Seismic trace interpolation via sparsity promoting reweighted algorithms

Hassan Mansour, Ozgur Yilmaz, Felix Herrmann, and Tristan van Leeuwen

SLIM Consortium meeting

SLIM Seismic Laboratory for Imaging and Modeling the University of British Columbia

Weighted ℓ_1 minimization 0000000000

WSPGL1 00000000 Kaczmarz 0000000

Collaboration

Joint work in part with:

- Özgür Yılmaz (UBC, Mathematics)
- Rayan Saab (Duke University, Mathematics)
- Michael Friedlander (UBC, Computer Science)
- Felix Herrmann (UBC, Earth and Ocean Science)
- Tristan Van Leeuwen (UBC, Earth and Ocean Science)

WSPGL1 00000000 Kaczmarz 0000000

Outline

- Part 1: Compressed sensing and sparse recovery
 - Overview of sparse recovery from sub-Nyquist sampling.

WSPGL1 00000000 Kaczmarz 0000000

Outline

Part 1: Compressed sensing and sparse recovery

- Overview of sparse recovery from sub-Nyquist sampling.
- Part 2: Weighted ℓ_1 minimization
 - Sparse recovery with partial support information.

WSPGL1 00000000 Kaczmarz 0000000

Outline

Part 1: Compressed sensing and sparse recovery

• Overview of sparse recovery from sub-Nyquist sampling.

Part 2: Weighted ℓ_1 minimization

• Sparse recovery with partial support information.

Part 3: Optimization for sparse recovery

• The WSPGL1 algorithm.

WSPGL1 00000000 Kaczmarz 0000000

Outline

Part 1: Compressed sensing and sparse recovery

• Overview of sparse recovery from sub-Nyquist sampling.

Part 2: Weighted ℓ_1 minimization

• Sparse recovery with partial support information.

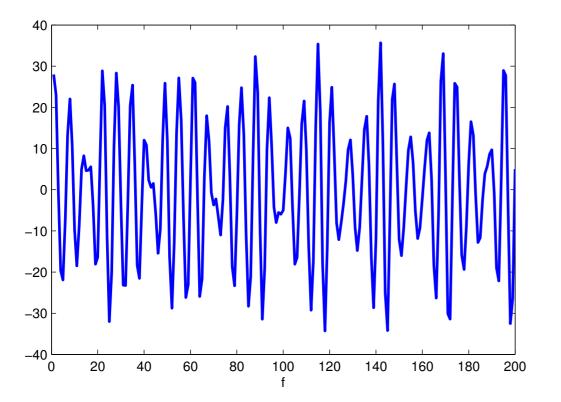
Part 3: Optimization for sparse recovery

• The WSPGL1 algorithm.

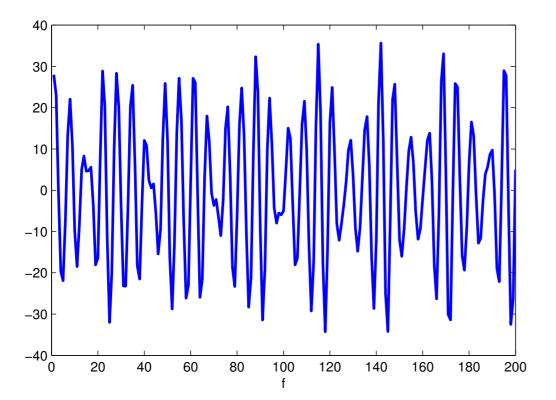
Part 4: Sparse randomized Kaczmarz

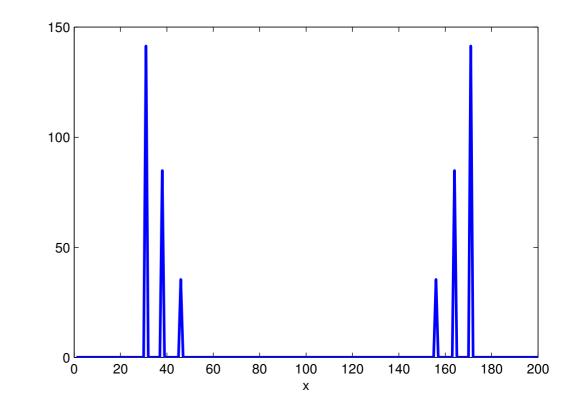
• Application to least-squares migration.

- We wish to acquire a signal f using compressive measurements y.
- f admits a sparse or compressible representation x in some domain D.
- Shannon-Nyquist sampling imposes a sampling interval $T \ge \frac{1}{2\Omega}$ (e.g. ≥ 90 samples).
- Compressed sensing addresses the question of how to recovery x from sub-Nyquist measurements y (e.g. around 50 random samples).

