

Anisotropic 3D FWI Tommeliten Alpha field

Mike Warner

Imperial College London

- OBC dataset
- 3D FWI
- Results
- Elastic FWI

3D OBC field data

- 4C OBC
- 3 swaths of 8 cables
- 75 m water depth
- 6 km cables
- 25 m receiver spacing
- 300 m cable spacing
- 6000 receivers
- 25 m shot interval
- 75 m shot-line spacing
- 100,000 shots
- full azimuth to 7000 m
- max offset 11,000 m
- 180 sq km

acquisition geometry

PP PSDM

PZ-summed

Raw shot record

hydrophone

Pre-processed for acoustic FWI

hydrophone

Picking the starting frequency

single-frequency phase

Starting model

reflection tomography

Anisotropy

VTI, maximum Epsilon = 20%, maximum Delta = 8%

Inversion parameters

- Time domain, acoustic 3D, VTI anisotropy
- Hydrophones only \rightarrow include ghosts and multiples
- Apply reciprocity
- $6000 \rightarrow 1440 \text{ sources}$
- 80 sources per iteration
- Six frequency bands from $3 \rightarrow 6.5 \mbox{ Hz}$
- 18 iterations per frequency
- Each source used once per frequency
- Amplitude equalisation
- Conjugate gradients
- Approximate diagonal Hessian

Imperial College London

Field data

Start model data

Field data

Start model

FWI model data

Field data

FWI model

Imperial College London

FWI results

horizontal depth slice

FWI results + original PSDM

P-wave velocity (m/s) from homogeneous 1 km 1720 1950 start model 250 m depth

horizontal depth slice

Starting model

FWI model

PSDM

well log

Starting model

Imperial College London

FWI model

RTM with starting model

12

RTM with FWI model

Elastic FWI: P-wave

Elastic FWI: S-wave

250 m depth

s-wave (m/s)

Conclusions

3D FWI

- \rightarrow significant changes at reservoir level
- \rightarrow works well on appropriate data
- \rightarrow not expensive (500 cores for 60 hours)
- Anisotropy was essential
- Careful QC and QA is essential
- Elastic FWI is possible (but expensive)

Acknowledgements

- We thank the PL044 partnership:
 - ConocoPhillips Skandinavia AS
 - Total E&P Norge AS
 - ENI Norge AS
 - Statoil Petroleum AS
- for permission to use their data and publish this work.
- We also gratefully acknowledge support and advice throughout the project from personnel at CGGVeritas:
 - Andrew Ratcliffe,
 - Vetle Vinje
 - Graham Conroy
- The project was sponsored by the FULLWAVE III consortium

