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Outline — the question

@ This talk is about the sparse recovery problem: Find (a sparse) the
sparsest (approximate) solution of an underdetermined system of
linear equations.

@ Two similar, yet distinct, settings: sparse approximation problem
and compressed sensing. Our focus will be on compressed sensing
as that is more relevant for our problems in this project.

@ In compressed sensing (an overview will follow), the goal is to
recover signals from seemingly incomplete measurements (or
sub-Nyquist rate samples).

@ Model: Signals are sparse in some transform domain. This is all!

@ Our focus in this talk: /f we have additional prior information, can
we improve the recovery performance without changing the
sampling procedure?
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Outline — relevance and some answers

We will present various algorithms that improve recovery if we have some
prior information about the locations of non-zero coefficients, i.e., the
support, of the original signal. This is often the case in practice:

@ Video signals (correlations among consecutive frames)
@ Seismic data (correlations, e.g., among adjacent offset gathers)
@ Reweighting?
In this talk:
@ Weighted ¢; (Friedlander-Mansour-Saab-OY)
@ Weighted ¢,, 0 < p < 1 (Ghadermarzy-Mansour-OY)

@ Weighted ¢1—analysis (Hargreaves-QY)

@ Weighted Kaczmarz and a row-action based reweighted sparse
recovery algorithm (Mansour-QY)
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Compressed sensing (CS): an overview

@ During the last 8 years: a revolution in sampling theory.

@ Main conclusion: sparse signals can be recovered from few,
“seemingly incomplete” measurements in a tractable way.

@ Initiated by the works of Donoho, and of Candés and Tao (~ 2004).

@ Opened up a new field called compressed sensing : Very active
area. To follow:
Compressive sensing resources at http://dsp.rice.edu/cs
Nuit-Blanche Blog at http://nuit-blanche.blogspot.com

@ Relies heavily on sparse approximations that has been around for
more than two decades (transforms like wavelets, curvelets, Gabor).

@ Interesting and difficult mathematics and important applications
such as seismic signal processing, imaging, and inversion.
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Classical sampling vs. compressed sensing

We now illustrate
(a la Shannon-Nyqg

now compressed sensing differs from classical sampling
uist). First, classical sampling:

Let f € Bg: band

imited with bandlimit . Then TNyquist = 1/2€2.

A bandlimited f ~ourier transform of f

B L
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Classical sampling vs. compressed sensing

We now illustrate how compressed sensing differs from classical sampling
(a la Shannon-Nyquist). First, classical sampling:

Let f € Bq: bandlimited with bandlimit 2. Then TNyquist = 1/2€2.

A bandlimited f ~ourier transform of f

e [

T e 0 T | 0 | 20

Need N =~ 2Q x 2T samples to reconstruct f on [T, T].

Equivalently: Every bandlimited function f € B, on [—T, T] can be
represented by a vector f € RV obtained by collecting N measurements.
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Classical sampling vs. compressed sensing

What makes the classical sampling approach work?

Q f € Bo +— "model the signal class”.

@ We measure f by obtaining its samples on a regular grid «—
“specify the measurement scheme’ .

© Use Shannon-Nyquist sampling formula to reconstruct «+— “find a
reconstruction method" .

Note that:

@ Ambient dimension of the corresponding representation is N ~ QT
@ We get perfect reconstruction if we collect these N samples.

@ Different N-dimensional vectors correspond to samples of different
bandlimited functions — so no hope for dimension reduction—i.e.,
we need N independent measurements— under this signal model.
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Classical sampling vs. compressed sensing

Above: Reduced a bandlimited function f to a vector f in RV.

Question: Can we reduce the dimensionality of the problem by
restricting the signal class further? Say f is sparse in Fourier.

Another bandlimited f Fourier transform of f

A

Do we still need N ~ 4QT samples to reconstruct f € RN?
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Compressed sensing — general framework

@ Signal f € RN want to collect information on f.

@ Model the signal class: f is sparse w.r.t. a known basis B:

f = B*x where x is sparse.

@ Specify a measurement scheme: Construct an m x N
measurement matrix M with m < N

frncas = Mf = MB*x

Note: fieas IS m dimensional with m < N!

@ Reconstruction method: Solve the underdetermined sparse
recovery problem:

Xapprox = sparsest” z such that fye.s = MB*z.
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Compressed sensing: back to our example

CS signal model: f € B and f has a sparse Fourier transform:
f = F*f has few non-zero entries (B = F, the DFT matrix).

