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Quick Summary

Problem: Large Scale Seismic Data Interpolation

Approach: Matrix completion and tensor completion
on different representations of seismic data

Contribution: Posing the interpolation problem in the
compressed sensing framework that allows scalable
algorithms

QOutcome: Large scale interpolation problems can
be solved efficiently by simple scalable algorithms
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Seismic Data Interpolation
Problem

 Data is poorly sampled along a subset of modes

e Different from classical interpolation due to the
nature of seismic data

e [ncomplete
e |arge volume
* High dimensional

 Hence we need a space and time efficient algorithm
for feasible analysis



Problem Setting

e 5-D data. Modes are time, source and recelver
coordinates.

e Fourier transform is taken in time domain and a
certain frequency slice Is selected.

e 4.68Hz downsampled to 68x68x101x101
e /.34Hz downsampled to 68x68x101x101
e 12.3Hz downsampled to 68x68x201x201



Structured Signal Recovery

 Fundamentally different from Shannon-Nyquist
based approaches:

 Shannon-Nyquist based methods: periodic
sampling with costly sampling rate

» Structured recovery methods: impose stronger
structural requirements with milder sampling rates



CS-Based Recovery

* Every successful compressed sensing recovery scheme
consists of three main components:

» Signal structure - sparsity: a sparse signal in some
dictionary

e Seismic images tend to be sparse in curvelet domain

» Structure-destroying sampling operator: a sampling
operator that breaks the assumed structure of the signal

o Structure-promoting optimization program: a
formulation which favors the sparsest signal that fits our
data
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Matrix Completion

* Matrix completion is the problem of filling the
MISSINg entries based on the observations

* |l posed unless we assume structure: low-rank!

 The CS framework can be easily extended for the
matrix completion problem.



Matrix Completion

* [he original matrix completion problem

minimize rank(X)
subject to X, =M, (1,])eQ
X E RHXIZ :

e |ts convex relation that Is tractable

minimize x|,

subject to X, =M; (1,]) €.

X = Y i)



Matrix Completion

e [hree pillars:

- Signal Structure - Low Rank: For a matrix, a
direct analogue of sparsity in the signal domain is
sparsity in singular value spectrum

» Structure-destroying sampling operator:
Random sampling of entries!

» Structure-promoting optimization program:
min || X]||,

s.t. ||[A(X)—Blls <o




Matrix Completion

e Three different formulations:

» Basis Pursuit Denoising (BPDN) formulation
min || X]||,
s.t. ||[A(X) — Bl <o
e Quadratic Programming (QP) Formulation
1

S o 2
min 7 [A(X) — Bll3 + Al X[

e |LASSO Formulation

min || A(X) - B|?

s.t. || X ||« < 7




Matrix Completion

» Basis Pursuit Denoising (BPDN) formulation
min || X]||,

S.t1. A(X) — BH2 S o

* [he parameter o can be naturally interpreted as
the noise level

* Challenging to solve



Matrix Completion

* (Quadratic Programming) QP Formulation

1
min  [A(X) — B3 + AlIX].

* A\ parameter does not have a natural
INnterpretation, hard to pick in the noisy case

* [ime and space efficient scalable algorithms
exist to solve the QP formulation



Matrix Completion

e |LASSO Formulation
min [ A(X) — BJ|

s.t. || X[« < 7

e Needs an estimate on the rank of the matrix,
much harder than the estimation of the noise

level

* Can be solved efficiently
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Tensor Completion

 The low rank idea can also be applied in the tensor
completion setting.

e However the problem is much harder:

* Even tensor rank is very hard to compute (NP-
Complete!)

