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Elastic wave equation
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�:stress tensor, ⇢:density, !:frequency,

u:displacement, f :force, x:spatial coordinate
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In	  Voigt	  notation:

Hooke’s law
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• Substitute	  Hooke’s	  law	  into	  the	  wave	  equation	  
and	  reorganize:

• 	  	  	  	  	  	  	  	  terms	  contain	  	  stiffness	  tensor	  
components	  and	  spatial	  derivatives	  	  	  	  	  

Set up of linear system
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• 2nd	  order	  centred	  differences	  on	  8	  different	  
coordinate	  systems

• This	  decreases	  the	  numerical	  dispersion	  and	  
numerical	  anisotropy

Discretization
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Visualization of coordinates

[from Operto et al., 2007]

• 1	  Cartesian	  grid

tional coordinate systems obtained by rotation around two of the
Cartesian axes. These coordinate systems are not consistent with our
staggered-grid method in the sense that it would require defining
more than one pressure grid.

Finally, the stiffness matrices associated with each coordinate
system are combined linearly:

Sp ⇒ !w1SBc
+ w2/3"SBx

+ SBy
+ SBz

# + w3/4"SB1

+ SB2
+ SB3

+ SB4
#$p ,

where we introduced the weighting coefficients w1, w2/3, and w3/4
associated with stencils 1, 2, and 3, respectively. The coefficients
verify

w1 + w2 + w3 = 1. "3#

The factors 1/3 and 1/4 applied to coefficients w2 and w3 account for
the fact that stencils 2 and 3 are the average of three elementary sten-
cils and four elementary stencils, respectively.

Expression of the partial derivatives with respect to x, y, and z as a
function of the spatial derivatives with respect to each of the above
mentioned coordinates are given in Appendix B. The second-order
centered staggered-grid stencils for each partial derivative of a
wavefield with respect to each coordinate are given in Appendix C.
These discrete expressions are used to discretize the equations in
system 1 before elimination of the discrete particle velocity fields.
The final expression of the eight parsimonious staggered-grid wave
equations are given in Appendix D. In the appendices and below, we
used the following notations for compactness: We consider a given
cubic cell of the finite-difference mesh. The pressure at the nodes of
the cubic cell are denoted by plmn where l,m,n! %− 1,0,1&, and p000

denotes the central grid point.
Indices 1/2 indicate buoyancy grid points located at intermediate

positions with respect to the reference pressure grid following the
staggered-grid strategy.

Mass-term averaging

The accuracy of the stencil can be greatly improved by a redistri-
bution of the mass term over the different grid points surrounding the
collocation point involved in the finite-difference stencils following
an antilumped mass approach. Following standard procedure of fi-
nite element methods !Marfurt, 1984", the diagonal mass term is dis-
tributed through weighted values such that

!2

"000
p000 ⇒ !2'wm1( p

"
)

0
+ wm2( p

"
)

1
+ wm3( p

"
)

2

+ wm4( p

"
)

3
* , "4#

where

wm1 +
wm2

6
+

wm3

12
+

wm4

8
= 1. "5#

x

y z

x

zx

dy 3 dx 4

d2

d1

n

n

n

n

n

a)

n n

n

n

n

n

b)

n n n
n n

n n n

n n n
n n n

n n n

n n n
n n n

n n n

c)

Figure 1. FD stencils. Circles are pressure grid points. Squares are
positions where buoyancy needs to be interpolated because of the
staggered-grid geometry. Gray circles are pressure grid points in-
volved in the stencil. !a" Stencil on the classic Cartesian coordinate
system. This stencil incorporates seven coefficients. !b" Stencil on
the rotated Cartesian coordinate system. Rotation is applied around x
on the figure. This stencil incorporates 11 coefficients. The same
strategy can be applied by rotation around y and z. Averaging of the
three resultant stencils defines a 19-coefficient stencil. !c" Stencil
obtained from four coordinate systems, each associated with three
big diagonals of a cubic cell. This stencil incorporates 27 coeffi-
cients.

SM198 Operto et al.
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Visualization of coordinates

• 3	  coordinate	  systems	  by	  rotating	  about	  each	  
of	  the	  cartesian	  axis

tional coordinate systems obtained by rotation around two of the
Cartesian axes. These coordinate systems are not consistent with our
staggered-grid method in the sense that it would require defining
more than one pressure grid.