CS measurement scheme: Collect m =~ N /2 samples at irregular
points, i.e., average sampling density is only 50% of Nyquist rate.

/N\

fmeas = Rf = RF*f (M = R, m random rows of identity).

j\m A
ARy

T 0 T

CS Reconstruction: We can recover f (thus f) from these samples via:

ﬁpprox = arg min ||z||o subject to RF*z = feas-
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Compressed sensing theory — imposing sparsity

Here is the reconstruction obtained from the above samples (approx.

50% of Nyquist rate)
bl v

HJ\M”\

@ We get essentially perfect reconstruction!

@ How did we solve the combinatorial optimization problem:
min ||z||o subject to RF*z = ficas?

We will come back to this later.
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Compressed sensing theory — imposing sparsity

Sparse recovery problem:
Xapprox = sparsest” z such that fe.s = MB*z.

Main questions:

@ How do we find the sparsifying basis B?
@ How do we construct the measurement matrix M?
© How many measurements do we need to have Xypprox = X7

© How do we solve the sparse recovery problem?
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Compressed sensing theory — imposing sparsity

Sparse recovery problem:
Xapprox = sparsest” z such that fyes = MB*z.

Main questions:

@ How do we find the sparsifying basis B?

2
8
Q
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Compressed sensing theory - sparsity transforms

How do we find sparsity transforms?
@ Note that this is dependent heavily on the class of signals of interest.
@ In the above example, the sparsity transform was Fourier transform.

@ Applied and computational harmonic analysis community has been
developing such transforms during the last three decades that are
tailored to important signal classes such as: audio, natural images,
seismic data and images.

@ Rich area with interesting mathematics, directly applicable
constructive results such as wavelet transform, curvelet transform...

@ In the seismic setting, curvelet transform is the transform of our
choice.
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Sparsity transform - seismic

Curvelet transform sparsifies seismic data and images.

sampled Green’s function a curvelet atom

10;

sorted coefficients

x1O4
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Compressed sensing theory: main questions

Sparse recovery problem:
Xapprox = sparsest” z such that fye.s = MB*Z.

Main questions:

o

© How do we construct the measurement matrix M?
© How many measurements do we need to have Xypprox = X7

© How do we solve the sparse recovery problem?
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Reconstruction: sparse recovery problem

Want to reconstruct f from the measurements

b= Mf = MB" x (1)
N——
A
OR b= Ax+e (here e is additive noise). (2)

Let A : R™ — RN be a reconstruction map (or “decoder”).

Some design goals:

Cl. A(Ax) = x whenever x is k-sparse (exact reconstruction for
sufficiently small k).

C2. |[x — A(Ax + e)|| < |le|| + ||x — x«||. Reconstruction works for
noisy measurements and approx. sparse signals.

C3. A(:) can be computed efficiently (in some sense).

C4. Number of measurements m is as small as possible (depending on
k,N, and the choise of the measurement matrix M).
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CS — many surprises since 2004!

We can achieve all the goals above (main results by Donoho, and Candes,
Romberg, Tao) — just use a recovery algorithm based on ¢; minimization:

A1(b) := argmin||z||1 subject to Az = b no noise case

i([A)) = argmin ||z||; subject to ||Az — bl||, < € noisy case

Monday, 3 December, 12



CS — many surprises since 2004!

We can achieve all the goals above (main results by Donoho, and Candes,
Romberg, Tao) — just use a recovery algorithm based on ¢; minimization:

A1(b) := argmin||z||1 subject to Az = b no noise case
AS(b) := arg min ||z|l1 subject to [|Az — bl|» < ¢ noisy case
In particular:

o If Ac R™N js a sufficiently “incoherent matrix” and k is
sufficiently small

A1(b) = x, i.e., exact recovery, for every k-sparse x.
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CS — many surprises since 2004!

We can achieve all the goals above (main results by Donoho, and Candes,
Romberg, Tao) — just use a recovery algorithm based on ¢; minimization:

A1(b) := argmin||z||1 subject to Az = b no noise case
AS(b) := arg min ||z|l1 subject to [|Az — bl|» < ¢ noisy case
In particular:

o If Ac R™N js a sufficiently “incoherent matrix” and k is
sufficiently small

A1(b) = x, i.e., exact recovery, for every k-sparse x.

