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Outline
l Robust FWI: 

– Motivation and statistical insight
– Student’s t FWI formulations and some results

l Variable Projection For Nuisance Parameters
– Theoretical Overview
– Robust source estimation
– Least Squares noise estimation
– Student’s t parameter estimation

l Sparsity and Student’s t 
– Motivating theoretical result
– Generalized SPGL1 with robust error measure
– Robust low rank algorithm
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Motivation for Robust Formulations

l Errors in measurement, e.g. equipment malfunction

l Unexplained “artifacts” in the data:  a lot of effort is routinely 
devoted to 

– Data cleaning to remove unexplained artifacts 
– Complex forward model design to explain such artifacts e.g. acoustic vs. elastic 

vs. anisotropic

l Why not use robust fitting methods with cheaper modeling?  
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Nonlinear Least Squares Formulation
l We consider inverse problems of the form

l Choice of Gaussian error leads to least squares formulation:

D = F(m; Q) + ✏

D n⇥m matrix of observations

Q l ⇥m array of source parameters

m parameters to be recovered

F(m; Q) Forward model (calculated data)

✏ Model for error, typically Gaussian i.i.d.

minm �(m) = kD�F(m; Q)| {z }
R(m)

k2
F =

mX

i=1

kdi �F(m)qi| {z }
ri(m)

k2
2
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Statistical Perspective for Least Squares
l The NLLS formulation is equivalent to the following statistical 

model:  

l Equivalence follows from maximum likelihood estimate for model 
parameters:

l Minimizing the negative log likelihood is exactly the FWI problem. 

l Statistical perspective explains why least squares are sensitive to 
outliers and artifacts in the data! 

D = F [m;Q] + ✏

✏ ⇠ N(0, I)

L(m) / exp

✓
�1

2

���D�F [m;Q]

���
2

F

◆
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Densities, Penalties, and Influence Functions

Densities, Penalties, and Influence Functions

Goal: good results in the face of large measurement errors and
artifacts in the data unexplained by the model h.
We can design robust methods by changing the statistical model for v.
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Some Previous Work

l Robust statistical work has a long history (I’ve seen references to 
1930’s). A few useful ‘Robust statistics’ books: 

– Huber 1981
– Hampel et al (2003)
– Marona et al, (2006)

l For robust penalties in Seismic, see 
– Huber:                 Guitton & Symes, 2003
– Huber and L1:   Brossier, Operto, Virieux 2009, 2010 
– Hybrid:                Bube, 2007.

l We are particularly interested in Student’s t distribution. See
– Lange 1989, general paper applying student’s t formulations to regression
– Fahrmeir 1998, Robust kalman smoothing using Student’s t

l In our experience, Student’s t works well for structured inverse 
problems in nonlinear Kalman smoothing, computer vision 
applications, and FWI. 
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FWI Using Student’s t-distribution

p(✏|µ, �, k) =
�(k+1

2 )
��(k

2 )
p

⇡k

✓
1 +

(✏� µ)2

k�2

◆�(k+1)
2

Density:

Robust Objective:

p(✏|µ = 0, � = 1, k) /
�
k + ✏2

��(k+1)
2For FWI:

minm �St(m) :=

1

2

mX

i=1

nX

j=1

log

�
k +

�
rij)2
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Gradient Comparison

Least Squares:

Student’s t: 

r�(m) =
1
2

mX

i=1

nX

j=1

rF [m,qij ]
T

�
Dij �F [m,qij ]

�

r�St(m) =
1
2

mX

i=1

nX

j=1

rF [m,qij ]T
�
Dij �F [m,qij ]

