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Outline – the question

This talk is about the sparse recovery problem: Find (a sparse) the
sparsest (approximate) solution of an underdetermined system of
linear equations.

Two similar, yet distinct, settings: sparse approximation problem
and compressed sensing. Our focus will be on compressed sensing
as that is more relevant for our problems in this project.

In compressed sensing (an overview will follow), the goal is to
recover signals from seemingly incomplete measurements (or
sub-Nyquist rate samples).

Model: Signals are sparse in some transform domain. This is all!

Our focus in this talk: If we have additional prior information, can
we improve the recovery performance without changing the
sampling procedure?
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Outline – relevance and some answers

We will present various algorithms that improve recovery if we have some
prior information about the locations of non-zero coe�cients, i.e., the
support, of the original signal. This is often the case in practice:

Video signals (correlations among consecutive frames)

Seismic data (correlations, e.g., among adjacent o↵set gathers)

Reweighting?

In this talk:

Weighted `1 (Friedlander-Mansour-Saab-OY)

Weighted `p, 0 < p < 1 (Ghadermarzy-Mansour-OY)

Weighted `1–analysis (Hargreaves-OY)

Weighted Kaczmarz and a row-action based reweighted sparse
recovery algorithm (Mansour-OY)
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Compressed sensing (CS): an overview

During the last 8 years: a revolution in sampling theory.

Main conclusion: sparse signals can be recovered from few,
“seemingly incomplete” measurements in a tractable way.

Initiated by the works of Donoho, and of Candès and Tao (⇠ 2004).

Opened up a new field called compressed sensing : Very active
area. To follow:

Compressive sensing resources at http://dsp.rice.edu/cs

Nuit-Blanche Blog at http://nuit-blanche.blogspot.com

Relies heavily on sparse approximations that has been around for
more than two decades (transforms like wavelets, curvelets, Gabor).

Interesting and di�cult mathematics and important applications
such as seismic signal processing, imaging, and inversion.
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Classical sampling vs. compressed sensing

We now illustrate how compressed sensing di↵ers from classical sampling
(a la Shannon-Nyquist). First, classical sampling:

Let f 2 B⌦: bandlimited with bandlimit ⌦. Then ⌧Nyquist = 1/2⌦.

A bandlimited f Fourier transform of f

−T 0 T −� −�

Need N ⇡ 2⌦ ⇥ 2T samples to reconstruct f on [�T ,T ].

Equivalently: Every bandlimited function f 2 B⌦, on [�T ,T ] can be
represented by a vector f 2 RN obtained by collecting N measurements.
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Classical sampling vs. compressed sensing

What makes the classical sampling approach work?

1
f 2 B⌦  � “model the signal class”.

2 We measure f by obtaining its samples on a regular grid  �
“specify the measurement scheme”.

3 Use Shannon-Nyquist sampling formula to reconstruct  � “find a
reconstruction method”.

Note that:

Ambient dimension of the corresponding representation is N ⇠ ⌦T .

We get perfect reconstruction if we collect these N samples.

Di↵erent N-dimensional vectors correspond to samples of di↵erent
bandlimited functions – so no hope for dimension reduction—i.e.,
we need N independent measurements— under this signal model.
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Classical sampling vs. compressed sensing

Above: Reduced a bandlimited function f to a vector f in RN .

Question: Can we reduce the dimensionality of the problem by
restricting the signal class further? Say f is sparse in Fourier.

Another bandlimited f Fourier transform of f

−T 0 T −�−�

Do we still need N ⇡ 4⌦T samples to reconstruct f 2 RN?
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Compressed sensing – general framework

Signal f 2 RN , want to collect information on f .

Model the signal class: f is sparse w.r.t. a known basis B :

f = B

⇤
x where x is sparse.

(Above B is the N ⇥ N DFT matrix.)

Specify a measurement scheme: Construct an m ⇥ N

measurement matrix M with m ⌧ N

fmeas = Mf = MB

⇤
x

Note: fmeas is m dimensional with m ⌧ N!

Reconstruction method: Solve the underdetermined sparse
recovery problem:

xapprox = “sparsest” z such that fmeas = MB

⇤
z .
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Compressed sensing: back to our example

CS signal model: f 2 B⌦ and f has a sparse Fourier transform:

f̂ = F

⇤
f has few non-zero entries (B = F , the DFT matrix).