@ For such A, A; provides a good approximation for arbitrary x € RV

x — A1(B)|| < ok(x)e, /Vk, i.e., good recovery for compressible x.

Monday, 3 December, 12



CS — many surprises since 2004!

We can achieve all the goals above (main results by Donoho, and Candes,
Romberg, Tao) — just use a recovery algorithm based on ¢; minimization:

A1(b) := argmin||z||1 subject to Az = b no noise case
i([A)) = argmin ||z||; subject to ||Az — bl||, < € noisy case
In particular:

o If Ac R™N js a sufficiently “incoherent matrix” and k is
sufficiently small

A1(b) = x, i.e., exact recovery, for every k-sparse x.

@ For such A, A; provides a good approximation for arbitrary x € RV

x — A1(B)|| < ok(x)e, /Vk, i.e., good recovery for compressible x.

@ For such A, the recovery results above stay within noise level if the
measurements are contaminated by noise.
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CS — many surprises since 2004!

We can achieve all the goals above (main results by Donoho, and Candes,
Romberg, Tao) — just use a recovery algorithm based on ¢; minimization:

A1(b) := argmin||z||1 subject to Az = b no noise case
i([A)) = argmin ||z||; subject to ||Az — bl||, < € noisy case
In particular:

o If Ac R™N js a sufficiently “incoherent matrix” and k is
sufficiently small

A1(b) = x, i.e., exact recovery, for every k-sparse x.

@ For such A, A; provides a good approximation for arbitrary x € RV

x — A1(B)|| < ok(x)e, /Vk, i.e., good recovery for compressible x.

@ For such A, the recovery results above stay within noise level if the
measurements are contaminated by noise.

There are other algorithms for CS recovery—e.g., A, with 0 < p < 1,
OMP, CoSamp, ...
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How to choose the measurement matrix

@ There are precise conditions on A (in terms of its RIP constants)
that guarantee that the above results hold.

@ For example, if Ais a random matrix with iid Gaussian entries, then
m 2 klog(N/k)
will suffice.

# measurements ~ log of the ambient dimension (grid size)

@ This is theoretically optimal (deep results in geometric functional
analysis).

@ Other classes (Bernoulli, partial Fourier, ...) of random matrices will
do, too!
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Choosing the measurement matrix — more remarks

@ Gaussian and sub-Gaussian matrices are unitarily invariant, so the
dimension relation is independent of the sparsity basis. These are
universal measurement matrices:

M is Gaussian and B is unitary — A = MB™ is Gaussian.

@ ldeal for dimension reduction in simulations. Also, acquisition with
simultaneous sources.
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Choosing the measurement matrix — more remarks

@ Gaussian and sub-Gaussian matrices are unitarily invariant, so the
dimension relation is independent of the sparsity basis. These are

universal measurement matrices:

M is Gaussian and B is unitary — A = MB™ is Gaussian.

@ ldeal for dimension reduction in simulations. Also, acquisition with
simultaneous sources.

@ Difficult to implement depending on the physics—e.g., in the
sampling example. In such cases:

e sample in a domain that is incoherent with the sparsity
domain: e.g.,

sparse in Fourier =—> sample in time

o Randomly sub-sample (possibly on a jittered grid), i.e.,
“apply” a restriction matrix R.

The corresponding A= RF* Is a "good” compressive sampling
matrix. (See Enrico Au-Yeung’s talk.)
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CS - incorporating prior info

CS is a non-adaptive sampling paradigm: Measurement matrix is fixed
once and for all, regardless of the signal to be acquired.
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CS - incorporating prior info

CS is a non-adaptive sampling paradigm: Measurement matrix is fixed
once and for all, regardless of the signal to be acquired.

Remainder of the talk: Methods of incorporating prior information on
the support of the specific signal of interest to sparse recovery. In all:

® Sensing is non-adaptive: Collect the measurements b (or b if there
is noise) using an arbitrary CS matrix.

@ Recovery Is adaptive:

e Suppose we have prior information on the support of x. In
particular we have a support estimate that is generally partial
and possibly inaccurate.

e Use such prior support info to improve sparse recovery.

@ Why is this relevant?
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Signals with Prior Information

In many applications, it is possible to draw an estimate of the support of
the signal, for example:

@ Natural images have large DCT coefficients that are localized in the
low frequency subbands.