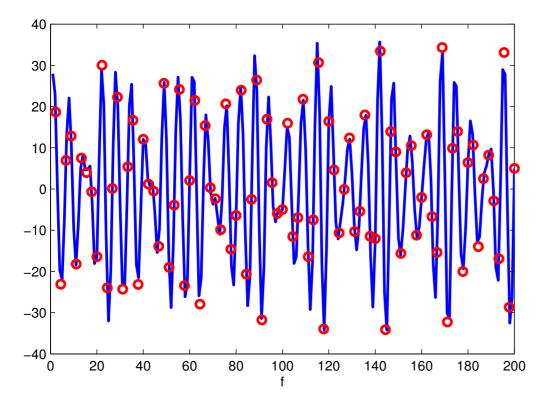


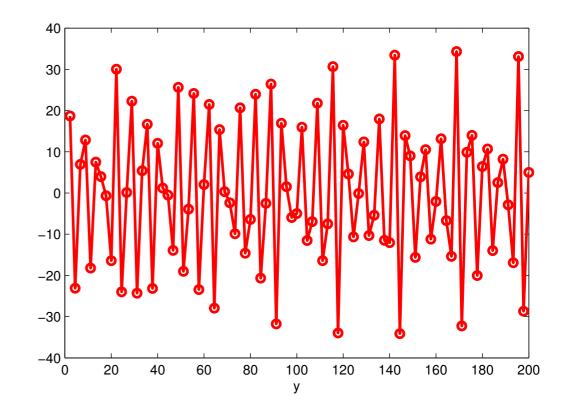
- We wish to acquire a signal f using compressive measurements y.
- f admits a sparse or compressible representation x in some domain D.
- Shannon-Nyquist sampling imposes a sampling interval $T \ge \frac{1}{2\Omega}$ (e.g. ≥ 90 samples).
- Compressed sensing addresses the question of how to recovery x from sub-Nyquist measurements y (e.g. around 50 random samples).



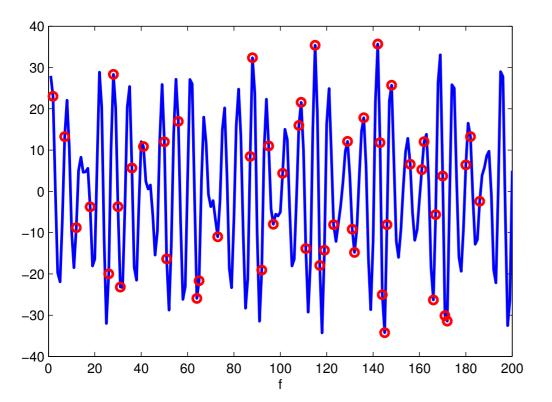


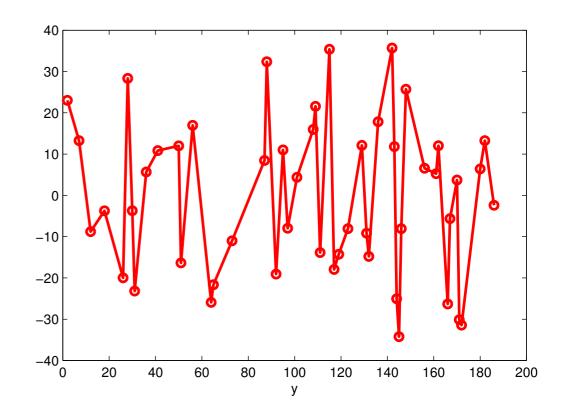
- We wish to acquire a signal f using compressive measurements y.
- f admits a sparse or compressible representation x in some domain D.
- Shannon-Nyquist sampling imposes a sampling interval $T \ge \frac{1}{2\Omega}$ (e.g. ≥ 90 samples).
- Compressed sensing addresses the question of how to recovery x from sub-Nyquist measurements y (e.g. around 50 random samples).



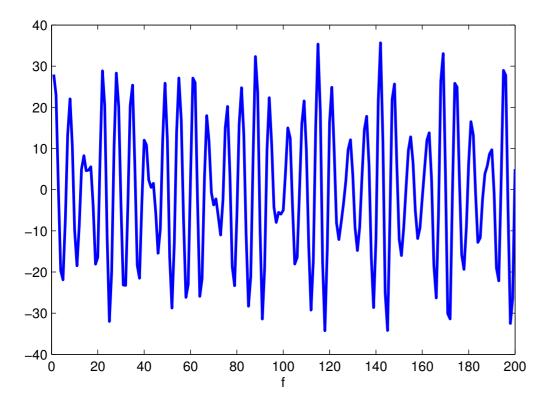


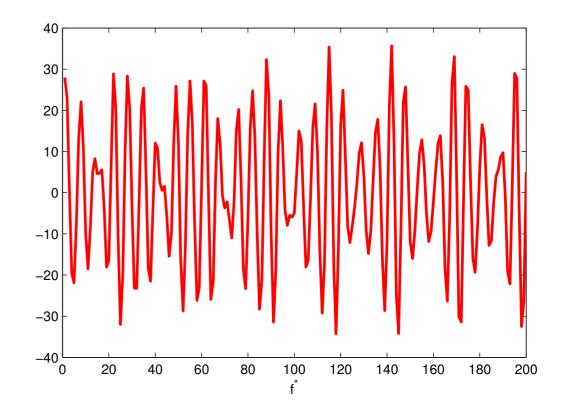
- We wish to acquire a signal f using compressive measurements y.
- f admits a sparse or compressible representation x in some domain D.
- Shannon-Nyquist sampling imposes a sampling interval $T \ge \frac{1}{2\Omega}$ (e.g. ≥ 90 samples).
- Compressed sensing addresses the question of how to recovery \mathbf{x} from sub-Nyquist measurements \mathbf{y} (e.g. around 50 random samples).





- We wish to acquire a signal f using compressive measurements y.
- f admits a sparse or compressible representation x in some domain D.
- Shannon-Nyquist sampling imposes a sampling interval $T \ge \frac{1}{2\Omega}$ (e.g. ≥ 90 samples).
- Compressed sensing addresses the question of how to recovery **x** from sub-Nyquist measurements **y** (e.g. around 50 random samples).

