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Motivation for Robust Formulations

® Errors in measurement, e.g. equipment malfunction

® Unexplained “artifacts” in the data: a lot of effort is routinely
devoted to

— Data cleaning to remove unexplained artifacts

— Complex forward model design to explain such artifacts e.g. acoustic vs. elastic
VS. anisotropic

® \Why not use robust fitting methods with cheaper modeling?



Nonlinear Least Squares Formulation

® \Ve consider inverse problems of the form

D=F(m;Q) + €

D n X m matrix of observations

Q [ X m array of source parameters

m parameters to be recovered
F(m; Q) Forward model (calculated data)

€ Model for error, typically Gaussian i.i.d.

® Choice of Gaussian error leads to least squares formulation:

min ®(m) = || D — F(m; Q) |7 = > _[Id; — F(m)q, |3

Im
1=1

R(m) ri(m)




Statistical Perspective for Least Squares

® The NLLS formulation is equivalent to the following statistical
model:

D = Fm;Q]+e

e ~ N(O,T7)
® Equivalence follows from maximum likelihood estimate for model
parameters:
1 2
L(m) o exp 5 |D — F|m; Q]H
F

® Minimizing the negative log likelihood is exactly the FWI problem.

® Statistical perspective explains why least squares are sensitive to
outliers and artifacts in the datal



Densities, Penalties, and Influence Functions
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Some Previous Work

Robust statistical work has a long history (I've seen references to
1930’s). A few useful ‘Robust statistics’ books:

— Huber 1981
— Hampel et al (2003)
— Marona et al, (2006)

For robust penalties in Seismic, see

— Huber: Guitton & Symes, 2003
— Huber and L1: Brossier, Operto, Virieux 2009, 2010
— Hybrid: Bube, 2007.

We are particularly interested in Student’s t distribution. See
— Lange 1989, general paper applying student’s t formulations to regression
— Fahrmeir 1998, Robust kalman smoothing using Student’s t

In our experience, Student’s t works well for structured inverse
problems in nonlinear Kalman smoothing, computer vision
applications, and FWI.



FWI Using Student’s t-distribution
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Gradient Comparison
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Marmoussi with 50% data corrupted at random
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Histograms of residual magnitudes:
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Marmoussi, LS fit, 50% corrupted data

rel. frequency
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Marmoussi, Huber fit, 50% corrupted data
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Marmoussi: T fit, 50% corrupted data
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Marmoussi ll: Total Implementation
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Results: Least Squares with GOOD data, 4Hz
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Results: Least Squares with BAD data, 4 Hz
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Results: Student’s t with BAD data, 10 DF, 4Hz
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Results: Least Squares with GOOD data

0 20 40 60 80 100 120 140 160

0

10

15

20

25

30 -

35

40

Seismic Laboratory for Imaging and Modeling



Variable Projection for Nuisance Parameters

® Many problems have secondary parameters, which, while not
directly of interest, impact inversion for primary parameters:

— Unknown variance/scale parameters in least squares inversion
— Unknown source amplitudes
— Student’s t degree of freedom and scale parameters.

® The general problem can be formulated as follows:

II%H}}; $(m, x)

® Here, m are the primary parameters, e.g. velocity model, and x are
the (much smaller) nuisance parameters: |x|<<|m|.



Variable Projection for Nuisance Parameters

Typically the overall function is solved with an iterative method. At
each iteration, we propose updating x as follows:

x’ = arg m}%n $(m”, x)

This approach is equivalent to solving the reduced problem

HIlIiln ®(m) := &(m, x(m))

Practically, you simply plug in updated x parameters into your
favorite algorithm for the original problem with fixed x.

Theoretically, you are guaranteed to converge to a local minimum
of the full penalty while only working with the reduced objective.



Application I: Variance Estimation for LS

® \We extend the FWI formulation to also fit for frequency-specific

variances:
| 1 < |y (m) |7
%lg $;5(m,0o) = 52:1—log(0j) | 032
J:

® Our algorithm takes the following form:

n

|74 |4 1 |74 vV
m’t! = m? — O‘”Z : V)Q(Vrj )Tr;
7

j=1
|4

0 = var(r;)

® The usual workflow is trivially modified, introducing frequency-
specific weights that are easily computed.



