Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Latest developments in seismic data recovery

Hassan Mansour, Rajiv Kumar, Sasha Aravkin, and Felix J. Herrmann

SLIM Seismic Laboratory for Imaging and Modeling the University of British Columbia

Premise

Signals in nature including seismic wavefields & sedimentary basins exhibit some sort of structure

- transform-domain sparsity
- Iow-rank property

Come up with new cost-effective randomized sampling strategies

- for land with randomized arrays or simultaneous sweeps
- for marine with randomized time-dithered simultaneous sources

Compressive sensing

Compressive sensing delivers on this premise by coming up

- a *rigorous* theory with *recovery* guarantees
- constructive recovery algorithms by convex optimization

SINBAD is a world-leader in *adapting* compressive sensing

- seismic-data acquisition (land & marine)
- seismic-data processing (RTM & FWI)

This talk

Weighted one-norm minimization (Felix):

- theoretical recovery results
- extension to 3D seismic
- recovery based on curvelet-domain sparsity promotion

SLIM 🛃

Nuclear-norm minimization (Sasha):

- *new* solver using factor approximation of *nuclear* norm
- recovery based on *low-rank* promotion

Trace interpolation

Involves an underdetermined inverse problem.

Given a seismic line of N_s sources, N_r receivers and N_t time samples, arranged into a vector f of length $N = N_s N_r N_t$.

SLIM 🛃

Recover a sparse approximation \tilde{f} from irregularly random sampled measurements

$\mathbf{b} = \mathbf{R}\mathbf{M}\mathbf{f}$

where $\mathbf{R}\mathbf{M}$ is the sampling operator.

Today's focus

Move to missing trace interpolation for 3D seismic

SLIM 🛃

Work on *frequency* slices with 2D curvelet transform

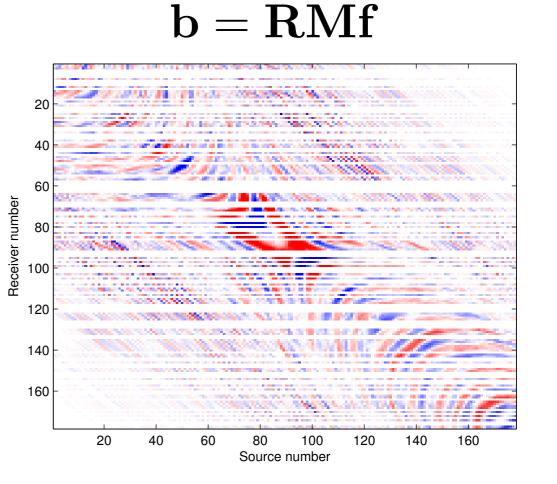
- exploit correlations in the support
- use weighted one-norm minimization

Opens the way to do 4D interpolation

Subsampled traces

Example of a time slice with missing receivers.

f Receiver number Source number



SLIM 🛃

CS and random trace interpolation

When data are *randomly* subsampled & admit a *sparse* representation, the trace-interpolation problem falls under the CS paradigm.

Corresponds to finding the sparsest representation $\widetilde{\mathbf{x}}$ of the data in some domain S , by solving

$$\tilde{\mathbf{x}} = \arg\min_{\mathbf{u}\in\mathbb{C}^P} \|\mathbf{u}\|_1$$
 subject to $\mathbf{b} = \mathbf{A}\mathbf{u}$

where $A := RMS^{H}$.

Compressed Sensing

Candes, Romberg, and Tao; and Donoho proved that CS recovery is stable to model mismatch and robust to noise.

Theorem (CRT'06):

Suppose there exists an a > 1, and that A has the RIP with $\delta_{(a+1)k} < \frac{a-1}{a+1}$. Then the sparse approximation \tilde{x} of x can be obtained from the solution to the ℓ_1 minimization problem and obeys

$$\tilde{x} - x\|_2 \le C_0 \epsilon + C_1 \frac{\|x - x_k\|_1}{\sqrt{k}}$$

* Remark: If x is k-sparse, then the recovery is exact.

