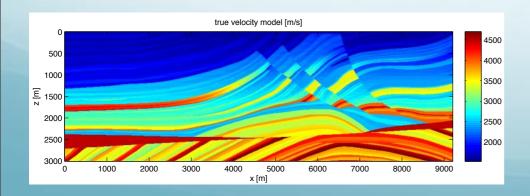
Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

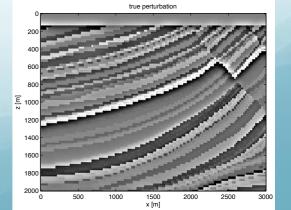
SINBAD Fall 2012 Consortium Meeting

Variance Estimation Application to FWI

Anaïs TAMALET

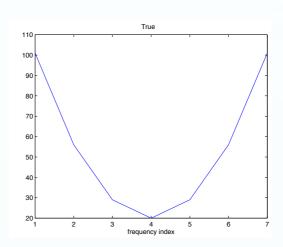
TOTAL Supervisor: Henri CALANDRA **UBC Professor**: Felix HERRMANN

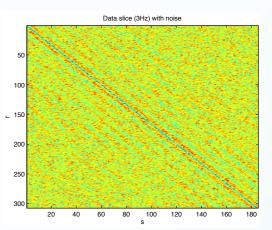


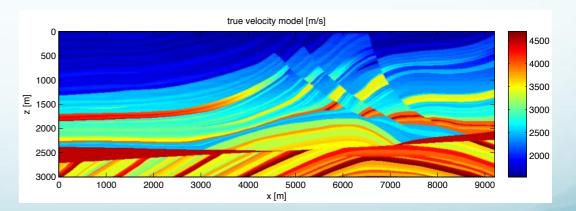


Outline

- Introduction
- Variance Estimation
 - Inverse problem
 - Maximum Likelihood Formulation
 - Variance in Multiple Data Sets
 - Modified Problem
- Application to Full-Waveform Inversion
 - Full-Waveform Inversion
 - Experiments
- Conclusion







Variance Estimation: Application to FWI – Anaïs TAMALET

Introduction

Introduction

Τοται

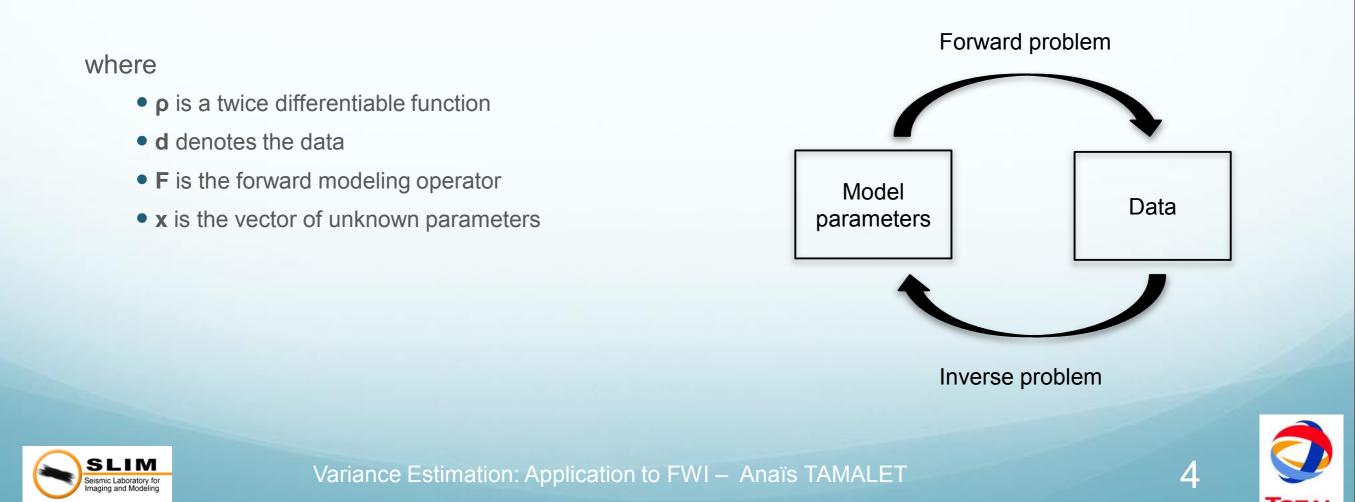
- **Company**: TOTAL SA
- **University**: The University of British Columbia (UBC)
- Laboratory: Seismic Laboratory for Imaging and Modeling (SLIM)
- Professor: Felix HERRMANN
- TOTAL Supervisor: Henri CALANDRA
- **Dates**: January 2012 June 2013

