Supercooled）least－squares imaging：latest insights in sparsity－promoting migration

Felix J．Herman
Felix J．Herman

a

\author{ Seismic Laboratory for Imaging and Modeling the University of British Columbia the University of British Columbia the University of iritis h columbia

oratory for Imaging and Modeling

\section*{SLIM} the University of British Columbia the University of British Columbia }


``` raging and Modeling
```

\author{

thanks to Kiang Li

}
 8 6
H 4．
\qquad
4

\qquad
\qquad
\qquad
－
\qquad
－ 2
3
5
tor
－
－ \qquad 8
．
路
\qquad
TH 2
\qquad
\qquad

Abstract

\qquad

\qquad
 $+\frac{0.4}{x+3}$ \square （5） 0 $(4)=$
\qquad
 2
． 40

\qquad
\square 2

$-\operatorname{moc}$
 University
 did
 $-$
 University

Big data

"We are drowning in data but starving for understanding" USGS director Marcia McNutt
"Got data now what" Carlsson \& Ghrist SIAM

Problem

"Data explosion is bigger than Moore's law"

Goals

Replace a 'sluggish' processing paradigm that

- relies on touching all data
by an agile optimization paradigm that works on
- small randomized subsets of data iteratively

Confront "data explosion" by

- reducing acquisition costs
- removing IO \& PDEs-solve bottlenecks

Compressive sensing

Convex optimization

Sparse recovery involves iterations of the type

$$
\begin{aligned}
& \begin{array}{c}
\text { soft } \\
\text { threshold } \\
\downarrow
\end{array} \\
& \mathbf{x}^{t+1}=\eta_{t}\left(\mathbf{A}^{*} \mathbf{r}^{t}+\mathbf{x}^{t}\right) \\
& \mathbf{r}^{t}=\mathbf{b}-\mathbf{A} \mathbf{x}^{t}
\end{aligned}
$$

Corresponds to vanilla denoising if \mathbf{A} is a Gaussian matrix. But does the same hold for later ($\mathrm{t}>\mathrm{I}$) iterations...?

Iteration $\dagger=1$

$\eta_{t}\left(\mathbf{A}^{*} \mathbf{r}^{t}+\mathbf{x}^{t}\right)$

Iteration t=2

Iteration t=3

Iteration t=4

Problem

After first iteration the interferences become 'spiky' because of correlations between model iterate $\mathbf{x}^{\mathrm{t}} \&$ the matrix \mathbf{A}

- assumption spiky vs Gaussian noise no longer holds
- renders soft thresholding less effective

Leads to slow convergence of recovery algorithms...

Approximate

message passing

Add a term to iterative soft thresholding, i.e.,

$$
\begin{aligned}
\mathbf{x}^{t+1} & =\eta_{t}\left(\mathbf{A}^{*} \mathbf{r}^{t}+\mathbf{x}^{t}\right) \\
\mathbf{r}^{t} & =\mathbf{b}-\mathbf{A} \mathbf{x}^{t}+\frac{\left\|\mathbf{x}^{t+1}\right\|_{0}}{n} \mathbf{r}^{t-1}
\end{aligned}
$$

Holds for

- normalized Gaussian matrices $\mathbf{A}_{i j} \in n^{-1 / 2} N(0,1)$
- large-scale limit and for specific thresholding strategy

Approximate message passing

Statistically equivalent to

$$
\begin{aligned}
\mathbf{x}^{t+1} & =\eta_{t}\left(\mathbf{A}_{t}^{*} \mathbf{r}^{t}+\mathbf{x}^{t}\right) \\
\mathbf{r}^{t} & =\mathbf{b}_{t}-\mathbf{A}_{t} \mathbf{x}^{t}
\end{aligned}
$$

by drawing new independent pairs $\left\{\mathbf{b}_{t}, \mathbf{A}_{t}\right\}$ for each iteration
Changes the story completely