CS implications

For nice measurement matrices A, CS guarantees exact recovery for signals f that are strictly sparse

- more sparse (fewer nonzeros) => better recovery
- more randomization (better RIP) => better recovery

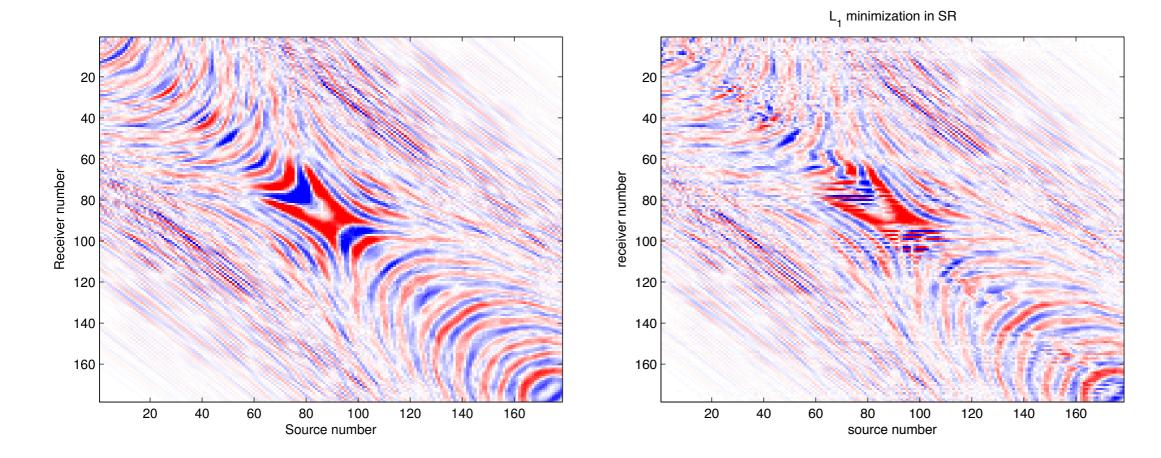
SLIM 🛃

Extends to compressible signals

- more compressible => better recovery
- recovery akin nonlinear approximation

SLIM 🦊

CS interpolation (time-slice)



What more can be done?

Improve the RIP of the measurement matrix \mathbf{A}

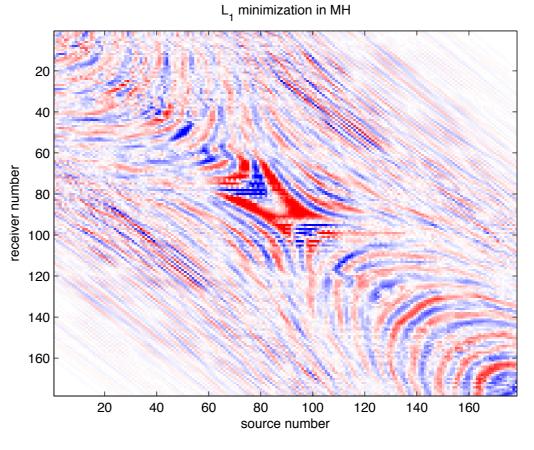
- perform recovery in other domains
 - e.g. midpoint-offset, time-midpoint,...

Incorporate additional information in the recovery

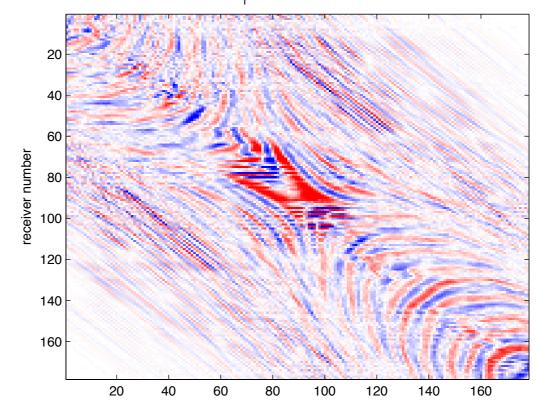
- frequency slices of seismic lines are highly correlated
 - incorporate prior support information in the recovery

CS in MH domain

Source number



L, minimization in SR



SLIM 🔶

SLIM 🔶

Correlations in seismic data

Frequency slices exhibit considerable structure that is shared between adjacent frequencies.