Experiment: frequency dependent noise
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Results: FWI with/without variance estimation

WITHOUT VAR. EST. WITH VAR. EST.

Seismic Laboratory for Imaging and Modeling



Results: FWI with/without variance estimation
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Application ll: Robust Source Estimation

® \Ve consider general inverse problems of the form

min ®(m, o) Z¢z (ri(m, o;)) ,

m,

ri(m, a;) : = di — o; Fi(m)q;

d; n X 1 shot record

q; [ x 1 source

m parameters to be recovered
Fi(m) | Forward model (calculated data)

o Unknown source amplitude

O Smooth misfit function (robust)

® The source amplitudes are the nuisance (x) parameters here.



Application of VP to Source Estimation

® Amplitude parameter estimation at each iteration takes the form

m

= arg m()izn Z ¢i(ri(m ; Ozz))
=1

® These problems separate corr?pletely, and for each amplitude we
can use Newton’s method. We present two cases:

1

d! (F;(m)q;
— Least Squares objective:  «; = L (Fi )q12)
|Fi(m)q;)|]
fij = (Fi(m)a)’
A BN T
— Student’s t Objective: rij = dij — o fi
T fz
+1 ’L] J zj
O/./ - ;/_ /Z k._|_

J

® Scalar Newton-type method for Student’s t source estimation!



Results

Robust Source Estimation
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Figure 2 Estimated source wavelet using

Figure 1 Data with outliers in the form of bad

lraces.

Least-Squares (top), Hybrid (middle) and Stu-

dents t (bottom) approaches.



Robust Source Estimation: Results
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Application lll: Student’s t d.f. estimation

® The performance of Student’'s t depends on the scale and degrees
of freedom parameters.

® Thus far, we have been simplifying the problem by using scale = 1
and empirically picking the d.f. parameter.

® To design an automated method, recall first the Student’s t density:
—(k+1)

k+1 e — 11)2 2
plelinak) = i (1+ )

® Ve begin by showing how the ‘effective scale‘ ko* affects recovery.




LS for outlier problem:

Recovered perturbation LS alone
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Student’s t with ‘effective scale’ = 1e-4:

Recovered perturbation ST alone k=1e-4
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Student’s t with ‘effective scale’ = 1e-6:

Recovered perturbation ST alone k=1e-6
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Student’s t with ‘effective scale’ = 1e-10:

Recovered perturbation ST alone k=1e-10

200

400

600

800

1000

z [m]

1200

1400

1600

1800

2000
0 200 1000 1500 2000 2500 3000
Seismic Labc x [m]



Student’s t d.f. estimation

® To develop an automated method, we formulate an extended
objective that includes the scale and d.f. as nuisance parameters:

T (%) k+1 2
mmliré —n log (F(k)i/ﬂik> + 210g | Zlog( | 2/€>

2

® At each iteration, we minimize over the nuisance parameters with
m held constant. That's a 2d optimization problem for every
frequency!

® Estimating scale and degrees of freedom parameters has been
addressed in the statistical literature, but this is not how they do it.
We think this is better.



Scale and d.f. Estimation Example

® \\Ve set up a traveltime tomography
experiment:
— constant background velocity

— parameters of interest: perturbation of
background velocity

200

— Optimization problem:
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Results: LS Estimation
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Results: ST estimation, fixed DF and scale
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Results: ST estimation, estimated DF and scale
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Robustness and Sparsity: Review of SPGL1

® SPGLA1 is typically known for solving the problem
min ||x||1 s.t. ||Ax —blls < o
xXr

® The crucial pieces that make it work are
— Fast projection onto

1=zl < 7]

— Simple dual norm:

-1 =1l
— Smooth residual function.

® SPGL1 uses a Newton root finding scheme for the Lasso value
function

v(7) = min || Az — bl|s s.t. |z]]; <7
X



Root Finding: v(7) =0
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Generalized SPGL1:

min ||x|| s.t. h(b— F(x)) <o

® The crucial pieces that make it work are
— Fast projectiononto BT — {gj : ngH < 7-}

— Simple dual norm: H ° H*

— Smooth residual function h()

® Theorem (A.A, Burke, Friedlander): if h is convex and smooth,
F is linear, then

V' (1) = —||F*Vh(b— Fz)|*

® |f his NOT convex, or F not linear, we will just use the formula
anyway.