@ Video sequences are temporally correlated, resulting in a shared
subset of their support.
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Signals with Prior Information

In many applications, it is possible to draw an estimate of the support of
the signal, for example:

@ Natural images have large DCT coefficients that are localized in the
low frequency subbands.

@ Video sequences are temporally correlated, resulting in a shared
subset of their support.

@ Seismic data: adjacent frequency slices or offset gathers have
correlated curvelet support.
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Signals with Prior Information

In many applications, it is possible to draw an estimate of the support of
the signal, for example:

@ Natural images have large DCT coefficients that are localized in the
low frequency subbands.

@ Video sequences are temporally correlated, resulting in a shared
subset of their support.

@ Seismic data: adjacent frequency slices or offset gathers have
correlated curvelet support.
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Signals with Prior Information

In many applications, it is possible to draw an estimate of the support of
the signal, for example:

@ Natural images have large DCT coefficients that are localized in the
low frequency subbands.

@ Video sequences are temporally correlated, resulting in a shared
subset of their support.

@ Seismic data: adjacent frequency slices or offset gathers have
correlated curvelet support.
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Signals with Prior Information

In many applications, it is possible to draw an estimate of the support of
the signal, for example:

@ Natural images have large DCT coefficients that are localized in the
low frequency subbands.

@ Video sequences are temporally correlated, resulting in a shared
subset of their support.

@ Seismic data: adjacent frequency slices or offset gathers have
correlated curvelet support.
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CS - incorporating prior info

Various methods we will discuss:

© Recovery using weighted ¢1 minimization. (Mansour)

@ Choose appropriate weights “on-support” and “off-support”.

@ Recovery using weighted ¢, minimization, 0 < p < 1 (Ghadermarzy)

e Similar to above, but now based on non-convex optimization.

© Recovery using weighted {1 minimization of analysis coefficients
(Hargreaves)

e Analysis formulation when sparsity transform is redundant
(e.g., curvelets) with a novel weighting scheme.

Q Weighted randomized Kaczmarz for sparse solutions of
overdetermined linear systems (Mansour)

e A row-action method for solving overdetermined systems with
sparse solutions.
o Surprisingly effective for CS (underdetermined systems) as well.
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Problem formulation — synthesis

The following applies to weighted /; and weighted /..
Suppose that x is a k-sparse signal with unknown support Ty.
Given:

@ CS measurements of x (i.e., b = Ax, or b = Ax + e with ||e||» < €).

@ A partially accurate support estimate T. Let's quantify—two
Important parameters:

p = ;;f;) relative size of the estimated support
o= #;‘);T accuracy of the estimate

In general, we have 0 < p < % and 0 < a < min{l, %}
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Problem formulation — synthesis

The following applies to weighted /; and weighted /..
Suppose that x is a k-sparse signal with unknown support Ty.
Given:

@ CS measurements of x (i.e., b = Ax, or b = Ax + e with ||e||» < €).

@ A partially accurate support estimate T. Let's quantify—two
Important parameters:

p = ;;f;) relative size of the estimated support
o= #;";T accuracy of the estimate

N - 1
In general, we have 0 < p < 7 and 0 < o < min{l, ;}.
Goals:
@ Incorporate T into the recovery algorithm (to get better recovery),

@ Obtain theoretical recovery guarantees depending on the size and
accuracy of T (i.e., p and «).
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Proposed Algorithm | — weighted /; minimization

Given a set of (noisy) measurements b, define

AS . (b) := argmin ||x||1,w subject to ||Ax — b2 < e

where

f ~
1, 1eT°¢
wi=<  ~  forsome0<w<1.
w, €T,

\

Above ||x||1.w = 3. wjlxi|, and |[e]2 < e.

T, To

T”nTO TnT0

T N

1 O<w<1l 1
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Improved sufficient conditions for weighted /;

We prove the following theorem in the case of weighted /;:

Theorem [FMSY]
Suppose for some a > max{1, (1 — a)p}, dak + ayd(ar1)k < ay — 1. Then

| AT (b) = x|l2 < Cge + Gk~ Y2 (wl|xT 1)

) -

—2
where v = (w+(1—w)\/1+p—2ap) .

Remarks.

@ Above, 0 <w <1 is a fixed weight. If we set w = 1, our theorem
reduces to the robust recovery theorem of CRT.