This shared structure translates into a high degree of overlap in the support sets of curvelet coefficients.

SLIM 🛃

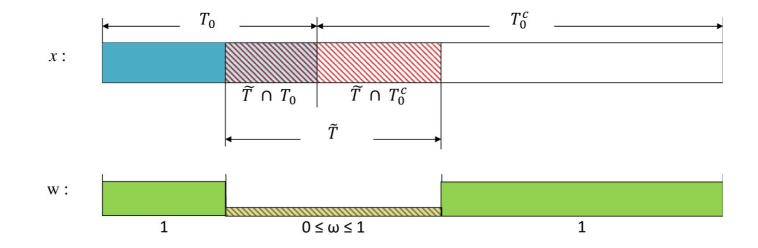
with prior support information

Mansour et al. proposed weighted one-norm minimization to incorporate prior support information.

$$\tilde{\mathbf{x}} = \arg\min_{\mathbf{u}} \|\mathbf{u}\|_{1,\mathbf{w}} \text{ subject to } \|\mathbf{A}\mathbf{u} - \mathbf{b}\|_2 \leq \epsilon$$

where $\|\mathbf{u}\|_{1,\mathbf{w}} := \sum_i w_i |u_i|$ is the weighted ℓ_1 norm, and the weights are assigned such that

$$\mathbf{w}_i = \begin{cases} 1, & i \in \widetilde{T}^c, \\ \omega, & i \in \widetilde{T}. \end{cases}$$



-CS with prior support information

SLIM 🛃

Let T_0 be the support of x_k and given a support estimate T of size k and accuracy $|\tilde{T} \cap T_0|$

$$\alpha = \frac{|T \cap T_0|}{|T_0|}$$

Theorem (FMSY'I2)

Suppose there exists an a > 1, and that A has the RIP with $\delta_{(a+1)k} < \frac{a-\gamma^2}{a+\gamma^2}$. Then the sparse approximation \tilde{x} of x can be obtained from the solution to the weighted ℓ_1 minimization problem and obeys

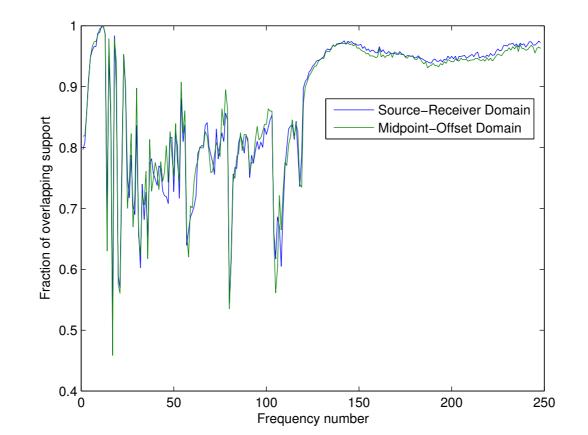
$$\|\tilde{x} - x\|_{2} \le C_{0}(\gamma)\epsilon + C_{1}(\gamma)\frac{\omega\|x_{T_{0}^{c}}\|_{1} + (1-\omega)\|x_{\widetilde{T}^{c}\cap T_{0}^{c}}\|_{1}}{\sqrt{k}}$$

Note: $\gamma = \omega + (1 - \omega)\sqrt{2 - 2\alpha}$, where $\alpha = \frac{|\tilde{T} \cap T_0|}{|T_0|}$.

Weighted one-norm implications

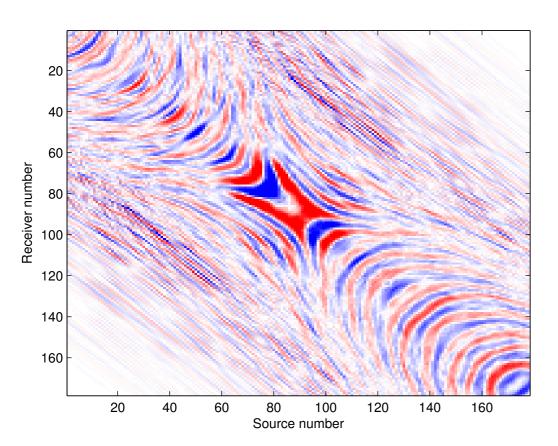
When $\alpha > \frac{1}{2}$, weighted one-norm minimization has better recovery guarantees than standard CS.