CS measurement scheme: Collect m ⇡ N/2 samples at irregular
points, i.e., average sampling density is only 50% of Nyquist rate.

fmeas = Rf = RF

⇤
f̂ (M = R , m random rows of identity).

−T 0 T

CS Reconstruction: We can recover f̂ (thus f ) from these samples via:

f̂approx = argmin kzk0 subject to RF

⇤
z = fmeas.
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Compressed sensing theory – imposing sparsity

Here is the reconstruction obtained from the above samples (approx.
50% of Nyquist rate)

−T T −T T

We get essentially perfect reconstruction!

How did we solve the combinatorial optimization problem:

min kzk0 subject to RF

⇤
z = fmeas?

We will come back to this later.
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Compressed sensing theory – imposing sparsity

Sparse recovery problem:
xapprox = “sparsest” z such that fmeas = MB

⇤
z .

Main questions:

1 How do we find the sparsifying basis B?

2 How do we construct the measurement matrix M?

3 How many measurements do we need to have xapprox = x?

4 How do we solve the sparse recovery problem?
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Compressed sensing theory - sparsity transforms

How do we find sparsity transforms?

Note that this is dependent heavily on the class of signals of interest.

In the above example, the sparsity transform was Fourier transform.

Applied and computational harmonic analysis community has been
developing such transforms during the last three decades that are
tailored to important signal classes such as: audio, natural images,
seismic data and images.

Rich area with interesting mathematics, directly applicable
constructive results such as wavelet transform, curvelet transform...

In the seismic setting, curvelet transform is the transform of our
choice.
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Sparsity transform - seismic

Curvelet transform sparsifies seismic data and images.
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Figure 2. 2D discrete curvelet transform. (a) Discrete frequency tiling. eUj,� has center slope ��. It smoothly localizes
the frequency near the shaded wedge. (b) One curvelet at scale j and orientation � in spatial domain. Notice that the
major axes of the curvelet in the frequency and space domains are orthogonal to each other.

It is clear that eUj,` isolates frequencies near the wedge {(!1, !2) : 2j�1  !1  2j+1, �2�j/2  !2/!1 � ↵` 
2�j/2}.

With the localized frequency window eUj,` available, the final step is to choose a spatial grid to translate the
curvelet at scale j and orientation `. In the continuous transform, the grid we use has its two axes aligned with
the major and minor axes of the frequency window. For the discrete transform, two approaches are possible: (1)
a slanted grid mostly aligned with the axes of the frequency window which leads to the USFFT-based curvelet
transform (for details, see Candès at al1); (2) a grid aligned with the input Cartesian grid which leads to the
wrapping-based curvelet transform. Here we follow the wrapping-based approach.

Fix the scale j and angle `. Suppose L1,j,` and L2,j,` are a pair of positive integers which satisfy the following

conditions: (1) one cannot find two ! and !0 such that eUj,`(!) � 0, eUj,`(!0) � 0, and !1 � !0
1 and !2 � !0

2 are
multiples of L1,j,` and L2,j,` respectively; and (2) L1,j,` · L2,j,` is minimal.

The discrete curvelet with index k at scale j and angle ` is defined by means of its Fourier transform:

�̂D
j,`,k(!) = eUj,`(!) · exp[�2�i(k1!1/L1,j,` + k2!2/L2,j,`)]/

p
L1,j,` · L2,j,`.

for 0  k1 < L1,j,` and 0  k2 < L2,j,`. Geometrically, the computation of the coe�cients �D
j,`,k for fixed j and `

is equivalent to wrapping the windowed frequency data eUj,`(!)f̂(!) around a L1,j,` by L2,j,` rectangle centered
at the origin, and then applying the inverse FFT to the wrapped data. This justifies the word “wrapping”. Our
choice of L1,j,` and L2,j,` guarantees the data does not overlap with itself after the wrapping process.

Last scale j = je = log2(n/2). This final scale extracts the highest frequency content. For the purpose of
this paper, the basis functions used at this scale are like wavelets (for other choices, see Candès et al1). The
frequency window is

eUje,0(!) = fWje(!).