@ Recall 0 < o <1 describes the accuracy of T and p describes its
size.

© The sufficient conditions above are weaker than those for /4
minimization iff o > 0.5. (Same holds for the constants.)

©Q Earlier work on the case w = 0: e.g., Borries, Vaswani and Lu;
Jacques. Our results, to our knowledge, provide weakest sufficient
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Numerical experiments — sparse signals

@ SNR averaged over 20 experiments for k-sparse signals x with
k = 40, and N = 500.
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Numerical experiments — sparse signals

@ SNR averaged over 20 experiments for k-sparse signals x with
k = 40, and N = 500.

@ The noise free case:
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Numerical experiments — sparse signals

@ SNR averaged over 20 experiments for k-sparse signals x with
k = 40, and N = 500.

@ The noise free case:
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Numerical experiments — sparse signals

@ SNR averaged over 20 experiments for k-sparse signals x with
k = 40, and N = 500.

@ The noisy measurement vector case:

o =0.7 o =0.3
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Numerical experiments — sparse signals

@ SNR averaged over 20 experiments for k-sparse signals x with
k = 40, and N = 500.

@ The noisy measurement vector case:
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Compressed sensing of seismic lines

@ Full seismic line (Gulf of Suez) with 178 shots, 178 receivers, and
500 time samples.

Monday, 3 December, 12



Compressed sensing of seismic lines

@ Full seismic line (Gulf of Suez) with 178 shots, 178 receivers, and
500 time samples.

@ Due to budgetary requirements or device malfunctioning, some
receivers are inactive (e.g.: time slice 350).
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Compressed sensing of seismic lines

@ Full seismic line (Gulf of Suez) with 178 shots, 178 receivers, and
500 time samples.

@ Due to budgetary requirements or device malfunctioning, some
receivers are inactive (e.g.: time slice 350).
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Compressed sensing of seismic lines

@ Full seismic line (Gulf of Suez) with 178 shots, 178 receivers, and

500 time samples.

@ Due to budgetary requirements or device malfunctioning, some

receivers are inactive (e.g.: time slice 350).

@ Results in missing data along entire time axis (eg: common shot

gather # 84)
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Recovery in offset domain

@ Seismic line data is correlated in the midpoint-offset domain.

@ Map the subsampling mask to act on offset slices (e.g., see zero
offset slice below).
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Recovery in offset domain

@ Seismic line data is correlated in the midpoint-offset domain.

@ Map the subsampling mask to act on offset slices (e.g., see zero
offset slice below).

@ Recover the zero offset using standard ¢; minimization (same
quality for wL1 and L1).
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Recovery in offset domain

@ Seismic line data is correlated in the midpoint-offset domain.

@ Map the subsampling mask to act on offset slices (e.g., see zero
offset slice below).

@ Recover the zero offset using standard ¢; minimization (same

quality for wL1 and L1).

@ Use the support of the zero offset slice to weight the recovery of
other offset slices (eg: +5 offset).
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Recovery in offset domain

@ Seismic line data is correlated in the midpoint-offset domain.

@ Map the subsampling mask to act on offset slices (e.g., see zero
offset slice below).

@ Recover the zero offset using standard ¢; minimization (same
quality for wL1 and L1).

@ Use the support of the zero offset slice to weight the recovery of
other offset slices (eg: +5 offset).

L 1 +5-offset error image Weighted L1 +5-offset error image
058 - 0.5F
) )
(0] (0]
L L
() 1 I ) 1
£ =
- : =
1.5¢ | . 1.5¢
2 : : : : 2 : : : :
500 1000 1500 2000 500 1000 1500 2000
Distance (m) Distance (m)

Monday, 3 December, 12



Performance of weighted ¢; vs standard ¢;

@ Map the data back to the source receiver domain (eg: shot gather

4 84).

L1 minimization in source—receiver Weighted L1 minimization in SR
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Performance of weighted ¢; vs standard ¢;

@ Map the data back to the source receiver domain (eg: shot gather

4 84).

L1 error image in source-receiver Weighted L1 error image in source-receiver
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Performance of weighted ¢; vs standard ¢;

@ Map the data back to the source receiver domain (eg: shot gather
# 84).

