Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Fast imaging with multiples by sparse inversion Ning Tu and Felix J. Herrmann

Lin, Tu, and Herrmann, 2010; Verschuur and Berkhout, 2011; Whitmore et.al., 2010; Liu et.al., 2011

Motivation

- making use of primaries and multiples *simultaneously*
- avoiding imaging *artifacts* from multiples
- looking for a computationally *efficient* approach

Tu and Herrmann, 2011; Verschuur and Berkhout, 2011; Lu et.al., 2011; Liu et.al., 2011

Primaries & multiples: not "OR" but "AND"

- primaries have a higher signal-to-noise ratio
- multiples provide extra illumination if correctly used
- skip the procedure of separating primaries/multiples

Whitmore et.al., 2010; Liu et.al., 2011

Artifacts from multiples

Reverse time migration of *multiples* using total data as "source"

SLIM 🐣

Not there for primaries

Reverse time migration of *primaries*

Liu et.al., 2011

SLIM 🛃

When a free-surface presents

Lin et. al., 2010; Tu and Herrmann, 2011a

Want to avoid them?

Imaging of *multiples* by *inversion*

SLIM 🐣

Inversion? Sounds expensive...

- repeated evaluations of the Born scattering operator and its adjoint
- each evaluation requires solving 4*(#source)*(#frequencies) PDEs

Sneak peek of our result

[with a computational budget of a single RTM with all data]

Fast imaging of *total up-going wavefield* by sparse inversion *120X speed up* compared with the previous result

Method

Incorporating the free surface

Total data and the surface-free Green's function can be related by the SRME formulation:

$$\mathbf{P}_{\omega_{\mathrm{i}}} = \mathbf{G}_{\omega_{\mathrm{i}}}(\mathbf{Q}_{\omega_{\mathrm{i}}} + \mathbf{R}_{\omega_{\mathrm{i}}}\mathbf{P}_{\omega_{\mathrm{i}}})$$

- \mathbf{P} : total up-going wavefield
- ${\bf G}$: surface-free Green's function
- \mathbf{Q} : source wavelet
- \mathbf{R} : surface reflectivity

Expressed in model space

 $\begin{aligned} \mathbf{P}_{\omega_{i}} &= \operatorname{vec}^{-1}(\mathbf{F}_{\omega_{i}}[\mathbf{m},\mathbf{I}])(\mathbf{Q}_{\omega_{i}}+\mathbf{R}_{\omega_{i}}\mathbf{P}_{\omega_{i}}) \\ &= \mathbf{D}_{r}\mathbf{H}_{\omega_{i}}^{-1}[\mathbf{m}](\mathbf{D}_{s}^{*}\mathbf{I})(\mathbf{Q}_{\omega_{i}}+\mathbf{R}_{\omega_{i}}\mathbf{P}_{\omega_{i}}) \\ &= \mathbf{D}_{r}\mathbf{H}_{\omega_{i}}^{-1}[\mathbf{m}](\mathbf{D}_{s}^{*}(\mathbf{Q}_{\omega_{i}}+\mathbf{R}_{\omega_{i}}\mathbf{P}_{\omega_{i}})) \\ &\stackrel{.}{=} \operatorname{vec}^{-1}(\mathbf{F}_{\omega_{i}}[\mathbf{m},\mathbf{Q}_{\omega_{i}}+\mathbf{R}_{\omega_{i}}\mathbf{P}_{\omega_{i}}]) \end{aligned}$

 ${f F}$: modelling operator

- **m**: true velocity/density model
- ${\bf I}:$ impulsive source array
- **D**: detection operator at receiver/source locations

Linearization

 $\mathbf{p}_{\omega_{i}} = \nabla \mathbf{F}_{\omega_{i}}[\mathbf{m}_{0}, \mathbf{Q}_{\omega_{i}} + \mathbf{R}_{\omega_{i}}\mathbf{P}_{\omega_{i}}]\delta\mathbf{m}$

 $\nabla \mathbf{F}$: Born scattering operator \mathbf{m}_0 : background model $\delta \mathbf{m}$: model perturbation $\mathbf{P}\omega_i$: vectorized wavefield

Stacking over frequencies $\mathbf{p} = egin{bmatrix} abla \mathbf{F}_{\omega_1}(\mathbf{m}_0, \mathbf{Q}_{\omega_i} + \mathbf{R}_{\omega_i} \mathbf{P}_{\omega_i}) \ dots \mathbf{m} \ dots \ \mathbf{F}_{\omega_{\mathrm{nf}}}(\mathbf{m}_0, \mathbf{Q}_{\omega_i} + \mathbf{R}_{\omega_i} \mathbf{P}_{\omega_i}) \end{bmatrix} \delta \mathbf{m}$ $\doteq \nabla \mathbf{F}[\mathbf{m}_0, \mathbf{Q} + \mathbf{R}\mathbf{P}]\delta\mathbf{m}$ $\delta \mathbf{m} = \nabla \mathbf{F}^{\dagger}[\mathbf{m}_0, \mathbf{Q} + \mathbf{R}\mathbf{P}]\mathbf{p}$

RTM of primaries

[replace inversion by adjoint]

Reverse time migration of *primaries* with all data number of PDE solves: 36.6 thousand vertical differentiation is applied SLIM 🛃

RTM of multiples

[replace inversion by adjoint]

