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Introduction 
Introduction 

 Company: TOTAL SA 

 University: The University of British Columbia (UBC) 

 Laboratory: Seismic Laboratory for Imaging and Modeling (SLIM) 

 Professor: Felix HERRMANN 

 TOTAL Supervisor: Henri CALANDRA 

 Dates: January 2012 – June 2013 
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Variance Estimation 
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Variance Estimation 
Inverse problem 

 We consider inverse problems of the form 

 

 

where 
 ρ is a twice differentiable function 

 d denotes the data 

 F is the forward modeling operator 

 x is the vector of unknown parameters 
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Inverse problem 
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Variance Estimation 
Maximum Likelihood (ML) Formulation 

 Statistical Model 
 Inverse problems can be formulated as Maximum Likelihood (ML) problems 
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Variance Estimation 
Maximum Likelihood (ML) Formulation 

 Statistical Model 
 Inverse problems can be formulated as Maximum Likelihood (ML) problems 

 

 Common choice  
 i.i.d. Gaussian errors 

 Even  though  σ2 is unknown, it does not affect the ML formulation in x 
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Variance Estimation 
Maximum Likelihood (ML) Formulation 

 Statistical Model 
 Inverse problems can be formulated as Maximum Likelihood (ML) problems 

 

 Common choice  
 i.i.d. Gaussian errors 

 Even  though  σ2 is unknown, it does not affect the ML formulation in x 
 

 

         Not true if the data comes from different sources with each group having its own variance 
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Variance Estimation 
Maximum Likelihood (ML) Formulation 

 Statistical Model 
 Inverse problems can be formulated as Maximum Likelihood (ML) problems 

 

 Common choice  
 i.i.d. Gaussian errors 

 Even  though  σ2 is unknown, it does not affect the ML formulation in x 
 

 

         Not true if the data comes from different sources with each group having its own variance 
 

        Need variance estimation 

5 Variance Estimation: Application to FWI –  Anaïs TAMALET 

Tuesday, 4 December, 12



Variance Estimation 
Variances in Multiple Data Sets 

 Multiple Data Sets 
 M experiments indexed by i, each with its own (unknown) variance  σi

2
  

 Each experiment yields to Ni measurements  
 All experiments share a common set of primary parameters x 
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Variance Estimation 
Variances in Multiple Data Sets 

 Multiple Data Sets 
 M experiments indexed by i, each with its own (unknown) variance  σi

2
  

 Each experiment yields to Ni measurements  
 All experiments share a common set of primary parameters x 

 Statistical model 
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Variance Estimation 
Variances in Multiple Data Sets 

 Multiple Data Sets 
 M experiments indexed by i, each with its own (unknown) variance  σi

2
  

 Each experiment yields to Ni measurements  
 All experiments share a common set of primary parameters x 

 Statistical model 

 

 Joint ML estimation problem 

We want to estimate σ2 = {σi
2}  and x 
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Variance Estimation 
Modified problem 

 Variance Estimation 

With x fixed, the estimate of σi 
2 is given by 
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Variance Estimation 
Modified problem 

 Variance Estimation 

With x fixed, the estimate of σi 
2 is given by 

 

 

 Modified Problem 

Thus, the problem for x becomes 
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Application to         
Full-Waveform 

Inversion 
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Full-Waveform Inversion (FWI) 
FWI 

 Data-fitting procedure based on full-wavefield modeling to extract medium 
parameters from the seismic data 
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Data 
Model 
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Full-Waveform Inversion (FWI) 
FWI 

 Formulation of the problem 

 

 

where 
 D is the data matrix 

 F is the forward modeling operator 

 Q specifies the source experiments 

 m is the vector of unknown medium parameters 
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Experiments 
Variance Estimation: Application to FWI 

 Scenario  
 Data with noise with a variance varying according to the frequency 
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Experiments 
Variance Estimation: Application to FWI 

 Scenario  
 Data with noise with a variance varying according to the frequency 

 Notation 
 Each experiment corresponds to 1 frequency 
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M Number of frequencies 

i Indexes the frequencies 

Ni Number of measurements per frequency   (Ni = nrec x nsrc ) 

di 
Fourier transform of the recorded time series for frequency i (data) 

 

Fi 
  Modeling operator for frequency i   ( Fi(x) = P Ai(x)-1 Qi ) 

 

x Vector of unknown velocity parameters 
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Experiments 
Synthetic model 

 Model 
 Marmousi model 

 301 x 921 grid with 10m spacing 

 307 receivers  

 185 sources 

12 

x [m]

z 
[m

]

true velocity model [m/s]

 

 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0

500

1000

1500

2000

2500

3000

2000

2500

3000

3500

4000

4500

True velocity model (m/s) 

Initial velocity model (m/s) 

Variance Estimation: Application to FWI –  Anaïs TAMALET 

x [m]

z 
[m

]

initial velocity model [m/s]

 

 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0

500

1000

1500

2000

2500

3000

2000

2500

3000

3500

4000

4500

Tuesday, 4 December, 12



Experiment 1 
Experiment 1 

 

 Noise in the data 
 Gaussian noise 

 Standard deviation 

 Higher variance for the low and high frequencies 
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Experiment 1 
Experiment 1 

 

 Noise in the data 
 Gaussian noise 
 Standard deviation 
 Higher variance for the low and high frequencies 

 Processing 
 7 frequencies  
 3 overlapping frequency bands of 3 frequencies each 
 Optimization problem solved using L-BFGS 
 Without variance estimation, problem solved for a fixed              for all i  
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Experiment 1 
Recovered Velocity Model 
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Without variance estimation 

With variance estimation 
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Experiment 1 
Relative Model Error 
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Experiment 1 
Relative Model Error 
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Experiment 1 
Relative Model Error 
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Relative model error 
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Experiment 1 
Relative Model Error 
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Experiment 1 
Relative Model Error 
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Experiment 2 
Experiment 2 

 

 Noise in the data 
 Gaussian noise 

 Variance increasing with the frequency 
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Experiment 2 
Experiment 2 

 

 Noise in the data 
 Gaussian noise 
 Variance increasing with the frequency 
 

 Processing 
 1 frequency band of 3 frequencies  
 Optimization problem solved using L-BFGS 
 Without variance estimation, problem solved for a fixed              for all i  
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Experiment 2 
Recovered Velocity Model 
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Without variance estimation 

With variance estimation 
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Experiment 2 
Relative Model Error 
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Relative model error 
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Experiment 2 
Relative Model Error 

 

 

 

 

 
 Result improved with variance estimation when the variance increases with the frequency  
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Experiment 2 
Estimated Standard Deviation 
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Estimated Standard Deviation 
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Experiment 2 
Estimated Standard Deviation 

 

 

 

 

 
 Thanks to variance estimation, we are able to know the nature of the noise 
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Conclusion 
Conclusion 

 Estimation of the variance on the fly, while solving the overall inverse problem 
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Conclusion 
Conclusion 

 Estimation of the variance on the fly, while solving the overall inverse problem 

 Ability to easily modify algorithms solving the inverse problem and add variance 

estimation 
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Conclusion 
Conclusion 

 Estimation of the variance on the fly, while solving the overall inverse problem 

 Ability to easily modify algorithms solving the inverse problem and add variance 

estimation 

 Ability to know the nature of the noise 
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Conclusion 
Conclusion 

 Estimation of the variance on the fly, while solving the overall inverse problem 

 Ability to easily modify algorithms solving the inverse problem and add variance 

estimation 

 Ability to know the nature of the noise 

 Application to FWI 

 Results improved with variance estimation when the variance increases with 
the frequency in the frequency band 
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