@ Signal to noise ratio (SNR) of all 128 shot gathers.
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Proposed Algorithm |l — weighted ¢, minimization

Given a set of (noisy) measurements b, define

A L (b) = arg min |5, subject to [[Ax — bll, < e

where

/ ~
1. 1eT°¢
W, =< -~ forsome 0 <w<1.

W, e T,

Above ||x||pw = > wilx|P, and ||e]|5 < e.
Remarks:
© This is a non-convex optimization problem because 0 < p < 1.

@ We know that £, minimization can outperform ¢; minimization
significantly, e.g., Saab-Yilmaz 2010. This motivates us to consider
a weighted version.

© We can prove better sufficient conditions for recovery compared to
weighted /1. See Ghadermarzy's talk for details.
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Weighted ¢, — numerical experiments

@ SNR averaged over 10 experiments for k-sparse signals x with
k =40, N =500, and p = 0.5.
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Weighted ¢, — numerical experiments

@ SNR averaged over 10 experiments for k-sparse signals x with
k =40, N =500, and p = 0.5.

@ The noise free case:

a=0.3 a=0.7

250 T T T T T 250

200 200}

150 - 150k
o o
z &
: —+— weighted L_p,\w =0
100 —+— weighted L_p, \w =0 100 —o— weighted L p, \w = 0.3
—6— weighted L_p, \w=0.3 —+— weighted L_p, \w= 0.5
—+— weighted L_p, \w=0.5 —&— weighted L_p, \w = 0.7
—H— weighted L_p, \w=0.7 —— weighted L_p, \w= 1
50 —— weighted L_p, w=1 S0r weighted L_1, \w= 0
we!ghted L_1,\w=0 —— weighted L_1,\w=0.5
—— weighted L_1,\w=0.5 weighted L_1, \w= 1

weighted L_1, \w=1

80 1 60 120 140 160 180 200 80 100 120 140 160 180 200
number of measurments n number of measurments n
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Proposed Algorithm lll — weighted /; analysis

@ Signal model: f is sparse w.r.t. a basis B: f = Bx, x is sparse.
Then, x = B~'f = B*f assuming B is an ONB.

@ Sparse recovery: Let M be the measurement matrix. Two
equivalent formulations.

X =argmin||z||1 s.t. fneas = MBz — f — Bx (3)

(4)
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Proposed Algorithm lll — weighted /; analysis

@ Signal model: f is sparse w.r.t. a basis B: f = Bx, x is sparse.
Then, x = B~'f = B*f assuming B is an ONB.

@ Sparse recovery: Let M be the measurement matrix. Two

equivalent formulations.
N & = .
X = arg m|n H |1 st. freas=M Bz — f=Bx (3)

(4)
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Proposed Algorithm lll — weighted /; analysis

@ Signal model: f is sparse w.r.t. a basis B: f = Bx, x is sparse.
Then, x = B~'f = B*f assuming B is an ONB.

@ Sparse recovery: Let M be the measurement matrix. Two

equivalent formulations.
B*g g

A8 A~ .
Xx=argmin||” z || st. freas=M Bz — f=Bx (3)
f— argmin ||B*gl|1 s.t. fneas = Mg. (4)
g
o
o
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Proposed Algorithm lll — weighted /; analysis

@ Signal model: f is sparse w.r.t. a frame D: f = Dx, x is sparse.
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Proposed Algorithm lll — weighted /; analysis

@ Signal model: f is sparse w.r.t. a frame D: f = Dx, x is sparse.

@ Main difference: B (N x N) is invertible, D (N x L, L > N) is
not! So: infinitely many ways of choosing transform coefficients.
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Proposed Algorithm lll — weighted /; analysis

@ Signal model: f is sparse w.r.t. a frame D: f = Dx, x is sparse.

@ Main difference: B (N x N) is invertible, D (N x L, L > N) is
not! So: infinitely many ways of choosing transform coefficients.

@ Main implication: Can replace B* in (4) with any right inverse of
D. Each choice will result in a different optimization problem (4')

e
|

argmin ||z||1 subject to frness = MDz = f = DX (SY)

7

arg min ||Drigl|1 subject to fieas = Mg. (AN)
g
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Proposed Algorithm lll — weighted /; analysis
Analysis formulation of sparse recovery problem:
f = argmin || Drigl|1 subject to fineas = Mg.
g

@ Different, in general, from the synthesis problem when D is
redundant!
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Proposed Algorithm lll — weighted /; analysis

Analysis formulation of sparse recovery problem:
f— arg min ||Drigll1 subject to fieas = Mg.
g

@ Different, in general, from the synthesis problem when D is
redundant!