Variance Estimation: Application to FWI – Anaïs TAMALET

Inverse problem

• We consider inverse problems of the form

 $\min_{x} \rho \left(d - F(x) \right)$



Maximum Likelihood (ML) Formulation

Statistical Model

• Inverse problems can be formulated as Maximum Likelihood (ML) problems

$$d = F(x) + \epsilon$$

Maximum Likelihood (ML) Formulation

Statistical Model

• Inverse problems can be formulated as Maximum Likelihood (ML) problems

 $d = F(x) + \epsilon$

Common choice

- i.i.d. Gaussian errors $\epsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$
- Even though σ^2 is unknown, it does **not affect** the ML formulation in **x**

Maximum Likelihood (ML) Formulation

Statistical Model

• Inverse problems can be formulated as Maximum Likelihood (ML) problems

$$d = F(x) + \epsilon$$

Common choice

- i.i.d. Gaussian errors $\epsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$
- Even though σ^2 is unknown, it does **not affect** the ML formulation in **x**

> Not true if the data comes from different sources with each group having its own variance

Maximum Likelihood (ML) Formulation

Statistical Model

• Inverse problems can be formulated as Maximum Likelihood (ML) problems

$$d = F(x) + \epsilon$$

Common choice

- i.i.d. Gaussian errors $\epsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$
- Even though σ^2 is unknown, it does **not affect** the ML formulation in **x**

> Not true if the data comes from different sources with each group having its own variance

Variances in Multiple Data Sets

- Multiple Data Sets
 - **Mexperiments** indexed by i, each with its **own** (unknown) **variance** σ_i^2
 - Each experiment yields to **N**_i **measurements**
 - All experiments share a **common set of primary parameters x**

Variances in Multiple Data Sets

- Multiple Data Sets
 - **Mexperiments** indexed by i, each with its **own** (unknown) **variance** σ_i^2
 - Each experiment yields to **N_i measurements**
 - All experiments share a **common set of primary parameters x**
- Statistical model

$$d_i = F_i(x) + \epsilon_i \qquad \epsilon_i \sim \mathcal{N}(0, \sigma_i^2 \mathbf{I})$$

Variances in Multiple Data Sets

- Multiple Data Sets
 - **Mexperiments** indexed by i, each with its **own** (unknown) **variance** σ_i^2
 - Each experiment yields to N_i measurements
 - All experiments share a **common set of primary parameters x**
- Statistical model

$$d_i = F_i(x) + \epsilon_i \qquad \epsilon_i \sim \mathcal{N}(0, \sigma_i^2 \mathbf{I})$$

Joint ML estimation problem

We want to estimate $\sigma^2 = \{\sigma_i^2\}$ and **x**

$$\min_{x,\sigma^2} g(x,\sigma^2) = \sum_{i=1}^M \left(N_i \log(2\pi\sigma_i^2) + \frac{1}{\sigma_i^2} \|d_i - F_i(x)\|_2^2 \right)$$

Variance Estimation: Application to FWI – Anaïs TAMALET

Modified problem

• Variance Estimation

With **x fixed**, the **estimate** of σ_i^2 is given by

$$\widehat{\sigma_i^2}(x) = \frac{1}{N_i} ||d_i - F_i(x)||_2^2 \qquad x \text{ fixed}$$

Modified problem

• Variance Estimation

With **x fixed**, the **estimate** of σ_i^2 is given by

$$\widehat{\sigma_i^2}(x) = \frac{1}{N_i} ||d_i - F_i(x)||_2^2 \qquad x \text{ fixed}$$

Modified Problem

Thus, the problem for x becomes

$$\min_{x} \tilde{g}(x) = \sum_{i=1}^{M} \left(N_i \log(2\pi \widehat{\sigma_i^2}(x)) + \frac{1}{\widehat{\sigma_i^2}(x)} \|d_i - F_i(x)\|_2^2 \right)$$