The support sets of the curvelet coefficients of seismic lines make good estimates for adjacent frequency slices.

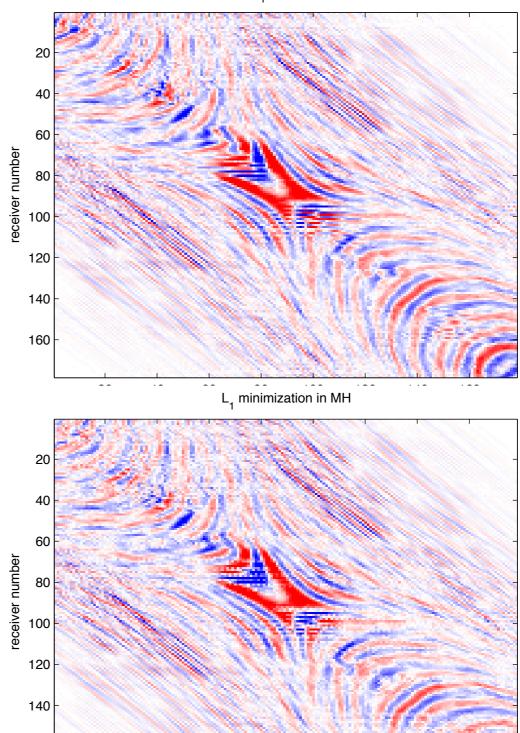


SLIM 🔶

Weighted L1 recovery [source-receiver]



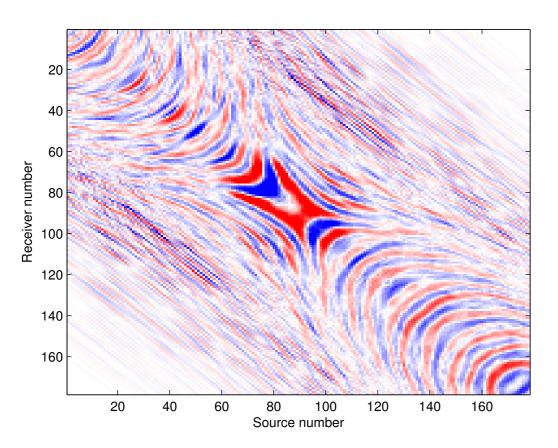
Weighted L_1 minimization in SR



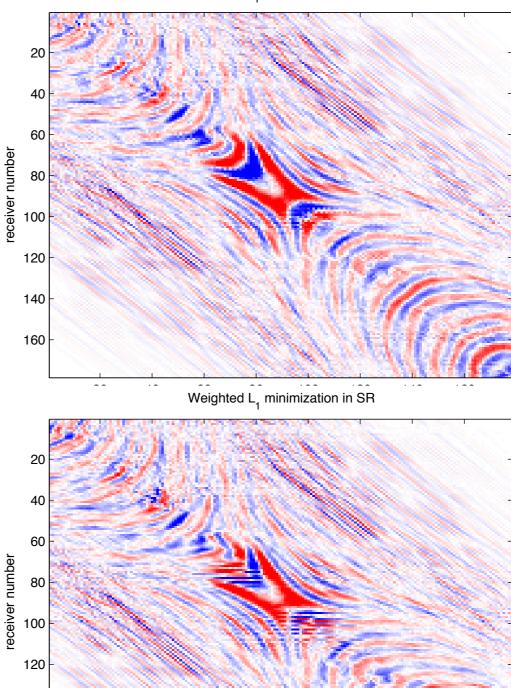
160

SLIM 🔶

Weighted L1 recovery [midpoint-offset]