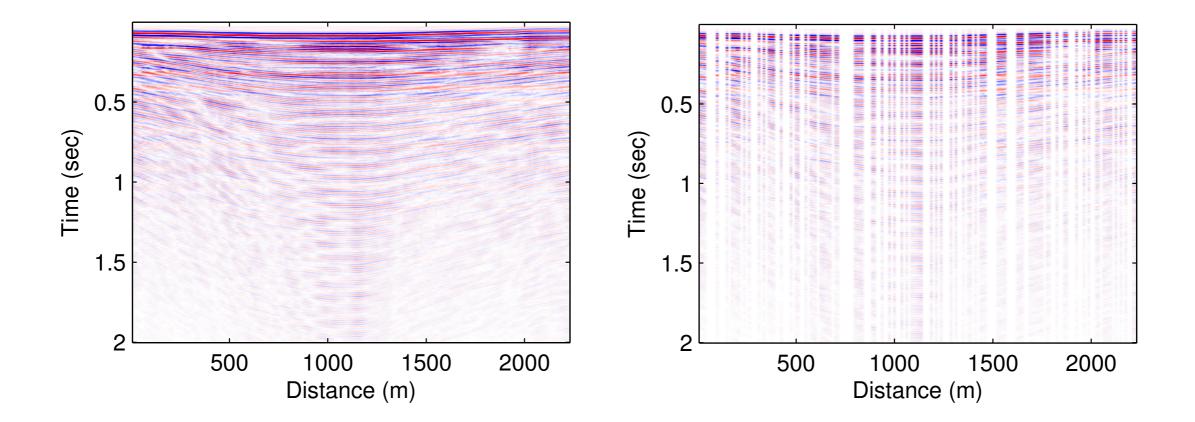




WSPGL1 00000000

Example: Seismic data interpolation

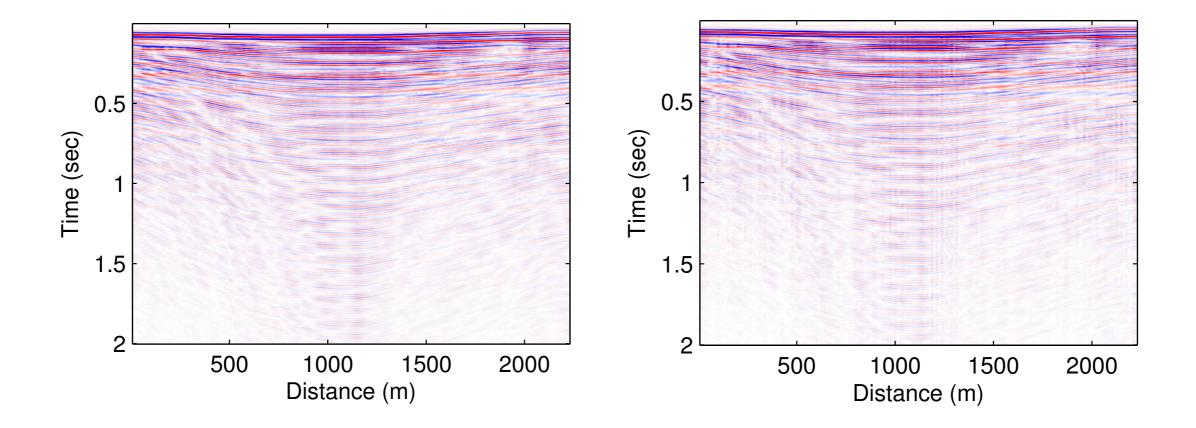
 Economical acquisition of seismic traces that are sparse in the curvelet domain.



WSPGL1 00000000

Example: Seismic data interpolation

• Economical acquisition of seismic traces that are sparse in the curvelet domain.



WSPGL1 00000000

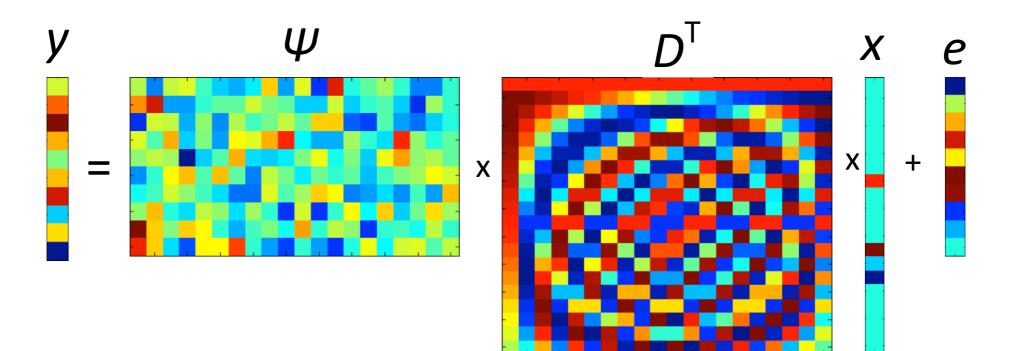
Compressed sensing basics

- We want to recover a k-sparse signal $\mathbf{x} \in \mathbb{R}^N$.
- Given $n \ll N$ linear and noisy sub-Nyquist measurements $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{e}$, where $A = \mathbf{\Psi}\mathbf{D}^T$.
- Under certain conditions on x and A, the signal x can be recovered from y by solving certain optimization problems:

The combinatorial ℓ_0 minimization problem.