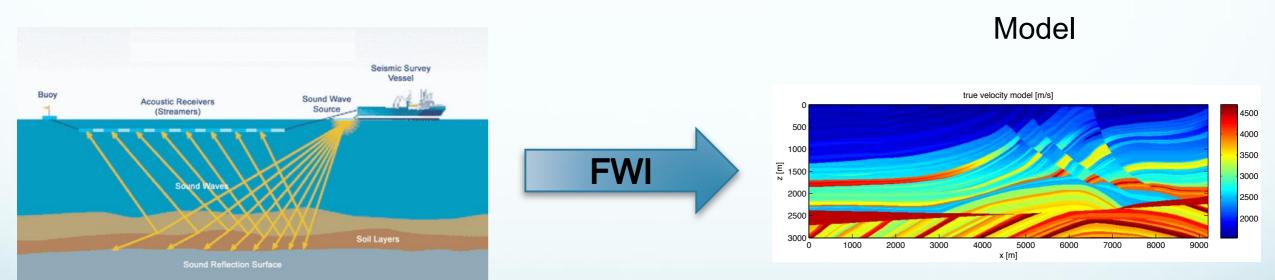
Variance Estimation: Application to FWI – Anaïs TAMALET

Application to Full-Waveform Inversion

Full-Waveform Inversion (FWI)

FWI

 Data-fitting procedure based on full-wavefield modeling to extract medium parameters from the seismic data



Variance Estimation: Application to FWI – Anaïs TAMALET

9

Full-Waveform Inversion (FWI)

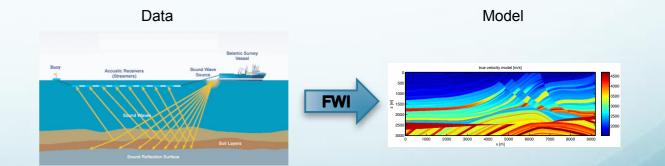
FWI

• Formulation of the problem

$$\min_{\mathbf{m}} \phi(\mathbf{m}) = \left\| D - F(\mathbf{m}; Q) \right\|_{F}^{2}$$

where

- D is the data matrix
- F is the forward modeling operator
- Q specifies the source experiments
- **m** is the vector of unknown medium parameters



10

Variance Estimation: Application to FWI - Anaïs TAMALET

Variance Estimation: Application to FWI

• Scenario

• Data with noise with a **variance varying** according to the **frequency**

11

Variance Estimation: Application to FWI – Anaïs TAMALET

Variance Estimation: Application to FWI

Scenario

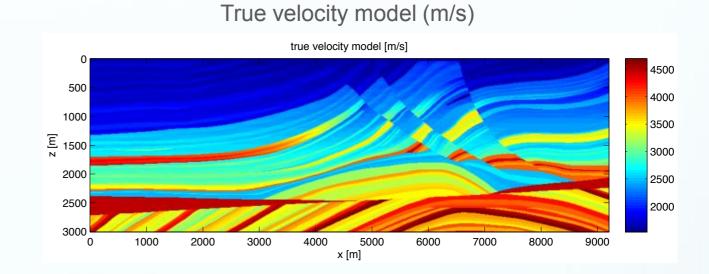
- Data with noise with a **variance varying** according to the **frequency**
- Notation
 - Each experiment corresponds to 1 frequency

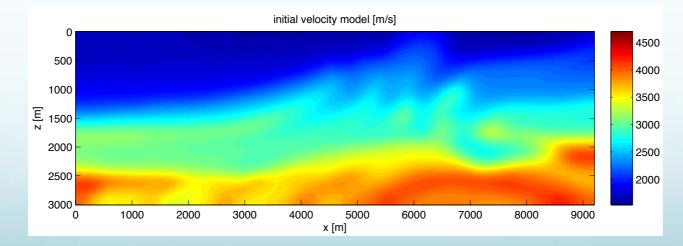
М	Number of frequencies
i	Indexes the frequencies
N _i	Number of measurements per frequency $(N_i = n_{rec} \times n_{src})$
d _i	Fourier transform of the recorded time series for frequency i (data)
Fi	Modeling operator for frequency i (F _i (x) = P A _i (x) ⁻¹ Q _i)
x	Vector of unknown velocity parameters

Synthetic model

• Model

- Marmousi model
- 301 x 921 grid with 10m spacing
- 307 receivers
- 185 sources



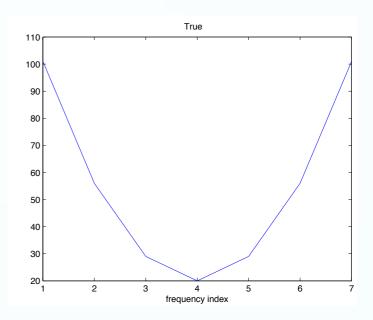


Initial velocity model (m/s)