�

k + (Dij �F [m, qij ])2



Seismic Laboratory for Imaging and Modeling

Marmoussi with 50% data corrupted at random
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Figure 2: (a) true model [s2/km2]. (b) initial model [s2/km2] and (c) true reflectivity.
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Figure 3: (a) data slice at 15 Hz with spiky noise, (b) source-receiver mask.
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Figure 4: Inversion result (difference with initial model) with least-squares (a), Huber (b) and Students T (c) misfit for data with
spiky noise.
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Figure 5: Inversion result (difference with initial model) with least-squares (a), Huber (b) and Students T (c) misfit for incomplete
data. Both robust approaches recover well. The Huber result shows some minor artifacts that are not present in the more robust
Students T formulation.
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Histograms of residual magnitudes:
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Marmoussi, LS fit, 50% corrupted data
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Marmoussi, Huber fit, 50% corrupted data
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Marmoussi: T fit, 50% corrupted data
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Marmoussi II: Total Implementation

Initial Model, 4 Hz
20% Corrupted Data
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Results: Least Squares with GOOD data, 4Hz
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Results: Least Squares with BAD data, 4 Hz
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Results: Student’s t with BAD data, 10 DF, 4Hz
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Results: Least Squares with GOOD data
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Variable Projection for Nuisance Parameters

l Many problems have secondary parameters, which, while not 
directly of interest, impact inversion for primary parameters:

– Unknown variance/scale parameters in least squares inversion
– Unknown source amplitudes
– Student’s t degree of freedom and scale parameters. 

l The general problem can be formulated as follows: 

l Here, m are the primary parameters, e.g. velocity model, and x are 
the (much smaller) nuisance parameters: |x|<<|m|. 

min
m,x

�(m,x)
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Variable Projection for Nuisance Parameters
l Typically the overall function is solved with an iterative method. At 

each iteration, we propose updating x as follows: 

l This approach is equivalent to solving the reduced problem

l Practically, you simply plug in updated x parameters into your 
favorite algorithm for the original problem with fixed x. 

l Theoretically, you are guaranteed to converge to a local minimum 
of the full penalty while only working with the reduced objective. 

x

⌫ = arg min
x

�(m⌫ ,x)

min
m

˜

�(m) := �(m,x(m))
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Application I: Variance Estimation for LS
l We extend the FWI formulation to also fit for frequency-specific 

variances: 

l Our algorithm takes the following form: 

l The usual workflow is trivially modified, introducing frequency-
specific weights that are easily computed. 

minm,�
�LS(m,�) :=

1

2

nX

j=1

� log(�j) +

krj(m)k2

�2
j

m⌫+1 = m⌫ � ↵⌫

nX

j=1

1
(�⌫

j )2
(rrj⌫)T rj⌫

�⌫
j = var(rj)
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Experiment: frequency dependent noise
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Results: FWI with/without variance estimation

Without Var. Est. With Var. Est. 
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Results: FWI with/without variance estimation
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Application II: Robust Source Estimation
l We consider general inverse problems of the form

l The source amplitudes are the nuisance (x) parameters here. 

di n⇥ 1 shot record

qi l ⇥ 1 source

m parameters to be recovered

F i(m) Forward model (calculated data)

↵i Unknown source amplitude

�i Smooth misfit function (robust)

minm,↵
�(m, ↵) =

mX

i=1

�i (ri(m, ↵i)) ,

ri(m, ↵i) : = di � ↵iF i(m)qi
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Application of VP to Source Estimation

l Amplitude parameter estimation at each iteration takes the form

l These problems separate completely, and for each amplitude we 
can use Newton’s method. We present two cases: 

– Least Squares objective:  

– Student’s t Objective:

l Scalar Newton-type method for Student’s t source estimation!   

↵̂ = argmin
↵

mX

i=1

�i(ri(m̂ , ↵i))

↵i =
dT

i (F i(m)qi)
kF i(m)qi)k2

fij = (F i(m)qi)j

r⌫
ij = dij � ↵⌫

i fij

↵⌫+1
i = ↵⌫

i �
X

j

r⌫
ijfij

k + (r⌫
ij)2

. X

j

f2
ij

k + (r⌫
ij)2
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Robust Source Estimation: Results
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Figure 1 Data with outliers in the form of bad
traces.
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Figure 2 Estimated source wavelet using
Least-Squares (top), Hybrid (middle) and Stu-
dents t (bottom) approaches.

least-squares, Hybrid and Student’s t approaches, which required 5 or 6 Newton iterations to converge.
The results are shown in figure 2. Both the Hybrid and Student’s t recover well in this case, while the
least-squares reconstruction is quite useless, especially at low frequencies. Note that for each source, a
whole vector of data is used to estimate a single complex value; the least-squares estimate in this case
is analogous to finding the mean of a set of data, which is not robust to outliers. In contrast, both the
Student’s t and Hybrid approach return estimates analogous to the median of a large set of data. In this
context, similar performance would be expected from Huber and �1; however, we would not be able to
apply a Newton method, since these penalties are not twice differentiable.