@ A special choice: Dg; = DT = D*(DD*)~1
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Proposed Algorithm lll — weighted /; analysis

Analysis formulation of sparse recovery problem:
f— arg min ||Drigll1 subject to fieas = Mg.
g

@ Different, in general, from the synthesis problem when D is
redundant!

@ A special choice: Dg; = DT = D*(DD*)~1

@ Several preliminary theoretical results: Elad et al., Candes et al.,

et al. Still various fundamental questions open!

Li
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Proposed Algorithm lll — weighted /; analysis

Analysis formulation of sparse recovery problem:
f— arg min ||Drigll1 subject to fieas = Mg.
g

@ Different, in general, from the synthesis problem when D is
redundant!

@ A special choice: Dg; = DT = D*(DD*)~1

@ Several preliminary theoretical results: Elad et al., Candeés et al., Li
et al. Still various fundamental questions open!

@ In the case of curvelets: D = C" and DT = C (as curvelet frames
are “Parseval frames”, i.e., CHC = |.

@ So: the analysis formulation for seismic:

f = arg min | Cg||l1 subject to fieas = Mg.
g
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Proposed Algorithm lll — weighted /; analysis

Analysis formulation of sparse recovery problem:
f— arg min ||Drigll1 subject to fieas = Mg.
g

@ Different, in general, from the synthesis problem when D is
redundant!

@ A special choice: Dg; = DT = D*(DD*)~1

@ Several preliminary theoretical results: Elad et al., Candeés et al., Li
et al. Still various fundamental questions open!

@ In the case of curvelets: D = C" and DT = C (as curvelet frames
are “Parseval frames”, i.e., CHC = |.

@ So: the analysis formulation for seismic:

f = arg min | Cg||l1 subject to fieas = Mg.
g

@ Can we use a “weighted” approach again?
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Proposed Algorithm lll — weighted /; analysis

Analysis formulation of sparse recovery problem:

']E

arg min HDTng subject to feas = Mg.
g

@ A weighted approach again if we have a “support estimate” ?

@ Suppose d sparse x such that f = Dx with estimated support T.

O We can mimick what we did before:

']E

arg min || WDTgH1 subject to fmeas = Mg.
g
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Proposed Algorithm lll — weighted /; analysis

Analysis formulation of sparse recovery problem:

']E

arg min HDTng subject to feas = Mg.
g

@ A weighted approach again if we have a “support estimate” ?

@ Suppose d sparse x such that f = Dx with estimated support T.

O We can mimick what we did before:

']E

arg min || WDTgH1 subject to fmeas = Mg.
g

O Alternative approach: We write f = DWz and claim z
should also be sparse. Here W is diagonal with w < 1 and

(1 fieT
w ifigé?:’

\
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Proposed Algorithm lll — weighted /; analysis

Analysis formulation of sparse recovery problem:

']E

arg min HDTng subject to feas = Mg.
g

@ A weighted approach again if we have a “support estimate” ?

@ Suppose d sparse x such that f = Dx with estimated support T.

O We can mimick what we did before:

']E

arg min || WDTgH1 subject to fmeas = Mg.
g

O Alternative approach: We write f = DWz and claim z
should also be sparse. Here W is diagonal with w < 1 and

— (1 ifieT w ifieT
Wi=4" 002 recall wy=4Y T
w ifi¢gT 1 ifigeT

\ \
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Proposed Algorithm lll — weighted /; analysis

With this alternative approach: Given the support estimare T, solve

with
)

Wi': : ?fl:ez-a
w ifigT

\

Various open theoretical and practical questions:
@ Performance guarantees...
@ How to estimate 7' value of w?
@ Other (potentially optimal) right inverse of DW?
@ lterative reweighted versions?

@ See the talk by Hargreaves for some answers and application to the
above seismic interpolation problem.
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Proposed Algorithm lll — weighted /; analysis

A snapshot from experimental results:

18

16—

14

12—

— Synthesis
—— Analysis
— Fixed weights analysis
— Dual weighting analysis
—— Synthesis weighting

5 10 15 20 25 30 35 40 45 50
Shot-reciever gather
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Proposed Algorithm IV: sparse randomized
Kaczmarz

Kaczmarz Method (1937): Popular algorithm for solving
overdetermined linear systems:

Ax = b+ noise, A: m X n, with commonly m > n

Row-action method... Fast, simple, requires low memory...