Variance Estimation: Application to FWI - Anaïs TAMALET

12

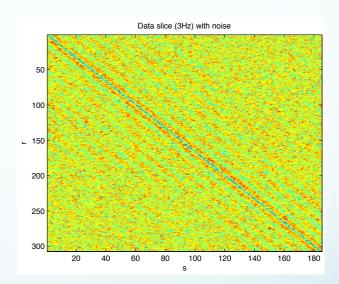
Experiment 1



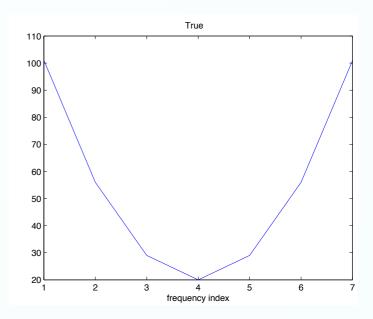
Noise in the data

- Gaussian noise
- Standard deviation $\sigma_i \sim (i-4)^2$

Higher variance for the low and high frequencies



Experiment 1



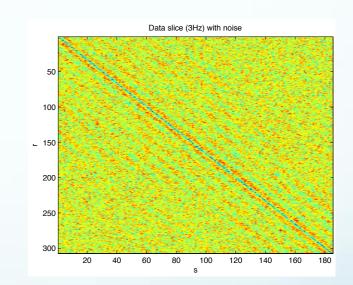
Noise in the data

- Gaussian noise
- Standard deviation $\sigma_i \sim (i-4)^2$

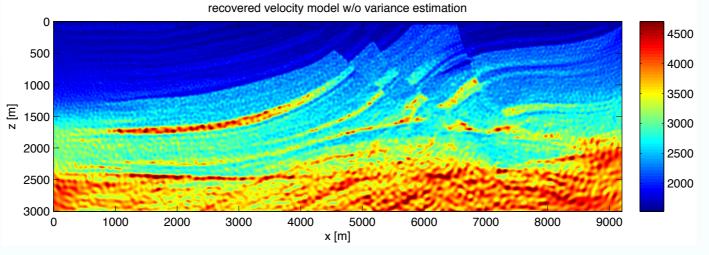
Higher variance for the low and high frequencies

Processing

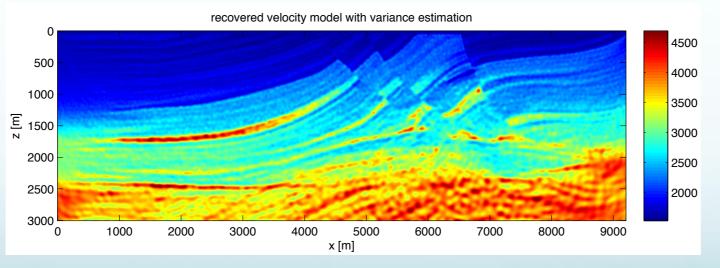
- 7 frequencies
- 3 overlapping frequency bands of 3 frequencies each
- Optimization problem solved using L-BFGS
- Without variance estimation, problem solved for a fixed $\sigma_i = 1$ for all i