Robust FWI example

To illustrate why robust source estimation is important for robust FWI we perform the following three
experiments on synthetic data with outliers: i) least-squares FWI with least-squares source estimation
(LS-LS); ii) robust FWI with the Students t penalty and least-squares source estimation (ST-LS) and
iii) robust FWI with the Students t penalty with corresponding source estimation (ST-ST). We use a
frequency-domain modeling operator based on a 9-point discretization of the Helmholtz equation (Jo,
1996). The data are generated for a subset of the Marmousi for 61 equispaced sources, 301 equispaced
receivers and 12 frequencies between 3 and 25 Hz. We use an L-BFGS method to fit the model, and
source estimation is implemented as described above. The initial model we used was a smoothed version
of the original model. To create noise, we replace 20% of the samples in the data with Gaussian noise. A
LS-LS reconstruction on data without noise, as well as the reconstructions on data with noise are shown
in figure 3. The ST-ST reconstruction is nearly identical to the LS-LS reconstruction without noise,
thus demonstrating the ability of this approach to deal with noise. The LS-LS reconstruction with noise
is completely meaningless. Although the ST-LS shows some of the underlying structure, this clearly
demonstrates the need to use robust source estimation in conjunction with a robust penalty.

Conclusions

We surveyed several robust formulations of FWI that use penalty functions that are less sensitive to
outliers in the data, including the Huber, hybrid and Students t penalty. In practice, one usually estimates
the source wavelet as part of the inversion process. We extended the usual least-squares approach to
source estimation to a class of robust formulations with twice-differentiable misfit functions. For every
evaluation of the misfit, we solve a scalar optimization problem for each source and frequency to obtain
the source weights. This can be done with a Newton method, and our experience is that we need only a

74th EAGE Conference & Exhibition incorporating SPE EUROPEC 2012
Copenhagen, Denmark, 4-7 June 2012
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Robust Source Estimation: Results
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Figure 3 Reconstructions (difference between initial and final models) for different scenario’s.

few iterations. Therefore, the computational cost incurred is negligible compared to the cost of forward
modeling of the wavefield. We demonstrate robust source estimation on a real shot gather and show the
uplift of robust source estimation in conjunction with robust FWI.
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Application III: Student’s t d.f. estimation
l The performance of Student’s t depends on the scale and degrees 

of freedom parameters.

l  Thus far, we have been simplifying the problem by using scale = 1 
and empirically picking the d.f. parameter. 

l To design an automated method, recall first the Student’s t density:

l We begin by showing how the ‘effective scale‘        affects recovery.

p(✏|µ, �, k) =
�(k+1

2 )
��(k

2 )
p

⇡k

✓
1 +

(✏� µ)2

k�2

◆�(k+1)
2

k�2
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LS for outlier problem: 
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Student’s t with ‘effective scale’ = 1e-4:
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Student’s t with ‘effective scale’ = 1e-6:
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Student’s t with ‘effective scale’ = 1e-10:
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Student’s t d.f. estimation
l To develop an automated method, we formulate an extended 

objective that includes the scale and d.f. as nuisance parameters:  

l At each iteration, we minimize over the nuisance parameters with 
m held constant. That’s a 2d optimization problem for every 
frequency! 

l Estimating scale and degrees of freedom parameters has been 
addressed in the statistical literature, but this is not how they do it. 
We think this is better. 

