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SLIM

Big data
“We are drowning in data but starving for understanding” USGS 
director Marcia McNutt 

“Got data now what” Carlsson & Ghrist SIAM

http://bigdatablog.emc.com/wp-‐content/uploads/2012/03/gotbigdata.png

http://www.newschool.edu/uploadedImages/events/lang/Data%20Deluge%20compressed(2).jpg
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Problem
"Data explosion is bigger than Moore's law"
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Goals
Replace a ‘sluggish’ processing paradigm that

‣  relies on touching all data 

by an agile optimization paradigm that works on

‣ small randomized subsets of data iteratively

Confront “data explosion” by 

‣ reducing acquisition costs

‣ removing IO & PDEs-solve bottlenecks
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Compressive sensing

randomized sampling
detection +

data-consistent
amplitude recovery

recovered signal

minx

detection����
�x�1 subject to

data-consistent amplitude recovery� �� �
b = Ax

A := RFH
inverse Fourier

transform

restriction
operator

sensing
matrix

A 2 Cn⇥N with n ⌧ N
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Convex optimization
Sparse recovery involves iterations of the type

Corresponds to vanilla denoising if A is a Gaussian matrix.

But does the same hold for later (t>1) iterations...?

soft
threshold

[Daubechies et. al, ’04; Hennenfent et. al.,’08, Mallat, ’09, Donoho et. al, ’09]

[Montanari, ’12]
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Iteration t=2
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Iteration t=3
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Iteration t=4
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Problem

After first iteration the interferences become ‘spiky’ because 
of correlations between model iterate xt & the matrix A

‣ assumption spiky vs Gaussian noise no longer holds

‣ renders soft thresholding less effective

Leads to slow convergence of recovery algorithms...
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Add a term to iterative soft thresholding, i.e.,

Holds for

‣ normalized Gaussian matrices

‣ large-scale limit and for specific thresholding strategy

x
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t = b�Ax

t+
kxt+1k0
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r
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Approximate 
message passing

[Donoho et. al, ’09-’12; Montanari, ’10-’12, Rangan, ’11]

Aij 2 n�1/2N(0, 1)
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Statistically equivalent to

by drawing new independent pairs              for each iteration

Changes the story completely

‣ breaks correlation buildup

‣ faster convergence

x
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r

t = bt �Atx
t

Approximate 
message passing

[Montanari, ’12]

{bt,At}
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Decoupling principle
In large-scale limit (             ), the system decouples for each 
iteration—i.e.,

with                   asymptotically Gaussian

‣ each entry can be treated separately

‣ estimate each entry by elementwise soft thresholding with 
carefully selected threshold levels

�
x

t
+A

H
r

t
�
i
= (x+ w̃)i for i = 1 · · ·N

{w̃i}i=1···N

[Montanari, ’10-’12]

N ! 1
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Missing-trace 
interpolation [SPGl1]
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Missing trace 
interpolation [AMP]
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Observations
Message-pass term has the same effect as drawing 
independent experiments

‣ ‘Gaussian’ matrices

‣ delicate normalization and thresholding strategy

‣ renders proposed method impractical 

‣ can lead to dramatically improved convergence

How can we still reap benefits from message passing in 
realistic less-than-ideal geophysical settings?

{bt,At}
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Problems
In large-scale limit one-norm solvers suffer from:

‣ first-order spectral-gradient methods need many 
iterations

‣ second-order quasi-Newton need to store multiple 
model vectors

‣ correlation buildup that slows down convergence

Can insights from AMP be used to accelerate current state-
of-the art one-norm solvers?
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Continuation
methods

Versatile large-scale sparsity-promoting solvers limit the 
number of matrix-vector multiplies by cooling, which 

‣ slowly allows components to enter into the solution

‣ solves an intelligent series of LASSO subproblems for 
decreasing sparsity levels

‣ uses convexity & smoothness of Pareto curves with 
Newton rootfinding
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Supercooled
spectral-projected gradients
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Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

Lasso problem
1

2

3

4

min
x

kA1x� b1k2 s.t kxk�1  �1

[van den Berg & Friedlander, ’08]

[Hennefent et. al., ’08]

[Lin & FJH, ’09-]



SLIM

Supercooled
spectral-projected gradients
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(c) Pareto curve and solution path

Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

Lasso problem
1

2

3

4

min
x

kA2x� b2k2 s.t kxk�1  �2
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Supercooled
spectral-projected gradients

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

908 EWOUT VAN DEN BERG AND MICHAEL P. FRIEDLANDER

Trace #

Ti
m

e

50 100 150 200 250

(a) Image with missing traces

Trace #
50 100 150 200 250

(b) Interpolated image

0 0.5 1 1.5 2
0

50

100

150

200

250

one−norm of solution (x104)

tw
o

−n
o

rm
 o

f r
e

sid
ua

l

Pareto curve
Solution path

(c) Pareto curve and solution path

Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

Lasso problem
1

2

3

4

min
x

kA3x� b3k2 s.t kxk�1  �3
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Supercooled
spectral-projected gradients
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Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

Lasso problem
1

2

3

4

min
x

kA4x� b4k2 s.t kxk�1  �4
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Supercooling
Break correlations between the model iterate and matrix A 
by rerandomization

‣ draw new independent               after each LASSO 
subproblem is solved

‣ brings in “extra” information without growing the 
system

‣ minimal extra computational & memory cost

{bt,At}
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Supercooled
spectral-projected gradients

Result: Estimate for the model x

t+1

x

0, ex � 0 and t, ⌧0  � 0 ; // Initialize1

while t  T do2

A � Aij ⇠ N(0, 1/
p
n); // Draw new sensing matrix3

b � Ax; // Collect new data4

x

t+1  � spgl1(A,b, ⌧ t,� = 0,xt); // Reach Pareto5

⌧ t  � kxt+1k1; // New initial ⌧ value6

t � t+�T ; ; // Add # of iterations of spgl17

end8

Algorithm 1: Supercooled SPG`1 with message passing.