@ The classical Kaczmarz algorithm: sweep through the rows of A in an
ordered manner: below, i = (mod m).
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Proposed Algorithm IV: sparse randomized
Kaczmarz

Kaczmarz Method (1937): Popular algorithm for solving
overdetermined linear systems:

Ax = b+ noise, A: m X n, with commonly m > n

Row-action method... Fast, simple, requires low memory...

@ The classical Kaczmarz algorithm: sweep through the rows of A in an
ordered manner: below, i = (mod m).
X = Po(X) + Pyt (x5-1) (5)

a-
1

_ {3 x) al + <xj_1 - <a"’Xjfl>a,-T> , (6)

(aj, aj)
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Proposed Algorithm IV: sparse randomized
Kaczmarz

Kaczmarz Method (1937): Popular algorithm for solving
overdetermined linear systems:

Ax = b+ noise, A: m X n, with commonly m > n

Row-action method... Fast, simple, requires low memory...

@ The classical Kaczmarz algorithm: sweep through the rows of A in an
ordered manner: below, i = (mod m).
X = Po(X) + Pyt (x5-1) (5)

a-
1

_ b(i)>a,7 1 <xj_1 - <a"’Xjfl>a,-T> , (6)

<ai7 dj
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Proposed Algorithm IV: sparse randomized
Kaczmarz

Kaczmarz Method (1937): Popular algorithm for solving
overdetermined linear systems:

Ax = b+ noise, A: m X n, with commonly m > n

Row-action method... Fast, simple, requires low memory...

@ The randomized Kazcmarz (RK) algorithm (Strohmer-Vershynin,

2
il

2010): at each iteration, choose a; randomly with probability TATZ
F

xj = Poy(x) + Py (1) (5)
__b(i) o7 . <3i»Xj—1>a_T
o > ] T ( J—1 ] ) ? (6)

(aj, aj (aj, aj)
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Sparse randomized Kaczmarz (SRK)

The SRK algorithm (Mansour-Yilmaz):
@ Assume the solution we seek is (approximately) sparse.
@ At each iteration J, choose a; randomly as above.

@ Suppose we have a support estimate S. Set weights

(

(p) = < 1 ifpes,
WilP) = 1
\7; If P g 5
@ Update
<ai7X>
x; = (wj © a1)" + Playoa)s (%-1)

<Wj @ aj, W ® a,->
b(i) — (w; © aj, xj—1)
lw; © aill3

(Wj © a,-)T.
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The SRK algorithm — overdetermined case

Average performance over 20 runs of SRK with A: 1000 x 200 Gaussian

matrix.
Sparsity level k/n =0.2
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The SRK algorithm — underdetermined case

Average performance over 20 runs of SRK with A: 100 x 400 Gaussian
matrix. In other words, the sparse recovery problem!

Sparsity level k/m =0.25

Sparsity level k/m =0.1

10 g
------ RK, b = Ax :

4 —e— SPGL1 (#iterations / m)|;
10 ¢ ——SRK, b = Ax 3

5668668

U086
D08
UOUSER

. 10 -
S S
by by
2107 2
© ©
()] ()]
o _4 o
107}
10°°} | —e—SPGL1 (#iterations / m)
107°}
10°° ‘ ‘ ‘ ‘ 107° ‘ ‘ ‘ ‘ ‘
0 1000 2000 3000 4000 5000 0 2000 4000 6000 8000 10000 12000
lteration # lteration #

Monday, 3 December, 12



The SRK algorithm

Some remarks:

@ Empirical results are very encouraging for both overdetermined and
underdetermined cases. A mathematical analysis is underway.

@ Robust to noise. Also, works fine with compressible signals.

@ Potential applications in full waveform inversion — see Mansour's
talk.
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Concluding remarks

@ Compressive sampling theory: number of samples scales only
logarithmically with the grid size!

@ Theory helps us design effective (optimal) acquisition geometries.

@ Transforming consequences for seismic (as well as other) signal
acquisition and processing.

@ Important problem: Incorporate prior information into the recovery
algorithms.

@ Proposed four ways to do this: each have pros and cons, but they
all improve the recovery obtained by /; minimization.
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