Weighted L₁ minimization in MH

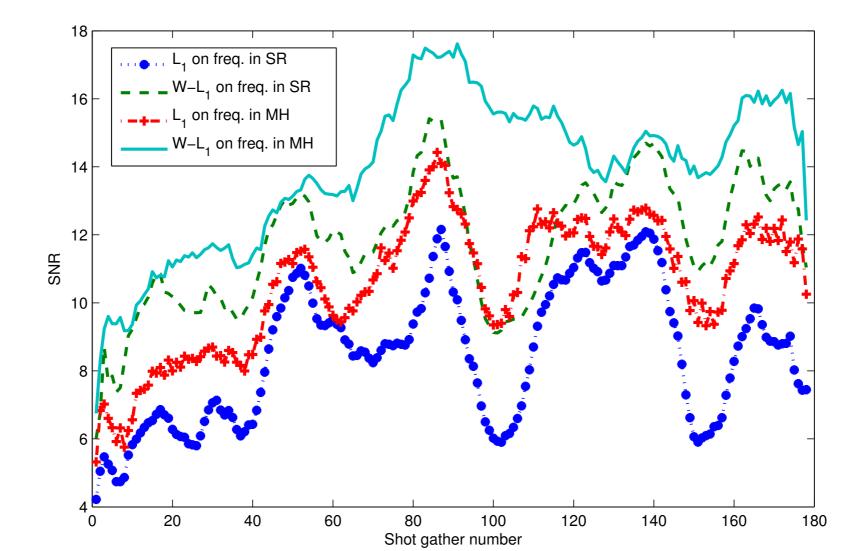


140

160

Weighted L1 recovery

Signal-to-noise-ratio (SNR) comparison



Promoting Low rank

- Seismic data is *low rank* in some frequencies/ transformed domains (e.g. midpoint-offset), motivating *low-rank* optimization to denoise/recover missing data.
- Low-rank optimization classically relies on *nuclear* norm and SVD, and hence is prohibitively *expensive*.
- We can work with a new *factorized* formulation of *nuclear* (and other) norms, bringing down the cost
- We formulate and solve the problem in an SPGL1-type setting.

Nuclear Norm

• Given any matrix $X = USV^T$,

the nuclear norm is $||X||_* = \sum (\operatorname{diag}(S))$.

Just like the 1-norm approximates the 0-norm, so the nuclear norm approximates the rank.

SLIM 🔶

Therefore, to find a low rank solution, solve: $\min_{X} \|X\|_{*}$ such that $\|b - \mathcal{F}(X)\|_{2} \leq \sigma$. Bring on the Pareto! $\min_{X} \|X\|_{*}$ such that $\|b - \mathcal{F}(X)\|_{2} \leq \sigma$.

- We can use SPGLI to solve such problems if
 - It is easy to project onto $\mathbb{B}^{\tau}_* := \{X : \|X\|_* \leq \tau\}$

SLIM 🔶

- It is easy to evaluate the *dual* norm.
- Dual norm is simply maximum singular value (op norm)
- But just computing the nuclear norm requires SVDs. Fortunately, we can use a clever trick...

Factorization Approach

- The Nuclear norm has a convenient property: $||X||_* = \inf_{X \to L^{R*}} \frac{1}{2} \left(||L||_F^2 + ||R||_F^2 \right)$
- We can work with L, R rather than X: $\min_{L,R} \frac{1}{2} \left(\|L\|_F^2 + \|R\|_F^2 \right)$

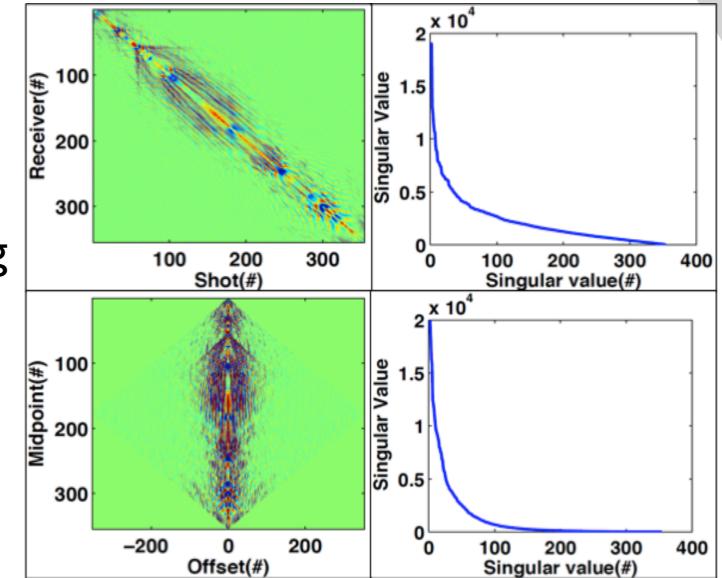
such that $||b - \mathcal{F}(LR^*)||_2 \leq \sigma$.