The curvelets at this level are defined by

�̂D
je,0,k(!) = eUje,0(!) · exp[�2�i(k1!1/L1,je + k2!2/L2,je)]/

p
L1,je · L2,je ,

with L1,je = L2,je = n and 0  k1, k2 < n.

sorted coe�cients
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Compressed sensing theory: main questions

Sparse recovery problem:
xapprox = “sparsest” z such that fmeas = MB

⇤
z .

Main questions:

1 How do we find the sparsifying basis B?

2 How do we construct the measurement matrix M?

3 How many measurements do we need to have xapprox = x?

4 How do we solve the sparse recovery problem?
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Reconstruction: sparse recovery problem

Want to reconstruct f from the measurements

b = Mf = MB

⇤
| {z }

A

x (1)

OR b̂ = Ax + e (here e is additive noise). (2)

Let � : Rm 7! RN be a reconstruction map (or “decoder”).

Some design goals:

C1. �(Ax) = x whenever x is k-sparse (exact reconstruction for
su�ciently small k).

C2. kx � �(Ax + e)k . kek + kx � xkk. Reconstruction works for
noisy measurements and approx. sparse signals.

C3. �(·) can be computed e�ciently (in some sense).

C4. Number of measurements m is as small as possible (depending on
k ,N, and the choise of the measurement matrix M).
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CS – many surprises since 2004!

We can achieve all the goals above (main results by Donoho, and Candes,
Romberg, Tao) – just use a recovery algorithm based on `1 minimization:

�1(b) := argmin kzk1 subject to Az = b no noise case

�✏
1(b̂) := argmin kzk1 subject to kAz � bk2  ✏ noisy case

In particular:

If A 2 Rn⇥N is a su�ciently “incoherent matrix” and k is
su�ciently small

�1(b) = x , i.e., exact recovery, for every k-sparse x .

For such A, �1 provides a good approximation for arbitrary x 2 RN :

kx ��1(b)k . �k(x)`1/
p
k , i.e., good recovery for compressible x .

For such A, the recovery results above stay within noise level if the
measurements are contaminated by noise.

There are other algorithms for CS recovery—e.g., �p with 0 < p < 1,
OMP, CoSamp, . . .
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How to choose the measurement matrix

There are precise conditions on A (in terms of its RIP constants)
that guarantee that the above results hold.

For example, if A is a random matrix with iid Gaussian entries, then

m & k log(N/k)

will su�ce.

# measurements ⇠ log of the ambient dimension (grid size)

This is theoretically optimal (deep results in geometric functional
analysis).

Other classes (Bernoulli, partial Fourier, ...) of random matrices will
do, too!
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Choosing the measurement matrix — more remarks

Gaussian and sub-Gaussian matrices are unitarily invariant, so the
dimension relation is independent of the sparsity basis. These are
universal measurement matrices:

M is Gaussian and B is unitary =) A = MB

⇤ is Gaussian.

Ideal for dimension reduction in simulations. Also, acquisition with
simultaneous sources.

Di�cult to implement depending on the physics—e.g., in the
sampling example. In such cases:

sample in a domain that is incoherent with the sparsity
domain: e.g.,

sparse in Fourier =) sample in time

Randomly sub-sample (possibly on a jittered grid), i.e.,
“apply” a restriction matrix R .

The corresponding A = RF

⇤ is a “good” compressive sampling
matrix. (See Enrico Au-Yeung’s talk.)
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CS – incorporating prior info

CS is a non-adaptive sampling paradigm: Measurement matrix is fixed
once and for all, regardless of the signal to be acquired.

Remainder of the talk: Methods of incorporating prior information on
the support of the specific signal of interest to sparse recovery. In all:

Sensing is non-adaptive: Collect the measurements b (or b̂ if there
is noise) using an arbitrary CS matrix.

Recovery is adaptive:

Suppose we have prior information on the support of x . In
particular we have a support estimate that is generally partial
and possibly inaccurate.
Use such prior support info to improve sparse recovery.

Why is this relevant?
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Signals with Prior Information

In many applications, it is possible to draw an estimate of the support of
the signal, for example:

Natural images have large DCT coe�cients that are localized in the
low frequency subbands.

Video sequences are temporally correlated, resulting in a shared
subset of their support.

Seismic data: adjacent frequency slices or o↵set gathers have
correlated curvelet support.
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CS – incorporating prior info

Various methods we will discuss:

1
Recovery using weighted `1 minimization. (Mansour)

Choose appropriate weights “on-support” and “o↵-support”.