* Fixed rank tensors do not form a closed set (a
lowest rank approximation may not exist at alll)

* A lack of theoretical framework for the completion
problem



Tensor Completion

* An alternative (and popular) method is penalizing the
rank of matricizations of the tensor

4
: (%)
min 3D,

s.t. AD) — b2 < &

e Since this formulation uses nuclear norm, the problem is
tractable

e [tis unclear why this combination of nuclear norms Is
supposed to work



Tensor Completion

* Actually when the sampling operator is Gaussian,
the sample complexity can be bounded below by
the greatest sample complexity amongst al
matricizations

e |t is impossible to outperform the single most
successful matricization

e (Gaussian sampling does not fit in the tensor
completion framework, however empirical evidence
suggests a similar argument might still hold.

Oymak, S., Jalali, A., Fazel, M., Eldar, Y. C., & Hassibi, B. (2012). Simultaneously structured models with
application to sparse and low-rank matrices. arXiv preprint arXiv:1212.3753.
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| ow Rank Promoting Organization

(src x, src y)=(10,12)

l

Fixing source coordinates, we obtain a specific shot



| ow Rank Promoting Organization
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o Structure Promoting Optimization Program



Jellyfish

» Jellyfish solves a relaxation of the QP program
which Is equivalent to the original program:

minimize(L,R) Z {(LuRZ o Muv)2 T :LLUHLUH%’ - NUHRUH%’}

(u,v)eEE
R*
M = L
k x n k x r rxn
kn entries I"(k+n) entries

Recht, B., & Ré, C. (2011). Parallel stochastic gradient algorithms for large-scale matrix completion.
Mathematical Programming Computation, 1-26.



Jellyfish

* This formulation allows application of stochastic
gradient descent algorithm which can be highly
parallelized by proper sampling of data points

e Can scale to GB sized matrices on workstations

o Jellyfish explicitly compresses the matrix by
factorizing it



SPGLT

e Successively solves LASSO problems, updating T
at each iteration:

e where

(1) = minp(A(z) —b) st. [|z]| <7

I

Friedlander, M., & Van den Berg, E. (2008). SPGL1, a solver for large scale sparse reconstruction. SIAM Journal on Scientific
Computing, 31(2), 890-912.
Aravkin, A. Y., Kumar, R., Mansour, H., & Recht, B. (2013). A robust SVD-free approach to matrix completion, with applications to
interpolation of large scale data.



Tensor Completion

* [or tensor completion, the objective function is:
A - - B
1D,V W) = JITD-a%[ + Y (YO~ <WiD-i> + 51D Vi)
1=1

* This is the ADMM retormulation of the original
problem.

Gandy, S., Recht, B., & Yamada, |. (2011). Tensor completion and low-n-rank tensor recovery via convex optimization.
Inverse Problems, 27(2), 025010.
Kreimer, N. , Stanton, A., Sacchi, M. (2013). Tensor completion based on nuclear norm minimization for 5D seismic data
reconstruction
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Matrix Completion Results

Freq 4.68Hz (Source x, Source y)=(12, 27) Sampling Ratio: 0.25

Ground Truth Jellyfish estimation, SNR: 14.009181 Residual

Recelver y

Receiver y
Recelver y

Receiver X Recelver X Receiver X



Matrix Completion Results

Freq 4.68Hz (Source x, Source y)=(12, 27) Sampling Ratio: 0.75

Ground Truth Jellyfish estimation, SNR: 20.231058 Residual

Recelver y

o )

Receiver y
Receliver y

Recelver X Receiver X Receiver X



Receiver y

Matrix Completion Results

Freq 12.30Hz (Source x, Source y)=(12, 27) Sampling Ratio: 0.25

Ground Truth Jellyfish estimation, SNR: 8.662400 Residual

Receiver y
Receilver y

Recelver X Recelver X Recelver X



Recelver y

Matrix Completion Results

Freq 12.30Hz (Source x, Source y)=(12, 27) Sampling Ratio: 0.75

Ground Truth Jellyfish estimation, SNR: 11.950294 Residual

Recelver y
Receiver y

Receiver X Receiver X Receiver X



Jellytish vs. SGPL1

Freq 4.68Hz (Source x, Source y)=(54, 30) Sampling Ratio: 0.25

Ground Truth Jellyfish estimation, SNR: 18.106082 SPGL1 estimation, SNR: 18.70

Receiver y

Recelver y
Recelver y
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Windowing Results