Advantages: no SVD required; trivial projection; potential to use factors L, R downstream.

SLIM 🔶

Rank Optimization in Midpoint-Offset

- Seismic data have faster singular value decay in midpoint-offset domain
- We recover 50% missing data by solving the rank optimization problem for high (70) and low (20) frequencies.
- nr = ns = 354.



Complete data before and after transformation

Work flow:

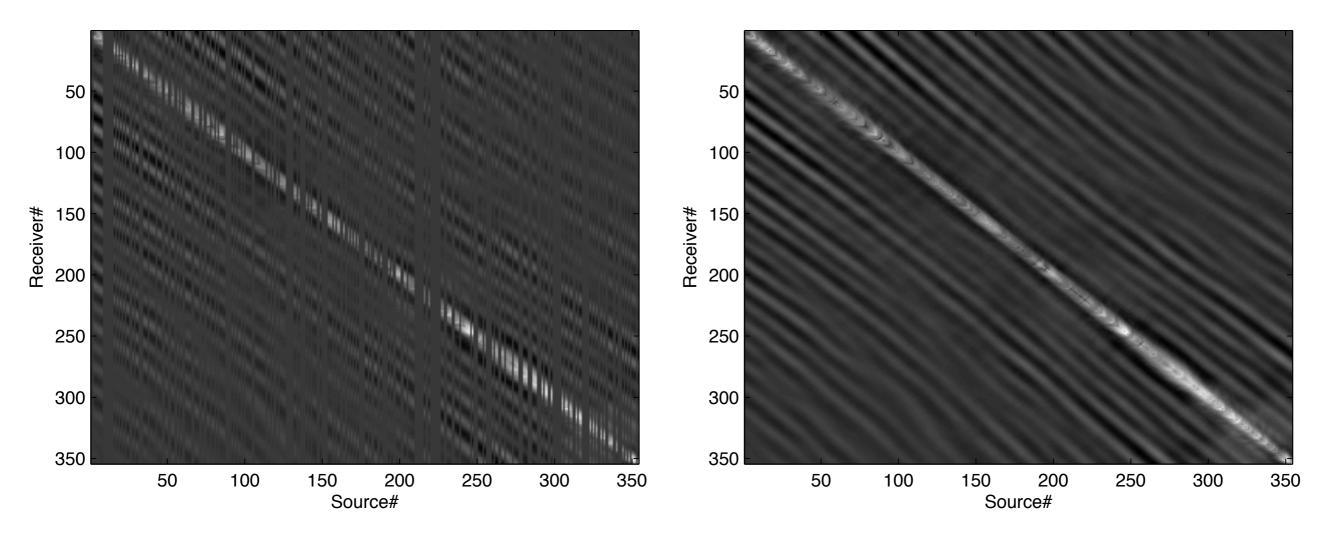
Convert data with missing traces to M-O domain.

SLIM 🔶

- Initialize L, R factors of pre-selected rank.
- Run rank optimization algorithm (SPGLI+).
- Form dense solution X = LR*
- Convert solution back to source-receiver domain.