- breaks correlation buildup
- faster convergence

$$
\begin{aligned}
& \text { Iteration } t=1 \\
& \mathbf{r}^{t}=\mathbf{b}-\mathbf{A} \mathbf{x}^{t}+\xlongequal{\left\|\mathbf{x}^{t+1}\right\|_{0}} \mathbf{r}^{t-1} \quad \eta_{t}\left(\mathbf{A}^{*} \mathbf{r}^{t}+\mathbf{x}^{t}\right)
\end{aligned}
$$

Iteration $\dagger=2$

$$
\mathbf{r}^{t}=\mathbf{b}-\mathbf{A} \mathbf{x}^{t}+\stackrel{\left\|\mathbf{x}^{t+1}\right\|_{0}}{n} \mathbf{r}^{t-1}
$$

Message passing $\quad 2$

$\eta_{t}\left(\mathbf{A}^{*} \mathbf{r}^{t}+\mathbf{x}^{t}\right)$

With renewals

Iteration $\dagger=3$

$$
\mathbf{r}^{t}=\mathbf{b}-\mathbf{A} \mathbf{x}^{t}+\underline{\left\|\mathbf{x}^{t+1}\right\|_{0}} \mathbf{r}^{t-1}
$$

$$
\eta_{t}\left(\mathbf{A}^{*} \mathbf{r}^{t}+\mathbf{x}^{t}\right)
$$

Iteration $\dagger=4$

$$
\mathbf{r}^{t}=\mathbf{D}-\mathbf{A} \mathbf{x}^{t}+\underline{\left\|\mathbf{x}^{t+1}\right\|_{0}} \mathbf{p}^{t-1}
$$

$$
\eta_{t}\left(\mathbf{A}^{*} \mathbf{r}^{t}+\mathbf{x}^{t}\right)
$$

Decoupling principle

In large-scale limit $(N \rightarrow \infty)$, the system decouples for each iteration-i.e.,

$$
\left(\mathbf{x}^{t}+\mathbf{A}^{H} \mathbf{r}^{t}\right)_{i}=(\mathbf{x}+\tilde{\mathbf{w}})_{i} \text { for } i=1 \cdots N
$$

with $\left\{\tilde{w}_{i}\right\}_{i=1 \cdots N}$ asymptotically Gaussian

- each entry can be treated separately
- estimate each entry by elementwise soft thresholding with carefully selected threshold levels

Missing-trace interpolation [SPG|1]

Recovery with 3D curvelets ($\mathrm{N}=1.12 \times 1 \mathbf{1 0}^{\mathbf{9}}$)
7.75 dB

Missing data (shot gather)

50 \% missing data

SPGI1-recovered data (shot gather)

recovery
50 iterations

SPGI1-residual (shot gather)

difference

Missing trace interpolation [AMP]

Recovery with 3D curvelets ($\mathrm{N}=1.12 \times 1 \mathbf{1 0}^{\mathbf{9}}$)

9.75 dB

Missing data (shot gather)

50 \% missing data

AMP-recovered data (shot gather)

difference

Observations

Message-pass term has the same effect as drawing independent experiments $\left\{\mathbf{b}_{t}, \mathbf{A}_{t}\right\}$

- 'Gaussian’ matrices
- delicate normalization and thresholding strategy
- renders proposed method impractical
- can lead to dramatically improved convergence

How can we still reap benefits from message passing in realistic less-than-ideal geophysical settings?

Problems

In large-scale limit one-norm solvers suffer from:

- first-order spectral-gradient methods need many iterations
- second-order quasi-Newton need to store multiple model vectors
- correlation buildup that slows down convergence

Can insights from AMP be used to accelerate current state-of-the art one-norm solvers?