2
Recovery using weighted `p minimization, 0 < p < 1 (Ghadermarzy)

Similar to above, but now based on non-convex optimization.

3
Recovery using weighted `1 minimization of analysis coe�cients

(Hargreaves)

Analysis formulation when sparsity transform is redundant
(e.g., curvelets) with a novel weighting scheme.

4
Weighted randomized Kaczmarz for sparse solutions of

overdetermined linear systems (Mansour)

A row-action method for solving overdetermined systems with
sparse solutions.
Surprisingly e↵ective for CS (underdetermined systems) as well.
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Problem formulation – synthesis

The following applies to weighted `1 and weighted `p.

Suppose that x is a k-sparse signal with unknown support T0.

Given:

1 CS measurements of x (i.e., b = Ax , or b̂ = Ax + e with kek2  ✏).

2 A partially accurate support estimate e
T . Let’s quantify—two

important parameters:

⇢ := #eT
#T0

relative size of the estimated support

↵ := #T0\eT
#eT

accuracy of the estimate

In general, we have 0  ⇢  N
k and 0  ↵  min{1, 1

⇢}.

Goals:

Incorporate e
T into the recovery algorithm (to get better recovery),

Obtain theoretical recovery guarantees depending on the size and
accuracy of e

T (i.e., ⇢ and ↵).
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Proposed Algorithm I – weighted `1 minimization

Given a set of (noisy) measurements b̂, define

�✏
1,w(b̂) := argmin

x
kxk1,w subject to kAx � b̂k2  ✏

where

wi =

(
1, i 2 e

T

c ,

!, i 2 e
T ,

for some 0  !  1.

Above kxk1,w :=
P

i wi |xi |, and kek22  ✏.

 

 

 

 

 

 
  

 

  ∩    ∩  

  

 

0 ≤ ω ≤ 1 1 1 

w : 
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Improved su�cient conditions for weighted `1

We prove the following theorem in the case of weighted `1:

Theorem [FMSY]

Suppose for some a > max{1, (1� ↵)⇢}, �ak + a��(a+1)k < a� � 1. Then

k�✏
1,w(b̂) � xk2  C

0
0✏ + C

0
1k

�1/2(!kxTc
o
k1 + (1 � !)kxeTc\Tc

0
k1)

where � =
⇣
! + (1 � !)

p
1 + ⇢ � 2↵⇢

⌘�2
.

Remarks.

1 Above, 0  !  1 is a fixed weight. If we set ! = 1, our theorem
reduces to the robust recovery theorem of CRT.

2 Recall 0  ↵  1 describes the accuracy of e
T and ⇢ describes its

size.

3 The su�cient conditions above are weaker than those for `1
minimization i↵ ↵ > 0.5. (Same holds for the constants.)

4 Earlier work on the case ! = 0: e.g., Borries, Vaswani and Lu;
Jacques. Our results, to our knowledge, provide weakest su�cient
cond. and smallest constants.Monday, 3 December, 12



Numerical experiments – sparse signals

SNR averaged over 20 experiments for k-sparse signals x with
k = 40, and N = 500.
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Compressed sensing of seismic lines

Full seismic line (Gulf of Suez) with 178 shots, 178 receivers, and
500 time samples.

Due to budgetary requirements or device malfunctioning, some
receivers are inactive (e.g.: time slice 350).

Results in missing data along entire time axis (eg: common shot
gather # 84)
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Recovery in o↵set domain

Seismic line data is correlated in the midpoint-o↵set domain.

Map the subsampling mask to act on o↵set slices (e.g., see zero
o↵set slice below).

Recover the zero o↵set using standard `1 minimization (same
quality for wL1 and L1).

Use the support of the zero o↵set slice to weight the recovery of
other o↵set slices (eg: +5 o↵set).
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Performance of weighted `1 vs standard `1

Map the data back to the source receiver domain (eg: shot gather
# 84).

Signal to noise ratio (SNR) of all 128 shot gathers.
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Performance of weighted `1 vs standard `1

Map the data back to the source receiver domain (eg: shot gather
# 84).

Signal to noise ratio (SNR) of all 128 shot gathers.
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Proposed Algorithm II – weighted `
p

minimization

Given a set of (noisy) measurements b̂, define

�✏
p,w(b̂) := argmin

x
kxkpp,w subject to kAx � b̂k2  ✏

where

wi =

(
1, i 2 e

T

c ,

!, i 2 e
T ,

for some 0  !  1.