Gulf of Suez Data: Least Squares+Low Rank

Frequency Slice : 20 Hz, Rank : 20



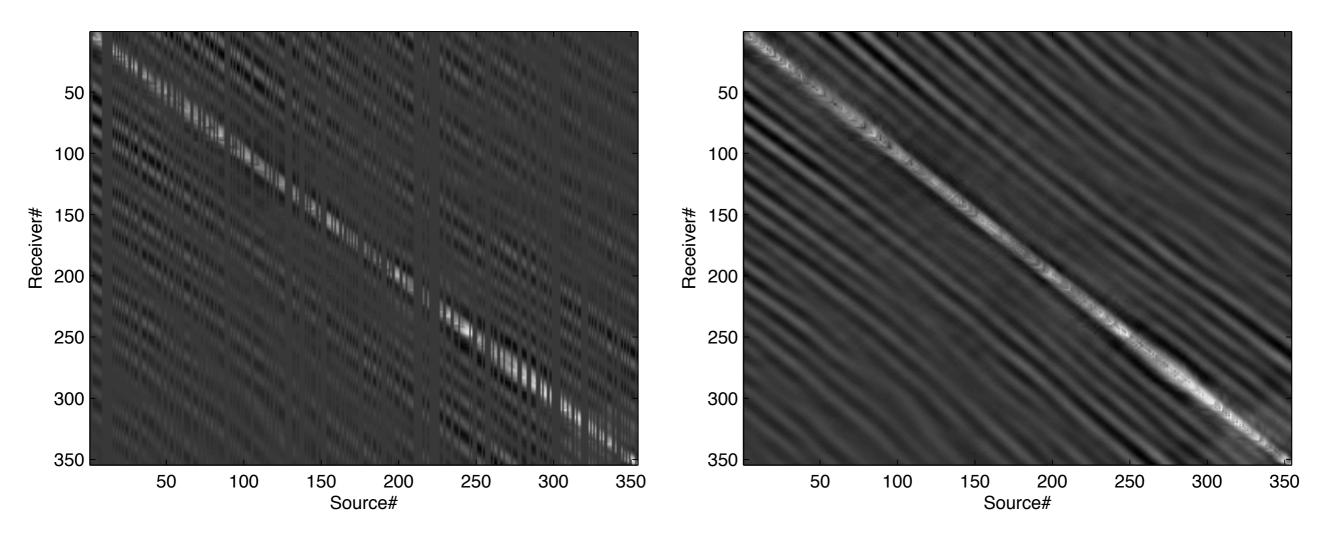
Data after interpolation, **SNR = 41.7 db**

I50 SPGL1 iterations; sigma = 1e-6, nr = ns = 354.

Curvelet Sparsity (200 SPGLI iterations): SNR of 18-20dB

Gulf of Suez Data: Least Squares+Low Rank

Frequency Slice : 20 Hz, Rank : 20



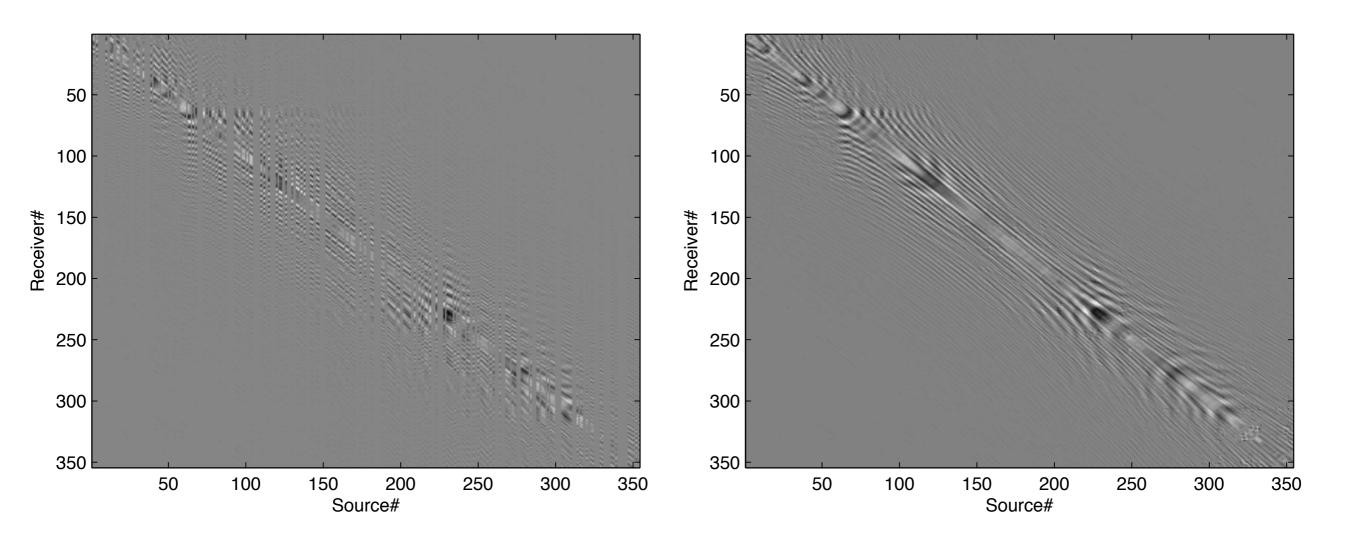
Data after interpolation, **SNR = 42.2 db**

