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Outline

• sparsity promoting Gauss-Newton FWI to generate 
initial model

• sparsity-promoting imaging for migration

Making sparsity-promoting imaging 
computationally feasible...
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SLIM

Full-waveform 
inversion

Full waveform inversion

minimize
m,↵

1

2
kD� ↵F [m]k2F

D : observed data

F : forward modelling kernel

↵ : source wavelet

m : model parameters
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SLIM

Gauss-Newton
Gauss-Newton subproblem:

• least-squares inversion problem

• no explicit Jacobian required 

b A x

minimize
�m

1

2
kD� ↵F(m)| {z }�↵rF(m)| {z } �mk2F

Jacobian 
operator

(born 
modeling 
operator)

velocity
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SLIM

Gauss-Newton
Gauss-Newton subproblem:

b A x

minimize
�m

1

2
kD� ↵F(m)| {z }�↵rF(m)| {z } �mk2F

Jacobian 
operator

(born 
modeling 
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SLIM

Sparsity-promoting 
GN

Gauss-Newton subproblem:

• suppress incoherent noise/artifacts by one-norm 
constraint in a transform domain

• randomized subsets of shots to reduce computational 
costs

�m = C

T �x

minimize
�m

1

2
kD� ↵F(m)� ↵rF(m)CT �xk2F s.t k�xk1 < ⌧

Jacobian 
operator

(born modeling 
operator)

Sparsifying 
transform
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SLIM

Curvelet regularization
Gradient (RTM) of one shot for all frequencies
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SLIM

Curvelet regularization
Gradient of all shots for subsampled frequencies

• used as a gradient 

      for FWI (expensive)

• subsampling frequencies

      causes periodic artifacts
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SLIM

Curvelet regularization
gradient of subsampled shots and frequencies

• subsampling sources

     will introduce even

     more artifacts 
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SLIM

Curvelet regularization
one solution to suppress artifacts is by smoothing 

• loss high frequency 

      information
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SLIM

Curvelet regularization
Sparsity regularization in Curvelet domain
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SLIM

Curvelet regularization
Sparsity regularization in Curvelet domain

• efficiently suppresses

      artifacts

• maximally preserves geo-

     logical structures
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SLIM

Sparsity-promoting 
GN

Gauss-Newton subproblem:

• suppress incoherent noise/artifacts by one-norm 
constraint in a transform domain

• randomized subsets of shots to reduce computational 
costs

�m = C

T �x

minimize
�m

1

2
kD� ↵F(m)� ↵rF(m)CT �xk2F s.t k�xk1 < ⌧

Jacobian 
operator

(born modeling 
operator)

Sparsifying 
transform
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SLIM

Source estimation
Source estimation at the kth iteration:

‣ source estimation handles amplitude problems

‣ cheap to evaluate

[Pratt, ’98]

↵k = argmin
↵

kDk � ↵F(mk)k2F
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Sparsity-promoting 
GN FWI

Algorithm 1: Sparsity-promoting Gauss-Newton FWI

Result: Output estimate for the model m
m  � m0; k  � 0 ; // initial model

while not converged do

�k  � argmin� kDk � �F(mk)k2F ; // source estimation

⇥Dk  � Dk � �kF(mk) ; // wavefield residual

⇥xk  � argmin⇥x
1
2k⇥Dk � �rF(mk)C

T ⇥xk22 s.t. k⇥xk1  ⇤k
m

k+1  �m

k +C

T ⇥x ; // update model

k  � k + 1;
end
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SLIM

Examples
Acquisition geometry:

• 350 shots with interval 20 m

• 701 receivers with interval 10 m

Observed data is generated by

• time domain finite difference modeling method with 
PML boundary

• 12 Hz Ricker wavelet
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Examples
Inversion parameters:

• 10 frequency bands for 3-12 Hz. 