min

m,k,�2
�n log

 
�

�
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Scale and d.f. Estimation Example
l We set up a traveltime tomography 

experiment: 
– constant background velocity
– parameters of interest: perturbation of 

background velocity
– Optimization problem: 
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Results: LS Estimation
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Results: ST estimation, fixed DF and scale

Recovery True and Predicted 
Data
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Results: ST estimation, estimated DF and scale
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Robustness and Sparsity: Review of SPGL1
l SPGL1 is typically known for solving the problem

l The crucial pieces that make it work are
– Fast projection onto 

– Simple dual norm: 

– Smooth residual function. 

l SPGL1 uses a Newton root finding scheme for the Lasso value 
function 

min
x

kxk1 s.t. kAx� bk2  �

B⌧
1 = {x : kxk1  ⌧}

k · k⇤1 = k · k1

v(⌧) = min
x

kAx� bk2 s.t. kxk1  ⌧
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Root Finding: v(·) = ‡

Approximately solve
minimize 1

2⌅Ax � b⌅22
subj to ⌅x⌅1 ⇥ ⇥k

Newton update
⇥k+1 ⇤ ⇥k � (vk � �)/v�k

Early termination
monitor duality gap
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Generalized SPGL1: 

l The crucial pieces that make it work are
– Fast projection onto 

– Simple dual norm: 

– Smooth residual function 

l Theorem (A.A, Burke, Friedlander): if h is convex and smooth, 
F is linear, then 

l If h is NOT convex, or F not linear, we will just use the formula 
anyway. 

B⌧ = {x : kxk  ⌧}
k · k⇤

h(·)

min
x

kxk s.t. h(b� F (x))  �

v

0(⌧) = �kFTrh(b� Fx̄)k⇤
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Example 1: Sparse + Robust Recovery

l We play with a Compressive Sensing example, contaminating 
residuals with outliers. 

l In this case, the penalty norm is 1-norm, and the operator F is 
a compressive sensing matrix. 

l We try Huber and Student’s t penalties (both smooth!) 
– Huber is convex, so Theorem holds.
– Student’s t works just fine 

• Root finder finds the root (which we can tell by the output)
• Solutions are doing exactly what we want.  
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Sparse + Robust Results: Signal Recovery
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Sparse + Robust Results: Residual Recovery

0 20 40 60 80 100 120
−4

−3

−2

−1

0

1

2

3

4

 

 
true
LS
Hub
ST



Seismic Laboratory for Imaging and Modeling

Example 2: Low Rank + Robust Recovery

l We want to solve the Nuclear Norm problem, but we work with 
L, R factors instead (as discussed in earlier talk). 

l We use 50% missing data, and THEN contaminate remaining 
data with large noise. 

l The misfit function is the Student’s t penalty. 

l The forward model simply picks out the nonzero elements of X

min
X
kXk⇤ s.t. h(b� F(X))  �



Gulf of Suez: Least square and Student’s T+Low Rank

‣ 150 SPGL1 iterations; sigma = 10,  d.f. = 5e4

‣ Corrupting noise is 50x average data value
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‣ 150 SPGL1 iterations; sigma = 10,  d.f. = 5e4

‣ Corrupting noise is 50x average data value
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Conclusions

l Robust formulations to FWI that are able to ignore LARGE 
unexplained artifacts in the data.  

l Scale and degrees of freedom parameters provide tuning knobs 
that can be tuned using automated data-driven methods. 

l Robustness can be combined with sparsity and low rank promotion 
using the generalized SPGL1 framework. 

l Thank you!
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• We	
  consider	
  a	
  subset	
  of	
  the	
  Marmoussi	
  model

• 151	
  shots,	
  301	
  receivers

• 9	
  pt.	
  discretization	
  of	
  Helmholtz	
  operator	
  with	
  absorbing	
  boundary;	
  10	
  m.	
  
spacing	
  on	
  grid	
  

• Sample	
  of	
  Frequencies	
  	
  [5.0,	
  6.0,	
  11.5,	
  14.0,	
  15.5,	
  17.5,	
  23.5]	
  Hz

Marmoussi Example