Freq: 4.68Hz (Source x, Source y)=(54, 29) Sampling Ratio: 0.25

# of Windows = 1, SNR: 18.50 # of Windows = 4x4, SNR: 12.52 # of Windows = 17x17, SNR: -0.03

Receiver y
Receiver y
Receiver y

®

Receiver x Receiver x Receiver x

Residual, # of Windows = 1 Residual, # of Windows = 4x4 Residual, # of Windows = 17x17

Receiver y
Receiver y
Receiver y

Receiver x Receiver x Receiver x



Windowing Results

Freq: 4.68Hz (Source x, Source y)=(54, 29) Sampling Ratio: 0.75

# of Windows = 1, SNR: 23.31 # of Windows = 4x4, SNR: 25.83 # of Windows = 17x17, SNR: 23.06

Receiver y
Receiver y
Receiver y

@ @® ®

Receiver X Receiver X Receiver X

Residual, # of Windows = 1 Residual, # of Windows = 4x4 Residual, # of Windows = 17x17

Receiver y
Receiver y
Receiver y

Receliver x Receiver x Receiver x



Windowing Results

Freq: 12.30Hz (Source x, Source y)=(12, 27) Sampling Ratio: 0.25

# of Windows = 1, SNR: 8.66 # of Windows = 4x4, SNR: 8.60 # of Windows = 17x17, SNR: -0.00

Receiver y
Receiver y
Receiver y

Receiver X Receliver x Receliver x

Residual, # of Windows = 1 Residual, # of Windows = 4x4 Residual, # of Windows = 17x17

Receiver y
Receiver y
Receiver y

Receiver X Receiver x Receiver x



Comparison of Methods

Frequency | % sources | SPGl; | SPGI; time | Jellyfish | Jellyfish time | ADMM | ADMM time
25% 15.9 5040 16.34 2160 -80.96 127346
4.68 Hz 50% 20.75 5760 19.81 4899 -82.03 132987
75% 21.47 6840 19.64 7434 -82.25 130309
257 11.2 5040 11.99 3126 -81.12 126984
7.34 Hz 50% 15.2 7560 15.05 8767 -82.85 128921
75% 16.3 8280 15.31 11710 -81.12 133567
25% 7.3 19440 9.34 13387 -80.14 174296
12.3 Hz 50% 12.6 26280 12.12 42330 -81.19 177145
75% 14.02 27000 12.90 77670 -81.53 175340




Tensor Completion Results

Singular value spectrums of matricizations
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Tensor Completion Results

(Source x, Source y)=(54, 29) Sampling Ratio: 0.50

Ground Truth Tensor Completion Result

Receiver y
Receliver y
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Figure 2: Sample complexity results for tensor of size 20 x 20 x 20 with exactly one low rank
unfolding (rank 5).



Recap

Jellyfish and SPGL1 yield very similar results as expected.
Matrix completion performs fairly well

Windowing yields very good results, making it possible to
scale to very large data sets

Tensor completion with nuclear norm averaging does not
WOrk

Parameter selection still takes considerable time, however
good parameter combinations work across different
problems
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Conclusion

 Compressed sensing provides a framework that
allows scalable algorithms for the large scale seismic

data interpolation problem

* The runtime efficiency can be increased by
windowing

* [n order to do successtul tensor completion, we need
a model that agrees with the structure of seismic data

* Hierarchical Tucker Decomposition yields
comparable results



Finding
data

Sample
comple

Future Work

different low rank representations of seismic

complexity comparison between tensor
lon (Hierarchical Tucker Decomposition)

and matrix completion methods

Using windowing to interpolate high frequencies

Using windowing for fast parameter selection



Thank you!

* Any questions”