• each band contain 4 frequencies

• inversion using frequency modeling kernel (Helmholtz)

• grid size is determined by minimal wavelength

• solve 5-10 GN subproblems for each frequency band

• < 10 iterations for each GN subproblem
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True model
BG compass
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Initial model
Initial model
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One shot record
Time-domain finite-differences (PML boundary)
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SLIM

Normal Gauss-
Newton

Each GN subproblem uses 20 randomly selected sequential 
shots

1x node,  4 x cpus,  an hour 

Each GN subproblem using 5 lsqr iterations
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True model
BG compass

Tuesday, 4 December, 12



SLIM

Sparsity promoting 
Gauss-Newton

Each GN subproblem using 20 randomly selected shots

Uses <10 spectral-projected gradient iterations
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Source wavelet
Estimates source function from 3 to 12 Hz
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Observation

• sparsity recovery and randomized subsampling can lead 
to a significant speedup

• Curvelet transform is efficient in representing geological 
models

• sparse regularization in Curvelet domain can greatly 
suppress incoherent artifacts
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Seismic imaging
Least-squares migration:

[Wang & Sacchi, ’07]

�d = Multi-source multi-frequency data residue

rF(m0) = Linearized Born-scattering operator

m0 = Background velocity model

Q = Sources

� ˜m = image

� em = argmin
�m

1

2
k�d� ↵rF(m0)�mk22

Jacobian 
operator

(born 
modeling 
operator)

velocity
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Sparsity-promoting 
imaging

Basis pursuit denoising problem:

[Donoho Chen, ’06; Li&Herrmann, ’10]

�x = Sparse curvelet-coe�cient vector

C

T
= Curvelet synthesis

Remarkable speedup of convergence can be obtained by 
Message passing

� em = C

T
argmin

�x
k�xk`1 subject to k�d� ↵rF [m0;Q]C

T �xk2  �

Jacobian 
operator

(born 
modeling 
operator)

Sparsifying 
transform
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Pareto curve

� em = C

T
argmin

�x
k�xk`1 subject to k�d� ↵rF [m0;Q]C

T �xk2  �
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Examples

• 409x1401 with mesh size of 5m

• 10 randomly selected frequencies (30-50Hz)

• 3 randomly combined simultaneous shots / 17 randomly 
selected sequential shots 

• 60 iterations with 10 redraws
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Migration results

True perturbation
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Migration results
underdetermined

imaged perturbation with L1 with AMP

3 simultaneous shots time: ~= 24 hours
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Migration results
underdetermined

imaged perturbation with L2 with AMP

3 simultaneous shots time: ~= 24 hours
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Migration results
underdetermined

imaged perturbation with L1 without AMP

3 simultaneous shots time: ~= 24 hours
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SLIM

Migration results
underdetermined

imaged perturbation with L2 without AMP

3 simultaneous shots time: ~= 24 hours
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Migration results
underdetermined

imaged perturbation with L1 with AMP

17 sequential shots with 
marine acquisition

time: ~= 40 hours
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Migration results
underdetermined

imaged perturbation with L1 without AMP

17 sequential shots with 
marine acquisition

time: ~= 40 hours
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Gulf of Mexico data
Chevron blind test

Modified Gauss-Newton

• 7 frequency bands (2-5 Hz), each contain 4 frequencies

• randomly selected 600 shots (totally 3201 shots)

• 6 Gauss-Newton iteration for each frequency band

• modeling uses Helmholtz

• depth weighting and water layer projection
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Initial model
[ray-based tomography]
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Inverted result with raw data

Tuesday, 4 December, 12



Inverted result with denoised data
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Sparsity promoting migration

8 frequencies, 600 
sequential shots 4 CPUs, < 7 days
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Conclusion

• Curvelet transform efficiently represents geological 
models

• Sparsity regularization in Curvelet domain can significantly 
suppress model space artifacts

• High-resolution FWI and Imaging results is attainable 
through Sparsity promotion

• Ideas from message passing leads to a remarkable 
speedup of convergence
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Thank you

https://www.slim.eos.ubc.ca
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