The polynomial-time ℓ_1 minimization problem.

Other algorithms, e.g.: OMP, CoSaMP, AMP, IRLS,...



WSPGL1 00000000

Compressed sensing basics

- We want to recover a k-sparse signal $\mathbf{x} \in \mathbb{R}^N$.
- Given $n \ll N$ linear and noisy sub-Nyquist measurements $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{e}$, where $A = \mathbf{\Psi}\mathbf{D}^T$.
- Under certain conditions on x and A, the signal x can be recovered from y by solving certain optimization problems:
 - The combinatorial ℓ_0 minimization problem.
 - The polynomial-time ℓ_1 minimization problem.
 - Other algorithms, e.g.: OMP, CoSaMP, AMP, IRLS,..

Definition: Restricted Isometry Property (RIP) (Candés and Tao '05)

The RIP constant δ_k is defined as the smallest constant such that $\forall x \in \Sigma_k^N$

$$(1 - \delta_k) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \delta_k) \|x\|_2^2,$$

WSPGL1 00000000

Compressed sensing basics

- We want to recover a k-sparse signal $\mathbf{x} \in \mathbb{R}^N$.
- Given $n \ll N$ linear and noisy sub-Nyquist measurements $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{e}$, where $A = \mathbf{\Psi}\mathbf{D}^T$.
- Under certain conditions on \mathbf{x} and \mathbf{A} , the signal \mathbf{x} can be recovered from \mathbf{y} by solving certain optimization problems:
 - The combinatorial ℓ_0 minimization problem.
 - The polynomial-time ℓ_1 minimization problem.
 - Other algorithms, e.g.: OMP, CoSaMP, AMP, IRLS,...

Constrained ℓ_0 -minimization

•
$$\min_{\mathbf{u}\in\mathbb{R}^N} \|\mathbf{u}\|_0$$
 subject to $\mathbf{y} = \mathbf{A}\mathbf{x}$

WSPGL1 00000000

Compressed sensing basics

- We want to recover a k-sparse signal $\mathbf{x} \in \mathbb{R}^N$.
- Given $n \ll N$ linear and noisy sub-Nyquist measurements $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{e}$, where $A = \mathbf{\Psi}\mathbf{D}^T$.
- Under certain conditions on \mathbf{x} and \mathbf{A} , the signal \mathbf{x} can be recovered from \mathbf{y} by solving certain optimization problems:
 - The combinatorial ℓ_0 minimization problem.
 - The polynomial-time ℓ_1 minimization problem.
 - Other algorithms, e.g.: OMP, CoSaMP, AMP, IRLS,...

Constrained ℓ_1 -minimization

•
$$\min_{\mathbf{u}\in\mathbb{R}^N} \|\mathbf{u}\|_1$$
 subject to $\|\mathbf{A}\mathbf{u}-\mathbf{y}\|_2 \le \|\mathbf{e}\|_2$, $\|\mathbf{u}\|_1 = \sum_{i=1}^N |u_i|$

WSPGL1 00000000

Compressed sensing basics

- We want to recover a k-sparse signal $\mathbf{x} \in \mathbb{R}^N$.
- Given $n \ll N$ linear and noisy sub-Nyquist measurements $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{e}$, where $A = \mathbf{\Psi}\mathbf{D}^T$.
- Under certain conditions on x and A, the signal x can be recovered from y by solving certain optimization problems:
 - The combinatorial ℓ_0 minimization problem.
 - The polynomial-time ℓ_1 minimization problem.
 - Other algorithms, e.g.: OMP, CoSaMP, AMP, IRLS,...

Weighted ℓ_1 minimization 0000000000

WSPGL1 00000000

Stability and Robustness

- If k < n/2 and A has the RIP with $\delta_{2k} < 1$, then ℓ_0 minimization recovers x exactly.
- When $k \leq n/\log(N/n)$ and under stricter conditions on the RIP of A, solving the ℓ_1 -minimization problem also recovers x.

Compressed	sensing
000000	

WSPGL1 00000000

Stability and Robustness

- If k < n/2 and A has the RIP with $\delta_{2k} < 1$, then ℓ_0 minimization recovers x exactly.
- When $k \leq n/\log(N/n)$ and under stricter conditions on the RIP of A, solving the ℓ_1 -minimization problem also recovers **x**.

Theorem (Candés, Romberg, Tao '06); (Donoho)

If for some a > 1 the matrix **A** satisfies the RIP with $\delta_{(a+1)k} < \frac{a-1}{a+1}$,