Example 1: Sparse + Robust Recovery

® \We play with a Compressive Sensing example, contaminating
residuals with outliers.

® |[n this case, the penalty norm is 1-norm, and the operator F is
a compressive sensing matrix.

® We try Huber and Student’s t penalties (both smooth!)
— Huber is convex, so Theorem holds.
— Student’s t works just fine
« Root finder finds the root (which we can tell by the output)
« Solutions are doing exactly what we want.



Sparse + Robust Results: Sianal Recoverv
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Sparse + Robust Results: Residual Recovery
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Example 2: Low Rank + Robust Recovery

m)}n | X« s.t. A(b—F(X)) <o

® \Ve want to solve the Nuclear Norm problem, but we work with
L, R factors instead (as discussed in earlier talk).

® \We use 50% missing data, and THEN contaminate remaining
data with large noise.

® The misfit function is the Student’s t penalty.

® The forward model simply picks out the nonzero elements of X



Gulf of Suez: Least square and Student’s T+Low Rank

Frequency : 20 Hz, Rank 20

L w = = % W
. - = =

50% missing Least Square, Student’s t,
+10% outlier SNR=24.5db SNR=19.3db

p 150 SPGLI iterations; sigma = 10, d.f. = 5e4

p Corrupting noise is 50x average data value



Gulf of Suez: Least square and Student’s T+Low Rank

Frequency : 70 Hz, Rank 20

50% missing Least Square, Student’s t,
+10% outlier SNR =15.6 db SNR=17.2 db

p 150 SPGLI iterations; sigma = 10, d.f. = 5e4

p Corrupting noise is 50x average data value



Receiver#

Gulf of Suez: Least square and Student’s T+Low Rank

Frequency Slice : 20 Hz, Rank : 20

—
a
o

N
o
o

50 100 150 200 250 300 350 50 100 150 200
Source#

250 300 350
Source#

Source#

50 % Missing+10 % corrupted Recovered data, Least Square Recovered data, Student’s t
data before interpolation SNR = 4e-7 db SNR =32.8 db

p 150 SPGLI iterations; sigma = 10, d.f. = 5e4

p Corrupting noise is 10000x average data value



Receiver#

Gulf of Suez: Least square and Student’s T+Low Rank

Frequency Slice : 20 Hz, Rank : 40

—
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N
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50 100 150 200 250 300 350 50 100 150 200
Source# Source#

250 300 350
Source#

50 % Missing+10 % corrupted Recovered data, Least Square Recovered data, Student’s t
data before interpolation SNR = 5e-7 db SNR =33.3 db

p 150 SPGLI iterations; sigma = 10, d.f. = 5e4

p Corrupting noise is 10000x average data value



Receiver#

Gulf of Suez: Least square and Student’s T+Low Rank

Frequency Slice : 70 Hz, Rank : 20

450 200 250 300 350 50 100 150 200 250 300 350 50 100 150 200 250 300 350

50 % Missing+10 % corrupted Recovered data, Least Square Recovered data, Student’s t
data before interpolation SNR = le-8 db SNR =204 db

p 150 SPGLI iterations; sigma = 10, d.f. = 5e4

p Corrupting noise is 10000x average data value



Receiver#

Gulf of Suez: Least square and Student’s T+Low Rank

Frequency Slice : 70 Hz, Rank : 40

450 200 250 300 350 50 100 150 200 250 300 350 50 100 150 200 250 300 350

50 % Missing+10 % corrupted Recovered data, Least Square Recovered data, Student’s t
data before interpolation SNR = le-7 db SNR = 20.5 db

p 150 SPGLI iterations; sigma = 10, d.f. = 5e4

p Corrupting noise is 10000x average data value



Conclusions

® Robust formulations to FWI that are able to ignore LARGE
unexplained artifacts in the data.

® Scale and degrees of freedom parameters provide tuning knobs
that can be tuned using automated data-driven methods.

® Robustness can be combined with sparsity and low rank promotion
using the generalized SPGL1 framework.

® Thank youl!
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Marmoussi Example

We consider a subset of the Marmoussi model

151 shots, 301 receivers

9 pt. discretization of Helmholtz operator with absorbing boundary; 10 m.
spacing on grid

Sample of Frequencies [5.0, 6.0, 11.5, 14.0, 15.5, 17.5, 23.5] Hz