Continuation methods

Versatile large-scale sparsity-promoting solvers limit the number of matrix-vector multiplies by cooling, which

- slowly allows components to enter into the solution
- solves an intelligent series of LASSO subproblems for decreasing sparsity levels
- uses convexity \& smoothness of Pareto curves with Newton rootfinding

Supercooled

spectral-projected gradients

[Hennefent et. al., '08]
[Lin \& FJH, '09-]

Supercooled

spectral-projected gradients

Supercooled

spectral-projected gradients

Supercooled

spectral-projected gradients

Supercooling

Break correlations between the model iterate and matrix \mathbf{A} by rerandomization

- draw new independent $\left\{\mathbf{b}_{t}, \mathbf{A}_{t}\right\}$ after each LASSO subproblem is solved
- brings in "extra" information without growing the system
- minimal extra computational \& memory cost

Supercooled spectral-projected gradients

Result: Estimate for the model x^{t+1}
$\mathbf{1} \mathbf{x}^{0}, \widetilde{\mathbf{x}} \longleftarrow \mathbf{0}$ and $t, \tau^{0} \longleftarrow 0$;
2 while $t \leq T$ do

$\mathbf{3}$	$\mathbf{A} \longleftarrow \mathbf{A}_{i j} \sim N(0,1 / \sqrt{n}) ;$		
$\mathbf{4}$	$\mathbf{b} \longleftarrow \mathbf{A x} ;$		
$\mathbf{5}$	$\mathbf{x}^{t+1} \longleftarrow \operatorname{spg} 11\left(\mathbf{A}, \mathbf{b}, \tau^{t}, \sigma=0, \mathbf{x}^{t}\right) ;$		
$\mathbf{6}$	$\tau^{t} \longleftarrow\left\\|\mathbf{x}^{t+1}\right\\|_{1} ;$		
$\mathbf{7}$	$t \longleftarrow t+\Delta T ; ;$		

// Draw new sensing matrix // Collect new data // Reach Pareto / New initial τ value 8 end

Algorithm 1: Supercooled $\mathrm{SPG} \ell_{1}$ with message passing.

Sparse example [$n=500 ; \mathrm{N}=10000 ; \mathrm{k}=35$; $\mathrm{T}=50$]

Ideal 'Seismic' example [$n / N=0.13 ; N=248759 ; T=500]$

10 X

Ideal 'Seismic' example [$\mathrm{n} / \mathrm{N}=0.13 ; \mathrm{N}=248759 ; \mathrm{T}=500$]

solution path

Ideal 'Seismic' example [$\mathrm{n} / \mathrm{N}=0.13 ; \mathrm{N}=248759 ; \mathrm{T}=500$]

Solution paths

Independent redraws of $\left\{\mathbf{b}_{t}, \mathbf{A}_{t}\right\}$ lead to improved recovery

Observations

Independent redraws of $\left\{\mathbf{b}_{t}, \mathbf{A}_{t}\right\}$ get rid of small difficult to remove interferences

- working only with subsets of the data

But, aren't we fooling ourselves since proposed method

- defeats the premise of compressive sampling

Or, are there data-rich applications for this method?

- e.g. efficient imaging with random source encoding

Random sourceencoded imaging

Replace migration with all data (overdetermined system)
$\widetilde{\mathbf{x}}_{\text {mig }}=\mathbf{A}^{*} \mathbf{b} \quad$ approximating $\underset{\mathbf{x}}{\operatorname{minimize}} \frac{1}{2 K} \sum_{i=1}^{K}\left\|\mathbf{b}_{i}-\mathbf{A}_{i} \mathbf{x}\right\|_{2}^{2}$
with K large by sparsity-promoting migration (underdetermined)
$\underset{\mathbf{x}}{\operatorname{minimize}}\|\mathbf{x}\|_{1} \quad$ subject to $\quad \underline{\mathbf{b}}_{i}=\underline{\mathbf{A}}_{i} \mathbf{x}, \quad i=1 \cdots K^{\prime}$
with $K^{\prime} \ll K$ and $\left\{\underline{\mathbf{b}}_{i}, \underline{\mathbf{A}}_{i}\right\}$ supershots \& demigration operators

Compressive imaging [with message passing]

Select independent random source encodings after each LASSO subproblem is solved

- calculate corresponding supershots
- redefine demigration operator (and its adjoint) (select independent simultaneous sources \& supershots)

Promote sparsity in the curvelet domain

Compressive imaging [with message passing]

Result: Estimate for the model \mathbf{x}^{t+1}
$\mathbf{1} \mathbf{x}^{0}, \widetilde{\mathbf{x}} \longleftarrow \mathbf{0}$ and $t, \tau^{0} \longleftarrow 0$;
2 while $t \leq T$ do
$t \longleftarrow t+\Delta T ; \quad / /$ Add \# of iterations of spgll

Algorithm 1: Supercooled sparsity-promoting migration.