Above kxkp,w :=
P

i wi |xi |p, and kek22  ✏.

Remarks:

1 This is a non-convex optimization problem because 0 < p < 1.

2 We know that `p minimization can outperform `1 minimization
significantly, e.g., Saab-Yilmaz 2010. This motivates us to consider
a weighted version.

3 We can prove better su�cient conditions for recovery compared to
weighted `1. See Ghadermarzy’s talk for details.
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Weighted `
p

– numerical experiments

SNR averaged over 10 experiments for k-sparse signals x with
k = 40, N = 500, and p = 0.5.
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Proposed Algorithm III – weighted `1 analysis

Signal model: f is sparse w.r.t. a basis B : f = Bx , x is sparse.
Then, x = B

�1
f = B

⇤
f assuming B is an ONB.

Sparse recovery: Let M be the measurement matrix. Two
equivalent formulations.

x̃ = argmin
z

kzk1 s.t. fmeas = MBz =) f̃ = Bx̃ (3)

f̃= argmin
g

kB⇤
gk1 s.t. fmeas = Mg . (4)

Signal model: f is sparse w.r.t. a frame D: f = Dx , x is sparse.

Main di↵erence: B (N ⇥ N) is invertible, D (N ⇥ L, L > N) is
not! So: infinitely many ways of choosing transform coe�cients.

Main implication: Can replace B

⇤ in (4) with any right inverse of
D. Each choice will result in a di↵erent optimization problem (40)

x̃ = argmin
z

kzk1 s.t. fmeas = MDz =) f̃ = Dx̃ (SY)

˜̃
f = argmin

g
kDRIgk1 s.t. fmeas = Mg . (AN)

Monday, 3 December, 12



Proposed Algorithm III – weighted `1 analysis

Signal model: f is sparse w.r.t. a basis B : f = Bx , x is sparse.
Then, x = B

�1
f = B

⇤
f assuming B is an ONB.

Sparse recovery: Let M be the measurement matrix. Two
equivalent formulations.

x̃ = argmin
z

k
B⇤gz}|{
z k1 s.t. fmeas = M

gz}|{
Bz =) f̃ = Bx̃ (3)

f̃= argmin
g

kB⇤
gk1 s.t. fmeas = Mg . (4)

Signal model: f is sparse w.r.t. a frame D: f = Dx , x is sparse.

Main di↵erence: B (N ⇥ N) is invertible, D (N ⇥ L, L > N) is
not! So: infinitely many ways of choosing transform coe�cients.

Main implication: Can replace B

⇤ in (4) with any right inverse of
D. Each choice will result in a di↵erent optimization problem (40)

x̃ = argmin
z

kzk1 subject to fmeas = MDz =) f̃ = Dx̃ (SY)

˜̃
f = argmin

g
kDRIgk1 subject to fmeas = Mg . (AN)

Monday, 3 December, 12



Proposed Algorithm III – weighted `1 analysis

Signal model: f is sparse w.r.t. a basis B : f = Bx , x is sparse.
Then, x = B

�1
f = B

⇤
f assuming B is an ONB.

Sparse recovery: Let M be the measurement matrix. Two
equivalent formulations.

x̃ = argmin
z

k
B⇤gz}|{
z k1 s.t. fmeas = M

gz}|{
Bz =) f̃ = Bx̃ (3)

f̃ = argmin
g

kB⇤
gk1 s.t. fmeas = Mg . (4)

Signal model: f is sparse w.r.t. a frame D: f = Dx , x is sparse.

Main di↵erence: B (N ⇥ N) is invertible, D (N ⇥ L, L > N) is
not! So: infinitely many ways of choosing transform coe�cients.

Main implication: Can replace B

⇤ in (4) with any right inverse of
D. Each choice will result in a di↵erent optimization problem (40)

x̃ = argmin
z

kzk1 subject to fmeas = MDz =) f̃ = Dx̃ (SY)

˜̃
f = argmin

g
kDRIgk1 subject to fmeas = Mg . (AN)

Monday, 3 December, 12



Proposed Algorithm III – weighted `1 analysis

Signal model: f is sparse w.r.t. a basis B : f = Bx , x is sparse.
Then, x = B

�1
f = B

⇤
f assuming B is an ONB.