Reverse time migration of *multiples* using total data as "source" number of PDE solves: 36.6 thousand vertical differentiation is applied SLIM 🐣

Sparse inversion

We use a sparsity-promotion formulation:

$$\begin{split} \delta \tilde{\mathbf{m}} &= \mathbf{C}^{H} \operatorname{argmin}_{\delta \mathbf{x}} || \delta \mathbf{x} ||_{1} \\ \text{subject to } || \mathbf{p} - \nabla \mathbf{F}[\mathbf{m}_{\mathbf{0}}, \mathbf{Q} + \mathbf{R} \mathbf{P}] \mathbf{C}^{H} \delta \mathbf{x} ||_{2} \leq \sigma \end{split}$$

 \mathbf{C} : curvelet transform solver: $SPG\ell_1$

Demonstrative examples

- model grid spacing: 5 meters
- using linearized data: $\nabla \mathbf{F}[\mathbf{m_0},\mathbf{Q}+\mathbf{RP}]\delta\mathbf{m}$
- 150 collocated sources/receivers
- 122 frequencies in 0-60Hz range

Background model

SLIM 🛃

True perturbation

SLIM 🔮

SLIM 🔮

Linearized total data

Result

Inversion of the *total up-going wavefield* using all sequential sources and all frequencies number of PDE solves: ~4.4 million (by calculation)

SLIM 🛃

Dimensionality reduction

$$\begin{split} \delta \tilde{\mathbf{m}} &= \mathbf{C}^{H} \operatorname{argmin}_{\delta \mathbf{x}} || \delta \mathbf{x} ||_{1} \\ \text{subject to } || \underline{\mathbf{p}} - \nabla \mathbf{F}[\mathbf{m}_{\mathbf{0}}, \underline{\mathbf{Q}} + \underline{\mathbf{R}} \underline{\mathbf{P}}] \mathbf{C}^{H} \delta \mathbf{x} ||_{2} \leq \sigma \end{split}$$

source: combine sources into a few simultaneous sources, using Gaussian distributed random weights *frequency*: randomly choose a subset of frequencies

SLIM 🐣

Result with 15x speed-up

Inversion of the total up-going wavefield using *10 simultaneous sources* and all frequencies number of PDE solves: ~0.3 million

Too much subsampling brings artifacts

Inversion of the total up-going wavefield using *2 simultaneous sources and 15 frequencies* number of PDE solves: 36.6 thousand If working alright, it will give us *120X speed-up*

SLIM 🐣

Draw new subsampling operator

• $SPG\ell_1$ solves a series of subproblems:

 $\begin{aligned} \underset{\delta \mathbf{x}}{\operatorname{argmin}} & ||\mathbf{\underline{p}} - \nabla \mathbf{F}[\mathbf{m}_{\mathbf{0}}, \mathbf{\underline{Q}} + \mathbf{\underline{RP}}] \mathbf{C}^{H} \delta \mathbf{x} ||_{2} \\ \text{subject to } &||\delta \mathbf{x}||_{1} \leq \tau \end{aligned}$

 redraw subsampling operator for each new subproblem

Draw new sim. sources and frequencies --120X speed-up

SLIM 🛃

Inversion of the total up-going wavefield using 2 simultaneous sources and 15 frequencies number of PDE solves: 36.6 thousand (by calculation)

Solution path

SLIM 🛃

Model error decrease

Note: outliers are intermediate line-search results, not a concern; number of PDE solves in practice has ~50% overhead due to line search, etc.

Inversion results

Trace to trace comparison: the 224th trace of model perturbation

Comparison: batch size

[same budget of PDE solves]

Fast imaging of total data

Batch size: 30 (2 simultaneous sources and 15 frequencies)

Iteration: 305

Number of PDE solves: 36.6 thousand (by calculation)

Comparison: batch size

[same budget of PDE solves]

Fast imaging of total data

Batch size: 15 (1 simultaneous sources and 15 frequencies) Iteration: 610 Number of PDE solves: 36.6 thousand (by calculation)

Comparison: batch size

[same budget of PDE solves]

Fast imaging of total data

Batch size: 60 (4 simultaneous sources and 15 frequencies)

Iteration: 152

Number of PDE solves: 36.6 thousand (by calculation)

Comparison: batch size

[same budget of PDE solves]

The Sigsbee2B model (cropped)

- model grid spacing: 7.62m
- using linearized data
- 174 sequential sources
- 278 frequencies in 0-34Hz range
- using 8 simultaneous sources and 15 frequencies with redrawing

True perturbation

SLIM 🛃

SLIM 🛃 Fast inversion of primaries [with a computational budget of a single RTM with all data] Lateral distance (m) 1000 5000 3000 2000 4000 0 0-Depth (m) 1000 2000

Fast inversion of total data

[with a computational budget of a single RTM with all data]

SLIM 🛃

SLIM 🛃 Ignore the multiples Lateral distance (m) 1000 3000 5000 2000 4000 0-Depth (m) 1000 2000

Conclusions

- An formulation is derived to image the total data based on the SRME formulation.
- Non-causal cross correlations when imaging multiples can be avoided by inversion.
- We greatly speed up the inversion by subsampling and redrawing.

SLIM 🐣

Future work

- take source/receiver ghosts into consideration
- accurate estimation of source wavelet

Acknowledgements Comparents

Thanks for your attention!

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, BP, Chevron, ConocoPhillips, Petrobras, PGS, Total SA, and WesternGeco.