then the solution \mathbf{x}^* to the ℓ_1 minimization problem obeys

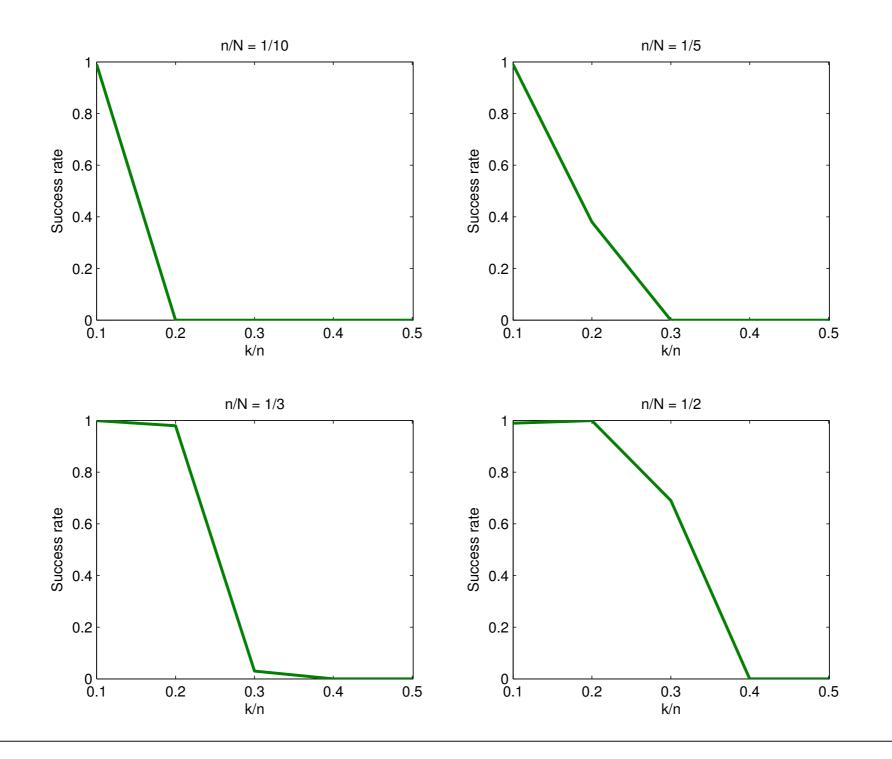
$$\|\mathbf{x}^* - \mathbf{x}\|_2 \le C_0 \|e\|_2^2 + C_1 k^{-1/2} \|\mathbf{x} - \mathbf{x}_k\|_1$$

Weighted ℓ_1 minimization 0000000000

WSPGL1 00000000 Kaczmarz 0000000

The $\ell_1 - \ell_0$ gap

• Recovery using ℓ_1 minimization.



WSPGL1 00000000

Bridging the $\ell_1 - \ell_0$ gap

- Incorporate support information: weighted ℓ_1 minimization (FMSY '12).
- Optimization for sparse recovery: the WSPGL1 algorithm (Mansour '12).

Compressed	sensing
000000	

WSPGL1 00000000 Kaczmarz 0000000

Part 1: Compressed sensing and sparse recovery

Part 2: Weighted ℓ_1 minimization

Part 3: ℓ_1 solvers and the WSPGL1 algorithm

Part 4: Sparse randomized Kaczmarz

Weighted ℓ_1 minimization \bullet 000000000

WSPGL1 00000000

Beyond ℓ_1 minimization

• Suppose k, n and N are such that ℓ_1 -minimization fails to recover **x**.

- Suppose we have prior information on the support of **x**.
- How do we incorporate this knowledge in the recovery algorithm while keeping the measurement process non-adaptive?

Inexact recovery using ℓ_1 minimization

				^	
٩	Eg.	when	k >	$k \approx n/$	$\log(N/n)$

Weighted ℓ_1 minimization \bullet 000000000

WSPGL1 00000000 Kaczmarz 0000000

Beyond ℓ_1 minimization

- Suppose k, n and N are such that ℓ_1 -minimization fails to recover \mathbf{x} .
- Suppose we have prior information on the support of **x**.
- How do we incorporate this knowledge in the recovery algorithm while keeping the measurement process non-adaptive?

Recovery using prior information

• Eg. when
$$k > \hat{k} \approx n/\log(N/n)$$

• Eg. indices 1, 3, and 6 are non-zero.

Weighted ℓ_1 minimization \bullet 000000000

WSPGL1 00000000

Beyond ℓ_1 minimization

- Suppose k, n and N are such that ℓ_1 -minimization fails to recover \mathbf{x} .
- Suppose we have prior information on the support of \mathbf{x} .
- How do we incorporate this knowledge in the recovery algorithm while keeping the measurement process non-adaptive?

Weighted ℓ_1 minimization 000000000

WSPGL1 00000000 Kaczmarz 0000000

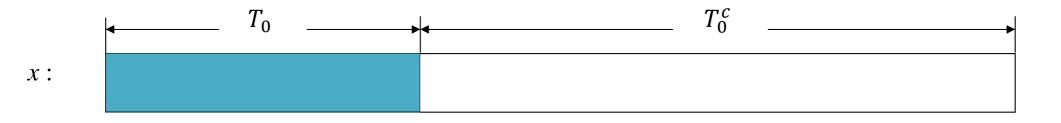
Weighted ℓ_1 minimization

• Suppose that \mathbf{x} is an arbitrary signal in \mathbb{R}^N and let $T_0 = \operatorname{supp}(\mathbf{x}_k)$.

• Let T be a known support estimate that is partially accurate.