Recovered Velocity Model



Without variance estimation

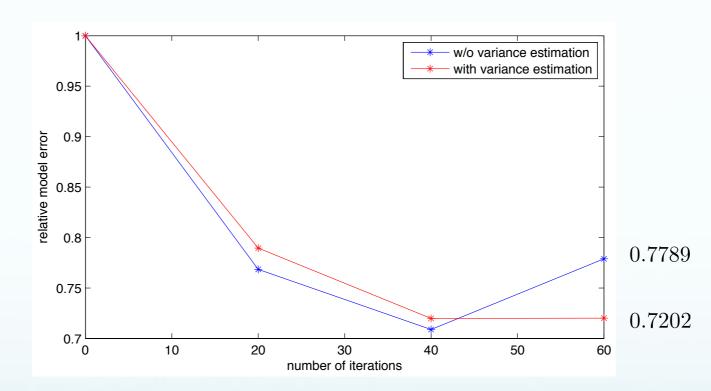


With variance estimation

Variance Estimation: Application to FWI – Anaïs TAMALET

14

Relative Model Error



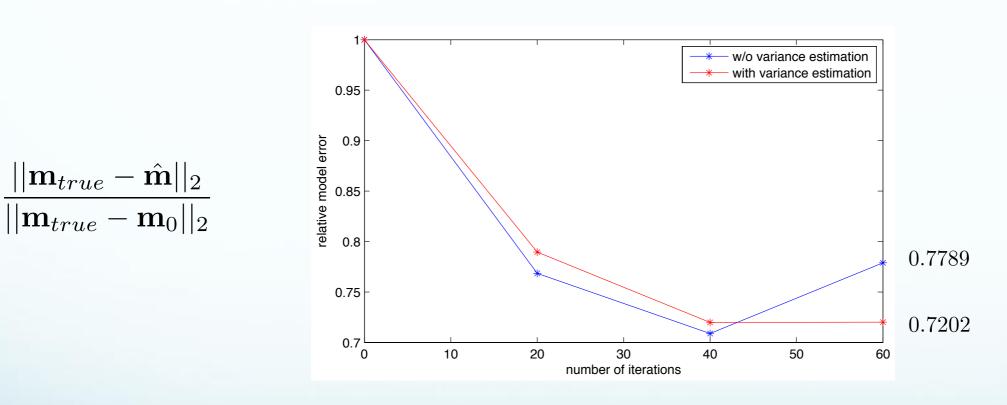
Relative model error

 $\frac{||\mathbf{m}_{true} - \hat{\mathbf{m}}||_2}{||\mathbf{m}_{true} - \mathbf{m}_0||_2}$

Variance Estimation: Application to FWI – Anaïs TAMALET

15

Relative Model Error



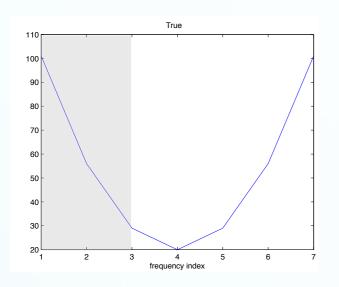
Relative model error

Variance Estimation: Application to FWI – Anaïs TAMALET

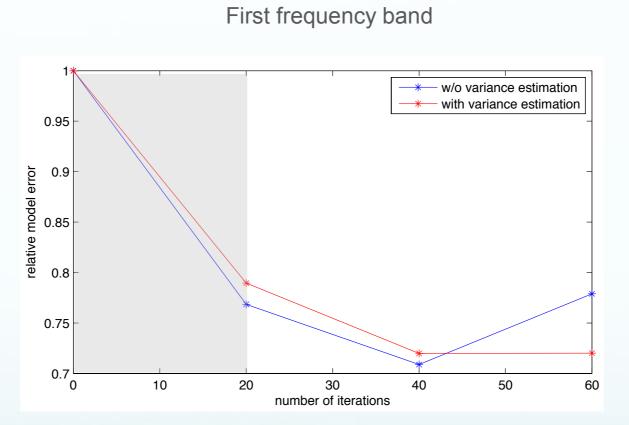
Result improved with variance estimation

TOTAL

15



Relative Model Error



Relative model error

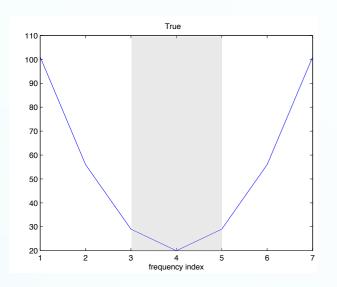
Variance Estimation: Application to FWI – Anaïs TAMALET

16

relative model error

0.75

0.7└─ 0



Relative Model Error Second frequency band

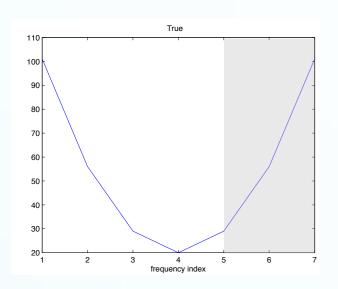
10 20 30 40 number of iterations

50

60

Relative model error

Variance Estimation: Application to FWI – Anaïs TAMALET

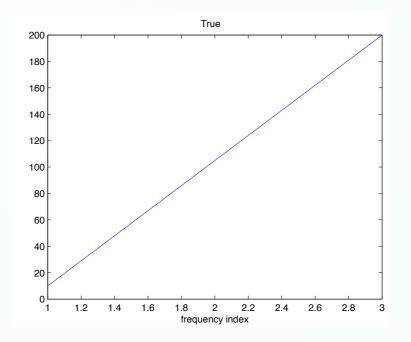


Relative Model Error Third frequency band w/o variance estimation with variance estimation 0.95 relative model error 0.9 0.85 0.8 0.75 0.7 L 0 10 20 40 50 60 30 number of iterations