Imaging results

Time-harmonic Helmholtz:

- 409×1401 with mesh size of 5 m
- 9 point stencil [C. Jo et. al., '96]
- absorbing boundary condition with damping layer with thickness proportional to wavelength
- solve wavefields on the fly with direct solver

Imaging results [background model]

Migration results [true perturbation]

Imaging results

Split-spread surface-free 'land' acquisition:

- 350 sources with sampling interval 20 m
- 701 receivers with sampling interval 10 m
- maximal offset 7 km (3.5 X depth of model)
- Ricker wavelet with central frequency of 30 Hz
- recording time for each shot is 3.6 s

Migration results [migration with all data]

Imaging results

Reduced setup:

- 10 random frequencies (versus 300 frequencies) (20Hz-50Hz)
- 3 random simultaneous shots (versus 350 sequential shots)

Significant dimensionality reduction of

$$
\frac{K^{\prime}}{K}=0.0003
$$

Imaging results

Least-squares migration with randomized supershots:

$\delta \widetilde{\mathbf{m}}=\mathbf{S}^{*} \underset{\delta \mathbf{x}}{\arg \min }\|\delta \mathbf{x}\|_{\ell_{2}} \quad$ subject to $\quad\|\delta \underline{\mathbf{d}}-\overbrace{\nabla \mathcal{F}\left[\mathbf{m}_{0} ; \underline{\mathrm{Q}}\right]}^{\text {demigration }} \mathrm{S}^{*} \delta \mathbf{x}\|_{2} \leq \sigma$
$\delta \mathbf{x}=$ Sparse curvelet-coefficient vector
$\mathrm{S}^{*}=$ Curvelet synthesis
$\underline{\mathrm{Q}}=$ Simultaneous sources
$\delta \underline{\mathbf{d}}=$ Super shots

Imaging results

Sparsity-promoting migration with randomized supershots:

$\delta \mathrm{x}=$ Sparse curvelet-coefficient vector
$\mathrm{S}^{*}=$ Curvelet synthesis
$\underline{\mathrm{Q}}=$ Simultaneous sources
$\delta \underline{\mathbf{d}}=$ Super shots

Migration results [ℓ_{2} without renewals]

Imaging results [ℓ_{1} without renewals]

Migration results [ℓ_{2} with renewals]

Migration results [ℓ_{1} with renewals]

Migration results [true perturbation]

Migration results [migration with all data]

Migration results [solution paths ℓ_{2}]

without renewals

with renewals

Migration results [solution paths ℓ_{1}]

without renewals

with renewals

Imaging results

Migration results [model errors]

Conclusions

Message passing improves image quality

- computationally feasible one-norm regularization

Message passing via rerandomization

- small system size with small IO and memory imprints

Possibility to exploit new computer architectures that employ model space parallelism to speed up wavefield simulations...

FWI results

FWI:

- 10 overlapping frequency bands with 10 frequencies $(2.9 \mathrm{~Hz}-25 \mathrm{~Hz})$
- 10 Gauss-Newton steps for each frequency band (solved with max 20 spectral-projected gradient iterations)

Results GN-FWI

True model

Results GN-FWI

Initial model

Results GN-FWI

Modified GN 7 sim. shots without renewals

25 times speedup compared to full GN

Results GN-FWI

Modified GN 7 sim. shots with renewals

25 times speedup compared to full GN

Results GN-FWI

Modified GN 7 seq. shots without renewals

25 times speedup compared to full GN

Results GN-FWI

Modified GN 7 seq. shots with renewals

25 times speedup compared to full GN

Results GN-FWI

Modified GN 7 sim. shots with renewals

25 times speedup compared to full GN