I50 SPGLI iterations; sigma = Ie-6, nr = ns = 354.

Curvelet Sparsity (200 SPGLI iterations): SNR of 18-20dB

Gulf of Suez: Least Squares + Low Rank

Frequency Slice : 70 Hz, Rank : 20

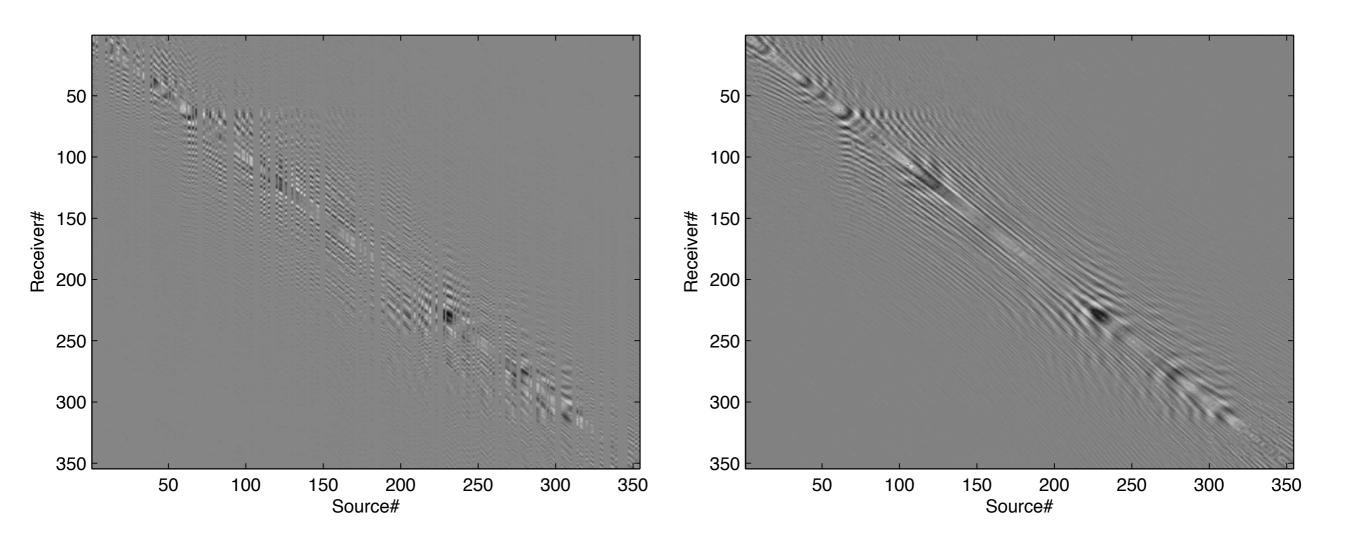


Data after interpolation, **SNR = 22.7 db**

- ▶ 150 SPGL1 iterations; sigma = 1e-6, nr = ns = 354.
- Curvelet Sparsity (200 SPGL1 iterations): SNR of 9-10dB

Gulf of Suez: Least Squares + Low Rank

Frequency Slice : 70 Hz, Rank : 40



Data after interpolation, **SNR = 29.3 db**

- ▶ 150 SPGL1 iterations; sigma = 1e-6, nr = ns = 354.
- Curvelet Sparsity (200 SPGL1 iterations): SNR of 9-10dB

Current/Future work:

- Find transforms and representations that make seismic data *low-rank*.
- Can factorizations X = LR* in these representations be used directly?
- Combine low rank with robust penalties (later talk)
- Use other norms that have computational advantages, such as the Max norm.