Finally, the stiffness matrices associated with each coordinate
system are combined linearly:

Sp ⇒ !w1SBc
+ w2/3"SBx

+ SBy
+ SBz

# + w3/4"SB1

+ SB2
+ SB3

+ SB4
#$p ,

where we introduced the weighting coefficients w1, w2/3, and w3/4
associated with stencils 1, 2, and 3, respectively. The coefficients
verify

w1 + w2 + w3 = 1. "3#

The factors 1/3 and 1/4 applied to coefficients w2 and w3 account for
the fact that stencils 2 and 3 are the average of three elementary sten-
cils and four elementary stencils, respectively.

Expression of the partial derivatives with respect to x, y, and z as a
function of the spatial derivatives with respect to each of the above
mentioned coordinates are given in Appendix B. The second-order
centered staggered-grid stencils for each partial derivative of a
wavefield with respect to each coordinate are given in Appendix C.
These discrete expressions are used to discretize the equations in
system 1 before elimination of the discrete particle velocity fields.
The final expression of the eight parsimonious staggered-grid wave
equations are given in Appendix D. In the appendices and below, we
used the following notations for compactness: We consider a given
cubic cell of the finite-difference mesh. The pressure at the nodes of
the cubic cell are denoted by plmn where l,m,n! %− 1,0,1&, and p000

denotes the central grid point.
Indices 1/2 indicate buoyancy grid points located at intermediate

positions with respect to the reference pressure grid following the
staggered-grid strategy.

Mass-term averaging

The accuracy of the stencil can be greatly improved by a redistri-
bution of the mass term over the different grid points surrounding the
collocation point involved in the finite-difference stencils following
an antilumped mass approach. Following standard procedure of fi-
nite element methods !Marfurt, 1984", the diagonal mass term is dis-
tributed through weighted values such that
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Figure 1. FD stencils. Circles are pressure grid points. Squares are
positions where buoyancy needs to be interpolated because of the
staggered-grid geometry. Gray circles are pressure grid points in-
volved in the stencil. !a" Stencil on the classic Cartesian coordinate
system. This stencil incorporates seven coefficients. !b" Stencil on
the rotated Cartesian coordinate system. Rotation is applied around x
on the figure. This stencil incorporates 11 coefficients. The same
strategy can be applied by rotation around y and z. Averaging of the
three resultant stencils defines a 19-coefficient stencil. !c" Stencil
obtained from four coordinate systems, each associated with three
big diagonals of a cubic cell. This stencil incorporates 27 coeffi-
cients.
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Visualization of coordinates

• 4	  coordinate	  systems	  formed	  by	  3	  different	  
diagonals	  of	  a	  cube

tional coordinate systems obtained by rotation around two of the
Cartesian axes. These coordinate systems are not consistent with our
staggered-grid method in the sense that it would require defining
more than one pressure grid.

Finally, the stiffness matrices associated with each coordinate
system are combined linearly:

Sp ⇒ !w1SBc
+ w2/3"SBx

+ SBy
+ SBz

# + w3/4"SB1

+ SB2
+ SB3

+ SB4
#$p ,

where we introduced the weighting coefficients w1, w2/3, and w3/4
associated with stencils 1, 2, and 3, respectively. The coefficients
verify

w1 + w2 + w3 = 1. "3#

The factors 1/3 and 1/4 applied to coefficients w2 and w3 account for
the fact that stencils 2 and 3 are the average of three elementary sten-
cils and four elementary stencils, respectively.

Expression of the partial derivatives with respect to x, y, and z as a
function of the spatial derivatives with respect to each of the above
mentioned coordinates are given in Appendix B. The second-order
centered staggered-grid stencils for each partial derivative of a
wavefield with respect to each coordinate are given in Appendix C.
These discrete expressions are used to discretize the equations in
system 1 before elimination of the discrete particle velocity fields.
The final expression of the eight parsimonious staggered-grid wave
equations are given in Appendix D. In the appendices and below, we
used the following notations for compactness: We consider a given
cubic cell of the finite-difference mesh. The pressure at the nodes of
the cubic cell are denoted by plmn where l,m,n! %− 1,0,1&, and p000

denotes the central grid point.
Indices 1/2 indicate buoyancy grid points located at intermediate

positions with respect to the reference pressure grid following the
staggered-grid strategy.