Sparse recovery: Let M be the measurement matrix. Two
equivalent formulations.

x̃ = argmin
z

kzk1 subject to fmeas = MBz =) f̃ = Bx̃ (3)

f̃ = argmin
g

kB⇤
gk1 subject to fmeas = Mg . (4)

Signal model: f is sparse w.r.t. a frame D: f = Dx , x is sparse.

Main di↵erence: B (N ⇥ N) is invertible, D (N ⇥ L, L > N) is
not! So: infinitely many ways of choosing transform coe�cients.

Main implication: Can replace B

⇤ in (4) with any right inverse of
D. Each choice will result in a di↵erent optimization problem (40)

x̃ = argmin
z

kzk1 subject to fmeas = MDz =) f̃ = Dx̃ (SY)

˜̃
f = argmin

g
kDRIgk1 subject to fmeas = Mg . (AN)

Monday, 3 December, 12



Proposed Algorithm III – weighted `1 analysis

Signal model: f is sparse w.r.t. a basis B : f = Bx , x is sparse.
Then, x = B

�1
f = B

⇤
f assuming B is an ONB.

Sparse recovery: Let M be the measurement matrix. Two
equivalent formulations.

x̃ = argmin
z

kzk1 subject to fmeas = MBz =) f̃ = Bx̃ (3)

f̃ = argmin
g

kB⇤
gk1 subject to fmeas = Mg . (4)

Signal model: f is sparse w.r.t. a frame D: f = Dx , x is sparse.

Main di↵erence: B (N ⇥ N) is invertible, D (N ⇥ L, L > N) is
not! So: infinitely many ways of choosing transform coe�cients.

Main implication: Can replace B

⇤ in (4) with any right inverse of
D. Each choice will result in a di↵erent optimization problem (40)

x̃ = argmin
z

kzk1 subject to fmeas = MDz =) f̃ = Dx̃ (SY)

˜̃
f = argmin

g
kDRIgk1 subject to fmeas = Mg . (AN)

Monday, 3 December, 12



Proposed Algorithm III – weighted `1 analysis

Signal model: f is sparse w.r.t. a basis B : f = Bx , x is sparse.
Then, x = B

�1
f = B

⇤
f assuming B is an ONB.

Sparse recovery: Let M be the measurement matrix. Two
equivalent formulations.

x̃ = argmin
z

kzk1 subject to fmeas = MBz =) f̃ = Bx̃ (3)

f̃ = argmin
g

kB⇤
gk1 subject to fmeas = Mg . (4)

Signal model: f is sparse w.r.t. a frame D: f = Dx , x is sparse.

Main di↵erence: B (N ⇥ N) is invertible, D (N ⇥ L, L > N) is
not! So: infinitely many ways of choosing transform coe�cients.

Main implication: Can replace B

⇤ in (4) with any right inverse of
D. Each choice will result in a di↵erent optimization problem (40)

x̃ = argmin
z

kzk1 subject to fmeas = MDz =) f̃ = Dx̃ (SY)

˜̃
f = argmin

g
kDRIgk1 subject to fmeas = Mg . (AN)

Monday, 3 December, 12



Proposed Algorithm III – weighted `1 analysis

Analysis formulation of sparse recovery problem:

f̃ = argmin
g

kDRIgk1 subject to fmeas = Mg .

Di↵erent, in general, from the synthesis problem when D is
redundant!

A special choice: DRI = D

† = D

⇤(DD⇤)�1

Several preliminary theoretical results: Elad et al., Candès et al., Li
et al. Still various fundamental questions open!

In the case of curvelets: D = C

H , and D

† = C (as curvelet frames
are “Parseval frames”, i.e., CH

C = I .

So: the analysis formulation for seismic:

f̃ = argmin
g

kCgk1 subject to fmeas = Mg .

Can we use a “weighted” approach again?
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Proposed Algorithm III – weighted `1 analysis

Analysis formulation of sparse recovery problem:

f̃ = argmin
g

kD†
gk1 subject to fmeas = Mg .

A weighted approach again if we have a “support estimate”?

Suppose 9 sparse x such that f = Dx with estimated support e
T .

1 We can mimick what we did before:

f̃ = argmin
g

kWD

†
gk1 subject to fmeas = Mg .