Relative model error

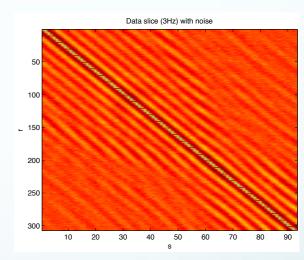
Variance estimation useful when the variance of the noise increases with the frequency

Variance Estimation: Application to FWI – Anaïs TAMALET

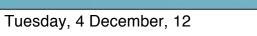


• Noise in the data

- Gaussian noise
- Variance increasing with the frequency



17



Noise in the data

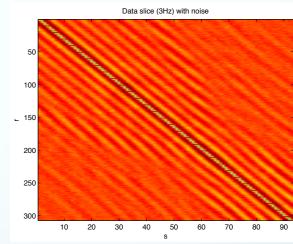
Gaussian noise

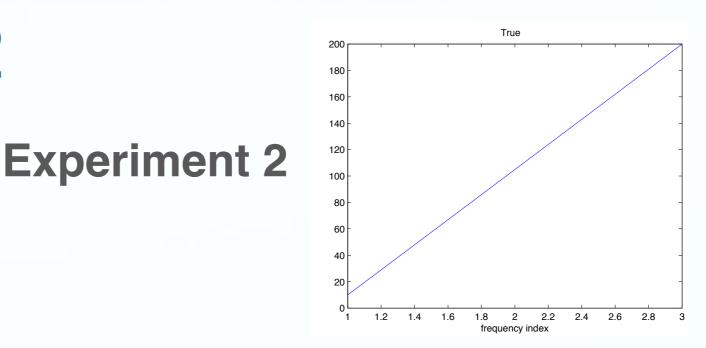
Experiment 2

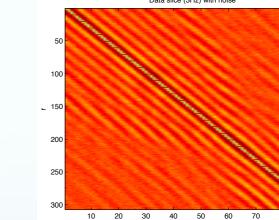
Variance increasing with the frequency

Processing

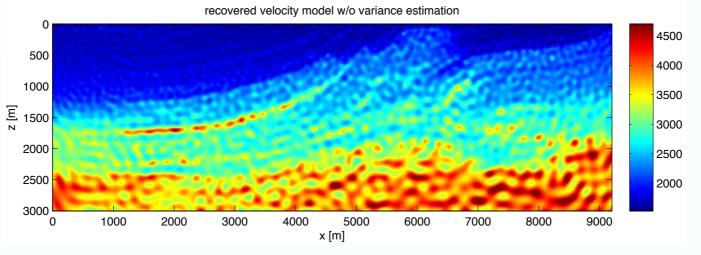
- 1 frequency band of 3 frequencies
- Optimization problem solved using L-BFGS
- Without variance estimation, problem solved for a fixed $\sigma_i = 1$ for all i



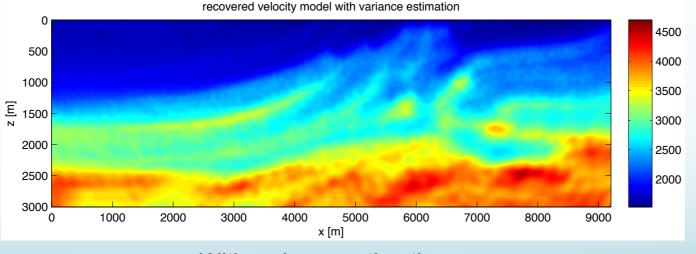




Recovered Velocity Model



Without variance estimation

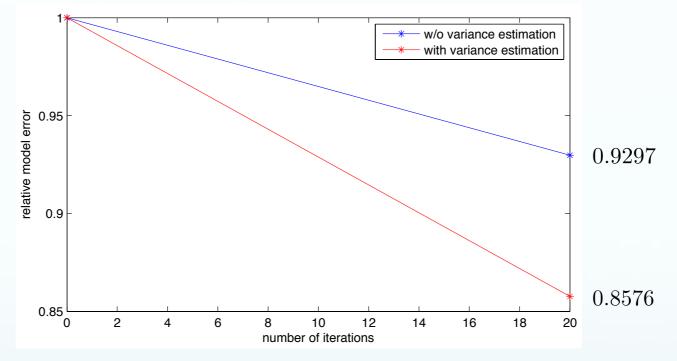


With variance estimation

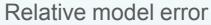
Variance Estimation: Application to FWI – Anaïs TAMALET

