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Premise
Signals in nature including seismic wavefields & sedimentary 
basins exhibit some sort of structure

‣ transform-domain sparsity

‣ low-rank property

Come up with new cost-effective randomized sampling strategies

‣ for land with randomized arrays or simultaneous sweeps

‣ for marine with randomized time-dithered simultaneous 
sources



SLIM

Compressive sensing
Compressive sensing delivers on this premise by coming up 

‣ a rigorous theory with recovery guarantees

‣ constructive recovery algorithms by convex optimization

SINBAD is a world-leader in adapting compressive sensing

‣ seismic-data acquisition (land & marine)

‣ seismic-data processing (RTM & FWI)
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This talk
Weighted one-norm minimization (Felix):

‣ theoretical recovery results

‣ extension to 3D seismic

‣ recovery based on curvelet-domain sparsity promotion

Nuclear-norm minimization (Sasha):

‣ new solver using factor approximation of nuclear norm

‣ recovery based on low-rank promotion
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Trace interpolation
Involves an underdetermined inverse problem.

Given a seismic line of      sources,      receivers and      time 
samples, arranged into a vector    of length  

Recover a sparse approximation    from irregularly random 
sampled measurements

 where        is the sampling operator.

Ns Nr Nt

f N = NsNrNt.

f̃

b = RMf

RM
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Today’s focus
Move to missing trace interpolation for 3D seismic

Work on frequency slices with 2D curvelet transform

‣ exploit correlations in the support

‣ use weighted one-norm minimization

Opens the way to do 4D interpolation



SLIM

Subsampled traces
Example of a time slice with missing receivers.
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CS and random trace 
interpolation

When data are randomly subsampled & admit a sparse 
representation, the trace-interpolation problem falls under 
the CS paradigm.

Corresponds to finding the sparsest representation    of the 
data in some domain   , by solving

where                      . 

S
x̃

x̃ = arg min

u2CP
kuk1 subject to b = Au

A := RMSH
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Compressed Sensing

Candes, Romberg, and Tao; and Donoho proved that CS 
recovery is stable to model mismatch and robust to noise.

Theorem (CRT’06):

* Remark: If x is k-sparse, then the recovery is exact.

Suppose there exists an a > 1, and that A has the RIP with �(a+1)k <

a�1
a+1 .

Then the sparse approximation x̃ of x can be obtained from the solution to the

`1 minimization problem and obeys

kx̃� xk2  C0✏+ C1
kx� xkk1p

k

.
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CS implications
For nice measurement matrices A, CS guarantees exact 
recovery for signals f that are strictly sparse  

‣ more sparse (fewer nonzeros) => better recovery

‣ more randomization (better RIP) => better recovery

Extends to compressible signals

‣ more compressible => better recovery

‣ recovery akin nonlinear approximation
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CS interpolation 
(time-slice)
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What more can be done?
Improve the RIP of the measurement matrix A

‣ perform recovery in other domains 

- e.g. midpoint-offset, time-midpoint,...

Incorporate additional information in the recovery

‣ frequency slices of seismic lines are highly correlated

- incorporate prior support information in the recovery
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CS in MH domain
L1 minimization in MH
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Correlations in 
seismic data

Frequency slices exhibit considerable structure that is shared 
between adjacent frequencies.

This shared structure translates into a high degree of overlap 
in the support sets of curvelet coefficients.



SLIM

CS
with prior support information

Mansour et al. proposed weighted one-norm minimization to 
incorporate prior support information.

x̃ = argmin

u
kuk1,w subject to kAu� bk2  ✏

where kuk1,w :=

P
i wi|ui| is the weighted `1 norm, and the weights are assigned

such that

wi =

(
1, i 2 eT c,

!, i 2 eT .
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CS
with prior support information

Let     be the support of      and given a support estimate    
of size k and accuracy 

Theorem (FMSY’12)
Suppose there exists an a > 1, and that A has the RIP with �(a+1)k <

a��2

a+�2 .

Then the sparse approximation x̃ of x can be obtained from the solution to the

weighted `1 minimization problem and obeys

kx̃� xk2  C0(�)✏+ C1(�)

!kxT c
0
k1 + (1� !)kxeT c\T c

0
k1

p
k

.

Note: � = ! + (1� !)

p
2� 2↵, where ↵ =

|eT\T0|
|T0| .

eTT0 xk

↵ =
| eT \ T0|
|T0|
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Weighted one-norm 
implications

When            , weighted one-norm minimization has better 
recovery guarantees than standard CS.