2 Alternative approach: We write f = D

f
Wz and claim z

should also be sparse. Here f
W is diagonal with ! < 1 and

f
Wii =

(
1 if i 2 e

T

! if i /2 e
T

, recall Wii =

(
! if i 2 e

T

1 if i /2 e
T

,
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Proposed Algorithm III – weighted `1 analysis

With this alternative approach: Given the support estimare e
T , solve

f̃ = argmin
g

k(Df
W )†gk1 subject to kfmeas � Mgk2  ✏.

with

f
Wii =

(
1 if i 2 e

T

! if i /2 e
T

,

Various open theoretical and practical questions:

Performance guarantees...

How to estimate e
T , value of !?

Other (potentially optimal) right inverse of Df
W ?

Iterative reweighted versions?

See the talk by Hargreaves for some answers and application to the
above seismic interpolation problem.
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Proposed Algorithm III – weighted `1 analysis

A snapshot from experimental results:
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Proposed Algorithm IV: sparse randomized
Kaczmarz

Kaczmarz Method (1937): Popular algorithm for solving
overdetermined linear systems:

Ax = b + noise, A : m ⇥ n, with commonly m > n

Row-action method... Fast, simple, requires low memory...

The classical Kaczmarz algorithm: sweep through the rows of A in an
ordered manner: below, i ⌘ j (mod m).
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Row-action method... Fast, simple, requires low memory...

The classical Kaczmarz algorithm: sweep through the rows of A in an
ordered manner: below, i ⌘ j (mod m).

xj = Pai (x) + Pa?i
(xj�1) (5)

=
hai , xi
hai , ai i

a

T
i +

✓
xj�1 � hai , xj�1i

hai , ai i
a

T
i

◆
, (6)
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Row-action method... Fast, simple, requires low memory...

The classical Kaczmarz algorithm: sweep through the rows of A in an
ordered manner: below, i ⌘ j (mod m).

xj = Pai (x) + Pa?i
(xj�1) (5)

=
b(i)

hai , ai i
a

T
i +

✓
xj�1 � hai , xj�1i

hai , ai i
a

T
i

◆
, (6)
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Proposed Algorithm IV: sparse randomized
Kaczmarz

Kaczmarz Method (1937): Popular algorithm for solving
overdetermined linear systems:

Ax = b + noise, A : m ⇥ n, with commonly m > n

Row-action method... Fast, simple, requires low memory...

The randomized Kazcmarz (RK) algorithm (Strohmer-Vershynin,

2010): at each iteration, choose ai randomly with probability kaik2
2

kAk2
F
.

xj = Pai (x) + Pa?i
(xj�1) (5)

=
b(i)

hai , ai i
a

T
i +

✓
xj�1 � hai , xj�1i

hai , ai i
a

T
i

◆
, (6)
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Sparse randomized Kaczmarz (SRK)

The SRK algorithm (Mansour-Yilmaz):

Assume the solution we seek is (approximately) sparse.

At each iteration j , choose ai randomly as above.

Suppose we have a support estimate S . Set weights

wj(p) =

(
1 if p 2 S ,
1p
j

if p /2 S

Update

xj =
hai , xi

hwj � ai , wj � ai i
(wj � ai )

T + P(wj�ai )?(xj�1)

= xj�1 +
b(i) � hwj � ai , xj�1i

kwj � aik22
(wj � ai )

T . (7)
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The SRK algorithm – overdetermined case

Average performance over 20 runs of SRK with A: 1000 ⇥ 200 Gaussian
matrix.
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The SRK algorithm – underdetermined case

Average performance over 20 runs of SRK with A: 100 ⇥ 400 Gaussian
matrix. In other words, the sparse recovery problem!
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The SRK algorithm

Some remarks:

Empirical results are very encouraging for both overdetermined and
underdetermined cases. A mathematical analysis is underway.

Robust to noise. Also, works fine with compressible signals.

Potential applications in full waveform inversion – see Mansour’s
talk.
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Concluding remarks

Compressive sampling theory: number of samples scales only
logarithmically with the grid size!

Theory helps us design e↵ective (optimal) acquisition geometries.

Transforming consequences for seismic (as well as other) signal
acquisition and processing.

Important problem: Incorporate prior information into the recovery
algorithms.

Proposed four ways to do this: each have pros and cons, but they
all improve the recovery obtained by `1 minimization.
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