18

Relative Model Error



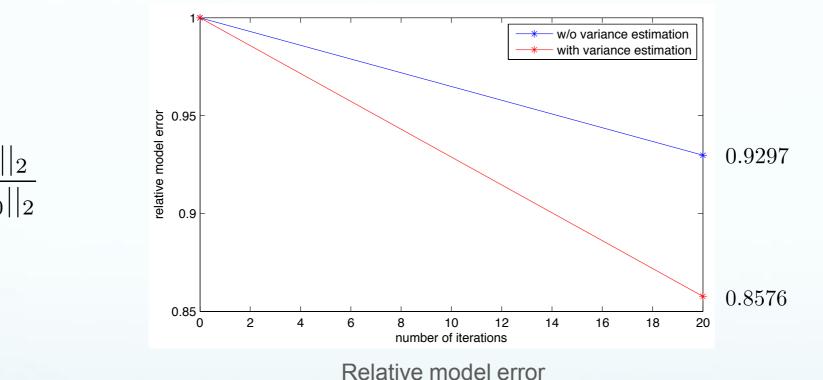


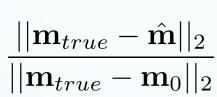


Variance Estimation: Application to FWI – Anaïs TAMALET

19

Relative Model Error



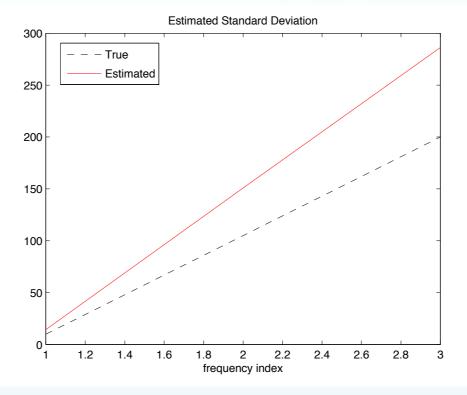


Result improved with variance estimation when the variance increases with the frequency

Variance Estimation: Application to FWI – Anaïs TAMALET

19

Estimated Standard Deviation

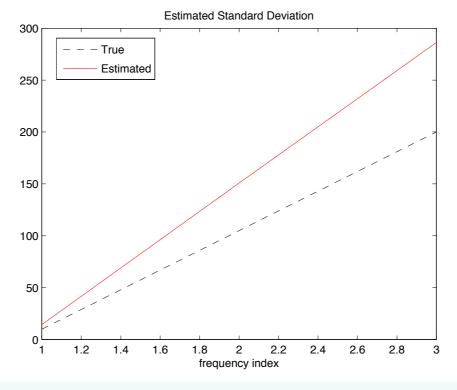


Estimated Standard Deviation

20

Variance Estimation: Application to FWI – Anaïs TAMALET

Estimated Standard Deviation



Estimated Standard Deviation

Thanks to variance estimation, we are able to know the **nature** of the noise

Variance Estimation: Application to FWI – Anaïs TAMALET

20

Conclusion

• Estimation of the variance on the fly, while solving the overall inverse problem

22

Variance Estimation: Application to FWI – Anaïs TAMALET

Conclusion

- Estimation of the variance on the fly, while solving the overall inverse problem
- Ability to easily modify algorithms solving the inverse problem and add variance estimation

Conclusion

- Estimation of the variance on the fly, while solving the overall inverse problem
- Ability to easily modify algorithms solving the inverse problem and add variance estimation
- Ability to know the **nature** of the noise

Conclusion

- Estimation of the variance on the fly, while solving the overall inverse problem
- Ability to easily modify algorithms solving the inverse problem and add variance estimation
- Ability to know the **nature** of the noise
- Application to FWI

Results **improved** with variance estimation when the variance increases with the frequency in the frequency band

Thank you for your attention!