Mass-term averaging

The accuracy of the stencil can be greatly improved by a redistri-
bution of the mass term over the different grid points surrounding the
collocation point involved in the finite-difference stencils following
an antilumped mass approach. Following standard procedure of fi-
nite element methods !Marfurt, 1984", the diagonal mass term is dis-
tributed through weighted values such that
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Figure 1. FD stencils. Circles are pressure grid points. Squares are
positions where buoyancy needs to be interpolated because of the
staggered-grid geometry. Gray circles are pressure grid points in-
volved in the stencil. !a" Stencil on the classic Cartesian coordinate
system. This stencil incorporates seven coefficients. !b" Stencil on
the rotated Cartesian coordinate system. Rotation is applied around x
on the figure. This stencil incorporates 11 coefficients. The same
strategy can be applied by rotation around y and z. Averaging of the
three resultant stencils defines a 19-coefficient stencil. !c" Stencil
obtained from four coordinate systems, each associated with three
big diagonals of a cubic cell. This stencil incorporates 27 coeffi-
cients.
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• Improve	  accuracy	  by	  distributing	  the	  mass	  
over	  grid	  points	  surrounding	  the	  grid	  point	  
under	  consideration

Mass lumping
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• c	  :	  Cartesian;	  1,2	  and	  3	  :	  rotated	  coordinate	  systems;	  	  d1,	  
d2,d3,d4	  :	  diagonal	  coordinate	  systems

• Estimate	  weights	  (w)	  by	  global	  optimization
• Results	  in	  5	  grid	  points	  per	  smallest	  wavelength

Linear combination of grids

A = w1Ac +
w2

3

�
A1 +A2 +A3

�
+

w3

4

�
Ad1 +Ad2 +Ad3 +Ad4

�

Tuesday, 4 December, 12



• In	  case	  modeling	  or	  estimation	  of	  all	  21	  
components	  is	  not	  desired

• Example:	  orthorhombic	  symmetry:

Stiffness tensor approximations
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• 81	  point	  stencil	  and	  large	  bandwidth

Sparsity pattern of the system
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• Grid:	  N=(n1	  x	  n2	  x	  n3)
• Acoustic	  system	  =	  N	  x	  N	  ,	  Elastic	  system=	  3	  (N	  x	  N)
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1)	  Permute	  rows	  of	  	  	  	  	  and	  	  	  	  
2)	  Permute	  columns	  of	  	  	  	  	  and	  	  	  	  (implicit)

System matrix permutations
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Pr/Pc: row/column permutation matrix

u

Tuesday, 4 December, 12



System matrix permutations
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Permuted elastic system matrix

• Bandwidth	  is	  decreased	  a	  lot
• Useful	  for	  direct	  solvers
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• Convergence	  of	  iterative	  solvers	  generally	  
depends	  on	  the	  condition	  number	  and	  
eigenvalue	  clustering

• Matrix	  permutation	  does	  not	  change	  the	  
condition	  number,	  but	  changes	  the	  
eigenvalues

• Interested	  in	  eigenvalue	  clustering	  after	  
preconditioning,	  because	  the	  system	  matrix	  is	  
indefinite

Eigenvalues
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• Elastic	  condition	  number	  is	  much	  larger	  than	  
the	  acoustic	  one

• Anisotropy	  can	  increase	  the	  condition	  number

• Effective	  preconditioner	  required	  to	  cluster	  
eigenvalues/lower	  condition	  number

Eigenvalues
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• At	  the	  moment,	  solve	  iteratively	  with	  
preconditioning	  on	  CPU’s

• CARPCG	  is	  currently	  used

Solving the system
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Result using CARPCG
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Consider	  (if	  applicable):
• Overhead	  cost	  of	  forming	  the	  preconditioner
• Extra	  matrix	  operations	  each	  iteration
• Number	  of	  right	  hand	  sides
• Grid	  size
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Some results
• Point	  force	  source	  at	  the	  center	  of	  the	  domain
• Energy	  loss	  and	  stiffness	  tensor	  are	  anisotropic
• Homogeneous	  medium	  with	  PML

(u1	  shown)
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U1	  component	  (real	  part)
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Some results
• Medium	  is	  the	  same	  as	  on	  the	  previous	  slide
• U2	  component	  shown	  this	  time
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• Constructed	  a	  staggered	  finite	  difference	  
scheme	  for	  solving	  the	  general	  anisotropic	  
visco-‐elastic	  wave	  equation

• Requires	  a	  low	  number	  of	  grid	  points	  per	  
wavelength

Conclusion
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• Use	  in	  full	  waveform	  inversion	  by	  inverting	  for	  
all	  components	  of	  the	  (frequency	  dependent)	  
stiffness	  tensor	  (or	  a	  subset)

• Optimize	  current	  and	  develop	  new	  
preconditioners

• Investigate	  which	  combination	  of	  
discretization	  &	  linear	  system	  solver	  &	  
computational	  hardware	  works	  the	  fastest

Future work
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