• Define the weighted ℓ_1 norm $\|\mathbf{x}\|_{1,\mathbf{w}} := \sum_i \mathbf{w}_i |x_i|$ and the problem

 $\min_{\mathbf{x}} \|\mathbf{x}\|_{1,\mathbf{w}} \text{ subject to } \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2 \le \epsilon \quad \text{with} \quad \mathbf{w}_i = \begin{cases} 1, & i \in \widetilde{T}^c, \\ \omega, & i \in \widetilde{T}. \end{cases}$



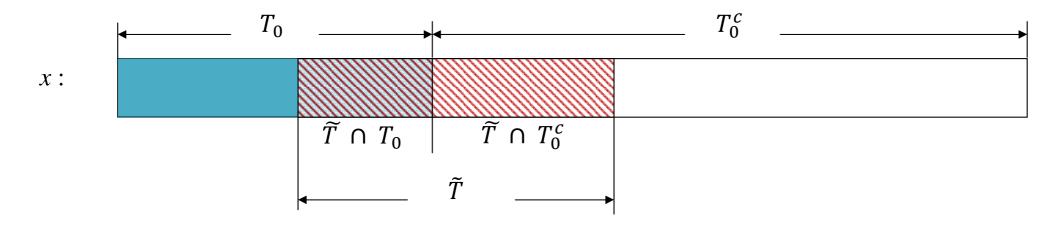
Weighted ℓ_1 minimization 000000000

WSPGL1 00000000 Kaczmarz 0000000

Weighted ℓ_1 minimization

- Suppose that \mathbf{x} is an arbitrary signal in \mathbb{R}^N and let $T_0 = \operatorname{supp}(\mathbf{x}_k)$.
- Let \widetilde{T} be a known support estimate that is partially accurate.
- Define the weighted ℓ_1 norm $\|\mathbf{x}\|_{1,\mathbf{w}} := \sum_i \mathbf{w}_i |x_i|$ and the problem

$$\min_{\mathbf{x}} \|\mathbf{x}\|_{1,\mathbf{w}} \text{ subject to } \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2 \le \epsilon \quad \text{with} \quad \mathbf{w}_i = \begin{cases} 1, & i \in T^c, \\ \omega, & i \in \widetilde{T}. \end{cases}$$

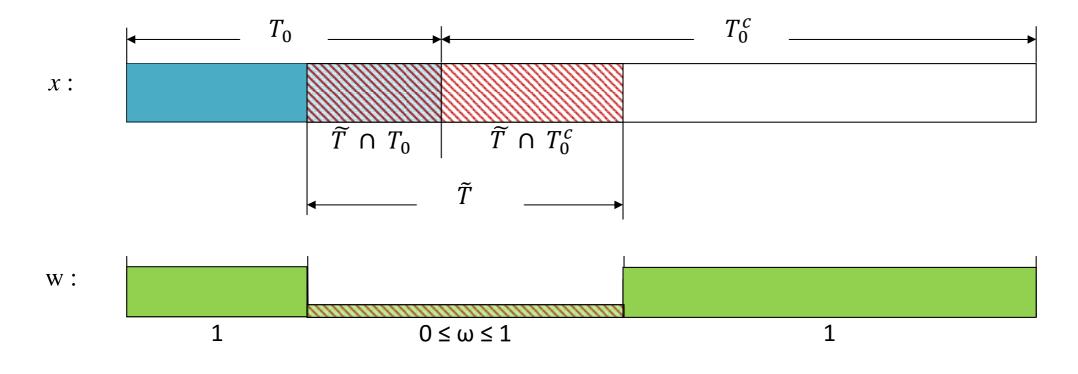


WSPGL1 00000000 Kaczmarz 0000000

Weighted ℓ_1 minimization

- Suppose that \mathbf{x} is an arbitrary signal in \mathbb{R}^N and let $T_0 = \operatorname{supp}(\mathbf{x}_k)$.
- Let \tilde{T} be a known support estimate that is partially accurate.
- Define the weighted ℓ_1 norm $\|\mathbf{x}\|_{1,\mathbf{w}} := \sum_i \mathbf{w}_i |x_i|$ and the problem

$$\min_{\mathbf{x}} \|\mathbf{x}\|_{1,\mathbf{w}} \text{ subject to } \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2 \le \epsilon \quad \text{with} \quad \mathbf{w}_i = \begin{cases} 1, & i \in \widetilde{T}^c, \\ \omega, & i \in \widetilde{T}. \end{cases}$$



(FMSY '12) (Vaswani and Lu) (Khajehnejad et al.) (L. Jacques)

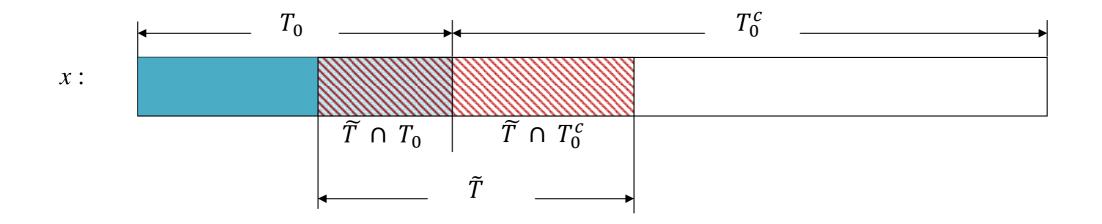
Weighted ℓ_1 minimization 000000000

WSPGL1 00000000 Kaczmarz 0000000

Stability and Robustness

- Two parameters determine the performance of weighted ℓ_1 :
 - $\rho = \frac{|\widetilde{T}|}{|T_0|}$ is the relative size of \widetilde{T} .

•
$$\alpha = \frac{|\widetilde{T} \cap T_0|}{|\widetilde{T}|}$$
 is the accuracy of \widetilde{T} .



Weighted ℓ_1 minimization 000000000

WSPGL1 00000000 Kaczmarz 0000000

Stability and Robustness

• Two parameters determine the performance of weighted ℓ_1 :

• $\rho = \frac{|\widetilde{T}|}{|T_0|}$ is the relative size of \widetilde{T} .