SLIM

Sparse example
[n=500; N=10000; k=35; T=50]
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Ideal ‘Seismic’ example
[n/N=0.13;N=248759;T=500]
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Ideal ‘Seismic’ example
[n/N=0.13;N=248759;T=500]
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Supercooled
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Observations
Independent redraws of              get rid of small difficult to 
remove interferences

‣ working only with subsets of the data

But, aren’t we fooling ourselves since proposed method

‣ defeats the premise of compressive sampling

Or, are there data-rich applications for this method?

‣ e.g. efficient imaging with random source encoding

{bt,At}

[Romero et. al., 2000; ]

[Montanari, 2012]

[Herrmann & Li, 2012]
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Random source-
encoded imaging

Replace migration with all data (overdetermined system)

with K large by sparsity-promoting migration (underdetermined)

with               and              supershots & demigration operators

e
xmig = A

⇤
b minimize

x

1

2K

KX

i=1

kbi �Aixk22approximating

minimize

x

kxk1 subject to bi = Aix, i = 1 · · ·K 0

K 0 ⌧ K {bi,Ai}
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Compressive imaging
[with message passing]

Select independent random source encodings after each LASSO 
subproblem is solved

‣ calculate corresponding supershots

‣ redefine demigration operator (and its adjoint)
(select independent simultaneous sources & supershots)

Promote sparsity in the curvelet domain
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Compressive imaging
[with message passing]

Result: Estimate for the model x

t+1

x

0, ex � 0 and t, ⌧0  � 0 ; // Initialize1

while t  T do2

W �W 2 RK⇥K0
with Wij ⇠ N(0, 1/

p
K 0) ; // Random encoding3

{b,q} � {DW,QW} ; // Draw sim sources and data

4

A � rF [m0;q]; // New demigration operator

5

x

t+1  � spgl1(A,b, ⌧ t,� = 0,xt); // Reach Pareto6

⌧ t  � kxt+1k1; // New initial ⌧ value7

t � t+�T ; // Add # of iterations of spgl18

end9

Algorithm 1: Supercooled sparsity-promoting migration.
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Imaging results

Time-harmonic Helmholtz:

• 409 X 1401 with mesh size of 5m

• 9 point stencil [C. Jo et. al., ’96]

• absorbing boundary condition with damping layer with 
thickness proportional to wavelength

• solve wavefields on the fly with direct solver
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Imaging results
[background model]
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Migration results
[true perturbation]
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Imaging results
Split-spread surface-free ‘land’ acquisition:

• 350 sources with sampling interval 20m

• 701 receivers with sampling interval 10m

• maximal offset 7km (3.5 X depth of model)

• Ricker wavelet with central frequency of 30Hz

• recording time for each shot is 3.6s
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Migration results
[migration with all data]
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K0

K = 0.0003

Imaging results
Reduced setup:

• 10 random frequencies (versus 300 frequencies)
(20Hz-50Hz)

• 3 random simultaneous shots (versus 350 sequential shots)

Significant dimensionality reduction of

[Herrmann & Li, 2011]
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�x = Sparse curvelet-coe�cient vector

S

⇤
= Curvelet synthesis

Q = Simultaneous sources

�d = Super shots

� em = S

⇤
argmin

�x
k�xk`2 subject to k�d�

demigrationz }| {
rF [m

0

;Q]S

⇤�xk
2

 �

Least-squares migration with randomized supershots:

Imaging results
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�x = Sparse curvelet-coe�cient vector

S

⇤
= Curvelet synthesis

Q = Simultaneous sources

�d = Super shots

Imaging results
Sparsity-promoting migration with randomized supershots:

� �m = S� arg min
�x

��x��1 subject to ��d�
demigration� �� �
�F [m0;Q]S��x�2 � �
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Migration results
[     without renewals]`2
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Imaging results
[     without renewals]`1
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Migration results
[     with renewals]`2
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Migration results
[     with renewals]`1
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Migration results
[true perturbation]
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Migration results
[migration with all data]
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Migration results
[solution paths    ]`2
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Migration results
[solution paths    ]`1
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Migration results
[model errors]
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Conclusions
Message passing improves image quality

‣ computationally feasible one-norm regularization

Message passing via rerandomization

‣ small system size with small IO and memory imprints

Possibility to exploit new computer architectures that employ   
model space parallelism to speed up wavefield simulations...
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FWI results
FWI:

• 10 overlapping frequency bands with 10 frequencies
(2.9Hz-25Hz)

• 10 Gauss-Newton steps for each frequency band
(solved with max 20 spectral-projected gradient iterations)

[Bunks ‘95; Pratt ’98 ]
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Results GN-FWI

True model
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Results GN-FWI

Initial model
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Results GN-FWI

Modified GN 7 sim. shots without renewals 

25 times speedup compared to full GN
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Results GN-FWI

Modified GN 7 sim. shots with renewals

25 times speedup compared to full GN
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Results GN-FWI

Modified GN 7 seq. shots without renewals

25 times speedup compared to full GN
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Results GN-FWI

Modified GN 7 seq. shots with renewals

25 times speedup compared to full GN
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Results GN-FWI

Modified GN 7 sim. shots with renewals

25 times speedup compared to full GN


