promoting Organization
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Jellyfish
• Jellyfish solves a relaxation of the QP program 

which is equivalent to the original program:

minimize(L,R)
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Recht, B., & Ré, C. (2011). Parallel stochastic gradient algorithms for large-scale matrix completion. 
Mathematical Programming Computation, 1-26.



Jellyfish

• This formulation allows application of stochastic 
gradient descent algorithm which can be highly 
parallelized by proper sampling of data points

• Can scale to GB sized matrices on workstations

• Jellyfish explicitly compresses the matrix by 
factorizing it



SPGL1

• Successively solves LASSO problems, updating τ 
at each iteration:

• where

Friedlander, M., & Van den Berg, E. (2008). SPGL1, a solver for large scale sparse reconstruction. SIAM Journal on Scientific 
Computing, 31(2), 890-912.

Aravkin, A. Y., Kumar, R., Mansour, H., & Recht, B. (2013). A robust SVD-free approach to matrix completion, with applications to 
interpolation of large scale data.



Tensor Completion

• For tensor completion, the objective function is:

• This is the ADMM reformulation of the original 
problem.

Gandy, S., Recht, B., & Yamada, I. (2011). Tensor completion and low-n-rank tensor recovery via convex optimization. 
Inverse Problems, 27(2), 025010.

Kreimer, N. , Stanton, A., Sacchi, M. (2013). Tensor completion based on nuclear norm minimization for 5D seismic data 
reconstruction
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Matrix Completion Results



Matrix Completion Results



Matrix Completion Results



Matrix Completion Results



Jellyfish vs. SGPL1

• s



Windowing Results



Windowing Results



Windowing Results



Comparison of Methods



Tensor Completion Results



Tensor Completion Results



(a) Jellyfish Results (b) NNLS Results

(c) Comparative Results

Figure 1: Sample complexity results for a rank 5 tensor of size 20⇥ 20⇥ 20.

• Geofish Geofish was ran similarly to the NNLS algorithm.

We generated theee kinds of tensors of size 20⇥ 20⇥ 20: low-rank tensors, tensors with exactly
one low-rank matricization and high rank Gaussian tensors (where each entry is randomly sampled
from standard normal distribution). Low-rank tensors were generated by sampling 5 vectors in R20

and taking their outer product. Results can be seen in Figure. 1. When a third order tensor is
low-rank, every matricization is low-rank. As a result, we see that ADMM algorithm yields lower
RMSE results than Geofish and NNLS algorithms. Tensors with exactly one low-rank unfolding
were generated by folding a randomly sampled rank 5 matrix of size 20 ⇥ 400. In this case, two of
the unfoldings are high-rank. As a result on Figure. 2, we see that ADMM cannot produce good
RMSE results. RMSE value improves only slightly even when 50% of the samples are revealed. For
high rank tensors, all of the algorithms yield bad results, c.f. Figure 3.

3.2 Frequency 54

Frequency 54 is the data for which we presented the results in the SINBAD meeting. 3 shots were
held out as test set for performance evaluation. We present the results with di↵erent methods in
Table 1. RMSE and SNR results are reported for the test set as a whole (i.e. not for each individual
shot).
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(a) Jellyfish Results (b) NNLS Results

(c) Comparative Results

Figure 2: Sample complexity results for tensor of size 20 ⇥ 20 ⇥ 20 with exactly one low rank
unfolding (rank 5).
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Recap
• Jellyfish and SPGL1 yield very similar results as expected.

• Matrix completion performs fairly well

• Windowing yields very good results, making it possible to 
scale to very large data sets

• Tensor completion with nuclear norm averaging does not 
work

• Parameter selection still takes considerable time, however 
good parameter combinations work across different 
problems
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Conclusion
• Compressed sensing provides a framework that 

allows scalable algorithms for the large scale seismic 
data interpolation problem

• The runtime efficiency can be increased by 
windowing

• In order to do successful tensor completion, we need 
a model that agrees with the structure of seismic data

• Hierarchical Tucker Decomposition yields 
comparable results



Future Work
• Finding different low rank representations of seismic 

data

• Sample complexity comparison between tensor 
completion (Hierarchical Tucker Decomposition) 
and matrix completion methods

• Using windowing to interpolate high frequencies 

• Using windowing for fast parameter selection



Thank you!

• Any questions?