The support sets of the curvelet coefficients of seismic lines 
make good estimates for adjacent frequency slices.
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Source−Receiver Domain

Midpoint−Offset Domain
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Weighted L1 recovery 
[source-receiver]
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Weighted L1 recovery 
[midpoint-offset]

Source number

R
e
c
e
iv

e
r 

n
u
m

b
e
r

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

Weighted L1 minimization in MH

source number
re

ce
iv

er
 n

um
be

r
20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

Weighted L1 minimization in SR

source number

re
ce

iv
er

 n
um

be
r

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160



SLIM

Weighted L1 recovery
Signal-to-noise-ratio (SNR) comparison
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Promoting Low rank

‣ Seismic data is low rank in some frequencies/
transformed domains (e.g. midpoint-offset), motivating 
low-rank optimization to denoise/recover missing data. 

‣ Low-rank optimization classically relies on nuclear norm 
and SVD, and hence is prohibitively expensive.

‣ We can work with a new factorized formulation of 
nuclear (and other) norms, bringing down the cost 

‣ We formulate and solve the problem in an SPGL1-type 
setting. 
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Nuclear Norm  
‣  

‣ Just like the 1-norm approximates the 0-norm, so the 
nuclear norm approximates the rank. 

‣ Therefore, to find a low rank solution, solve:

Given any matrix X = USV T ,

the nuclear norm is kXk⇤ =

X
(diag(S)) .

min
X
kXk⇤

such that kb� F(X)k2  � .



SLIM

Bring on the Pareto!

‣ We can use SPGL1 to solve such problems if

- It is easy to project onto 

- It is easy to evaluate the dual norm. 

‣ Dual norm is simply maximum singular value (op norm)

‣ But just computing the nuclear norm requires SVDs. 
Fortunately, we can use a clever trick...

min
X
kXk⇤

such that kb� F(X)k2  � .

B⌧
⇤ := {X : kXk⇤  ⌧}
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Factorization Approach
‣ The Nuclear norm has a convenient property: 

‣ We can work with L, R rather than X:

‣ Advantages: no SVD required; trivial projection; 
potential to use factors L, R downstream. 

kXk⇤ = inf
X=LR⇤

1
2

�
kLk2

F + kRk2
F

�

min
L,R

1
2

�
kLk2F + kRk2F )

such that kb� F(LR⇤)k2  � .
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Rank Optimization in 
Midpoint-Offset

• Seismic data have faster 
singular value decay in 
midpoint-offset domain

• We recover 50% missing 
data by solving the rank 
optimization problem 
for high (70) and low 
(20) frequencies. 

• nr = ns = 354. 
Complete data before  

and after transformation  
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Work flow: 

‣ Convert data with missing traces to M-O domain. 

‣ Initialize L, R factors of pre-selected rank. 

‣ Run rank optimization algorithm (SPGL1+). 

‣ Form dense solution X = LR* 

‣ Convert solution back to source-receiver domain. 



Gulf of Suez Data: Least Squares+Low Rank
Frequency Slice : 20 Hz, Rank : 20

50% Missing data before interpolation
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Data after interpolation, SNR = 41.7 db

‣ 150 SPGL1 iterations; sigma = 1e-6,  nr = ns = 354.

‣ Curvelet Sparsity (200 SPGL1 iterations): SNR of 18-20dB



Gulf of Suez Data: Least Squares+Low Rank
Frequency Slice : 20 Hz, Rank : 20

50% Missing data before interpolation Data after interpolation, SNR = 42.2 db
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‣ 150 SPGL1 iterations; sigma = 1e-6,  nr = ns = 354.

‣ Curvelet Sparsity (200 SPGL1 iterations): SNR of 18-20dB



Gulf of Suez: Least Squares + Low Rank 

Frequency Slice : 70 Hz, Rank : 20

50% Missing data, before interpolation
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Data after interpolation, SNR = 22.7 db

‣ 150 SPGL1 iterations; sigma = 1e-6,  nr = ns = 354.

‣ Curvelet Sparsity (200 SPGL1 iterations): SNR of 9-10dB



Frequency Slice : 70 Hz, Rank : 40

50% Missing data, before interpolation
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Data after interpolation, SNR = 29.3 db

Gulf of Suez: Least Squares + Low Rank 

‣ 150 SPGL1 iterations; sigma = 1e-6,  nr = ns = 354.

‣ Curvelet Sparsity (200 SPGL1 iterations): SNR of 9-10dB
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Current/Future work:

‣ Find transforms and representations that make seismic 
data low-rank.  

‣ Can factorizations X = LR* in these representations be 
used directly? 

‣ Combine low rank with robust penalties (later talk)

‣ Use other norms that have computational advantages,  
such as the Max norm. 