•
$$\alpha = \frac{|\widetilde{T} \cap T_0|}{|\widetilde{T}|}$$
 is the accuracy of \widetilde{T} .

Theorem (FMSY '12)

If for some $a \ge (1 - \alpha)\rho$, a > 1, the matrix **A** satisfies $\delta_{(a+1)k} < \frac{a - \gamma^2}{a + \gamma^2}$. Then the solution \mathbf{x}^* to the weighted ℓ_1 problem obeys

 $\|\mathbf{x}^* - \mathbf{x}\|_2 \le C_0'(\gamma)\epsilon + C_1'(\gamma)k^{-1/2} \left(\omega \|\mathbf{x}_{T_0^c}\|_1 + (1-\omega) \|\mathbf{x}_{\widetilde{T}^c \cap T_0^c}\|_1\right).$

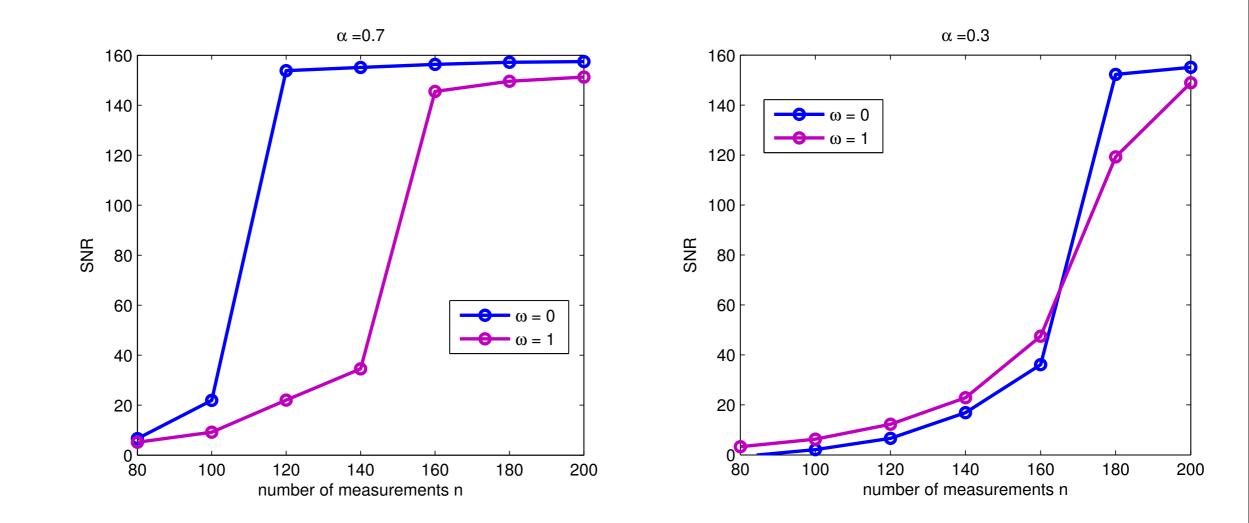
•
$$\gamma = \left(\omega + (1-\omega)\sqrt{1+\rho-2\alpha\rho}\right)$$

Weighted ℓ_1 minimization 000000000

WSPGL1 00000000 Kaczmarz 0000000

Recovery of Sparse Signals

- SNR averaged over 20 experiments for k-sparse signals x with k = 40, and N = 500.
- The noise free case:

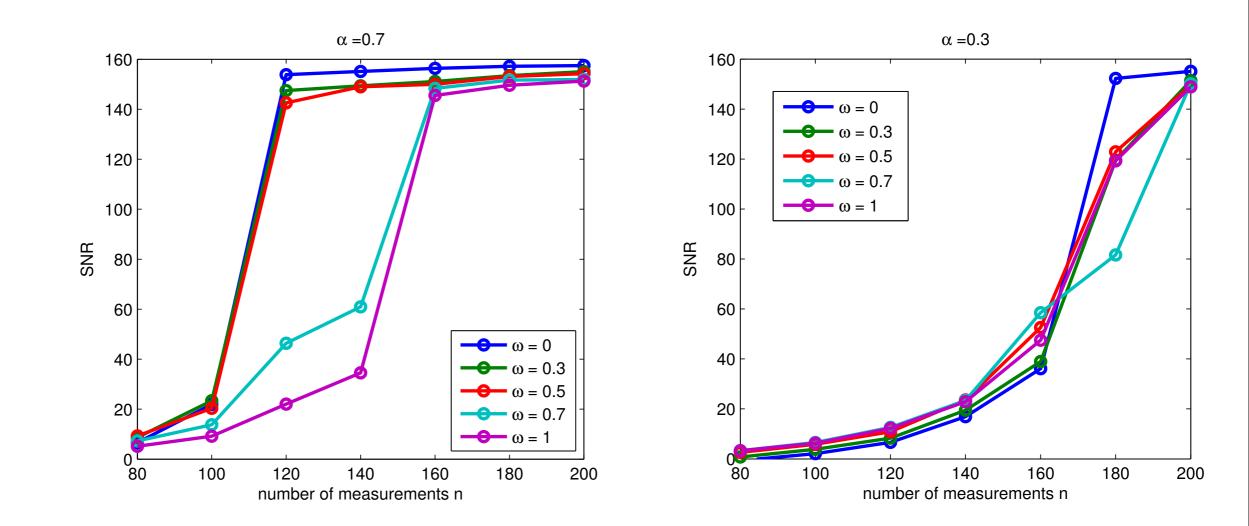


Weighted ℓ_1 minimization 000000000

WSPGL1 00000000 Kaczmarz 0000000

Recovery of Sparse Signals

- SNR averaged over 20 experiments for k-sparse signals x with k = 40, and N = 500.
- The noise free case:



WSPGL1 00000000

Kaczmarz 0000000

Application to seismic trace interpolation

WSPGL1 00000000 Kaczmarz 0000000

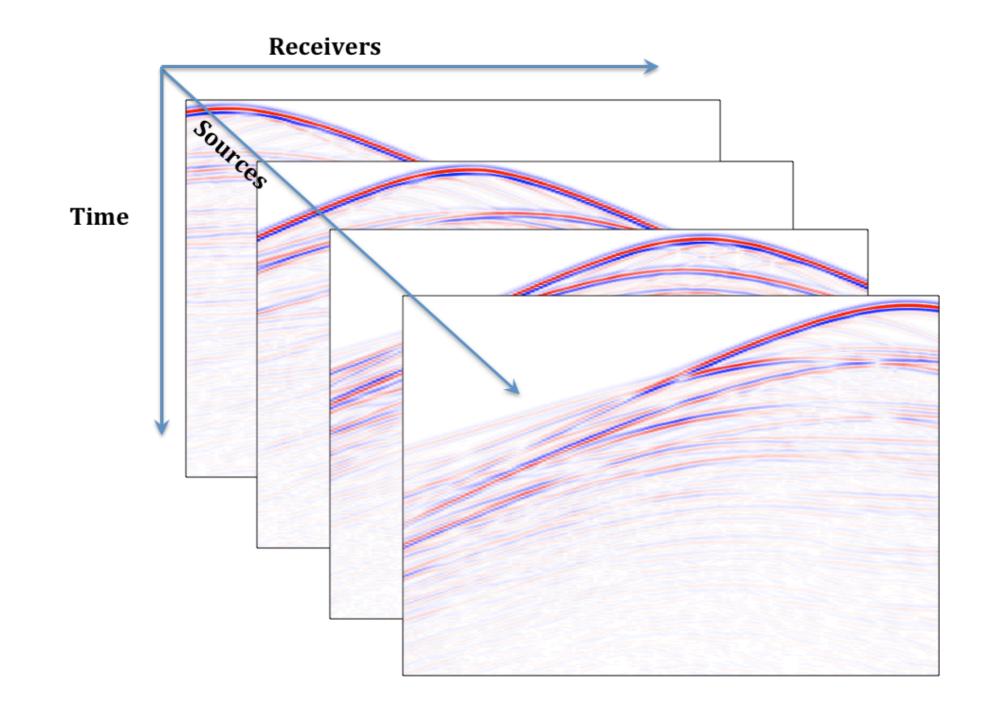
Seismic data acquisition

Figure courtesy of DNOISE and ION.

WSPGL1 00000000 Kaczmarz 0000000

Randomized acquisition of seismic lines

• Consider a seismic line with 178 sources, 178 receivers, and 500 time samples.

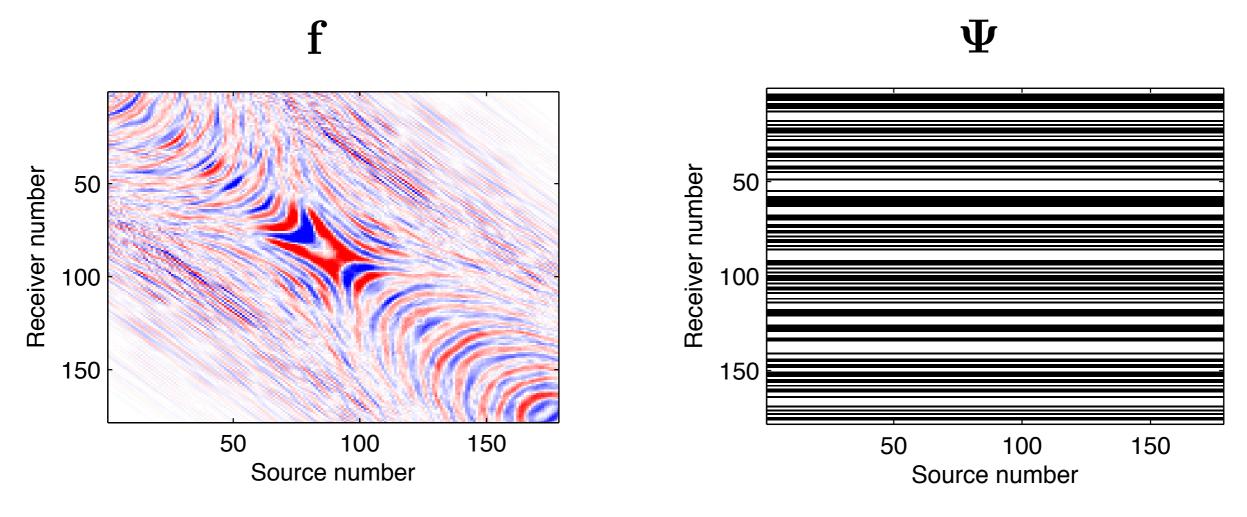


WSPGL1 00000000

Kaczmarz 0000000

Randomized acquisition of seismic lines

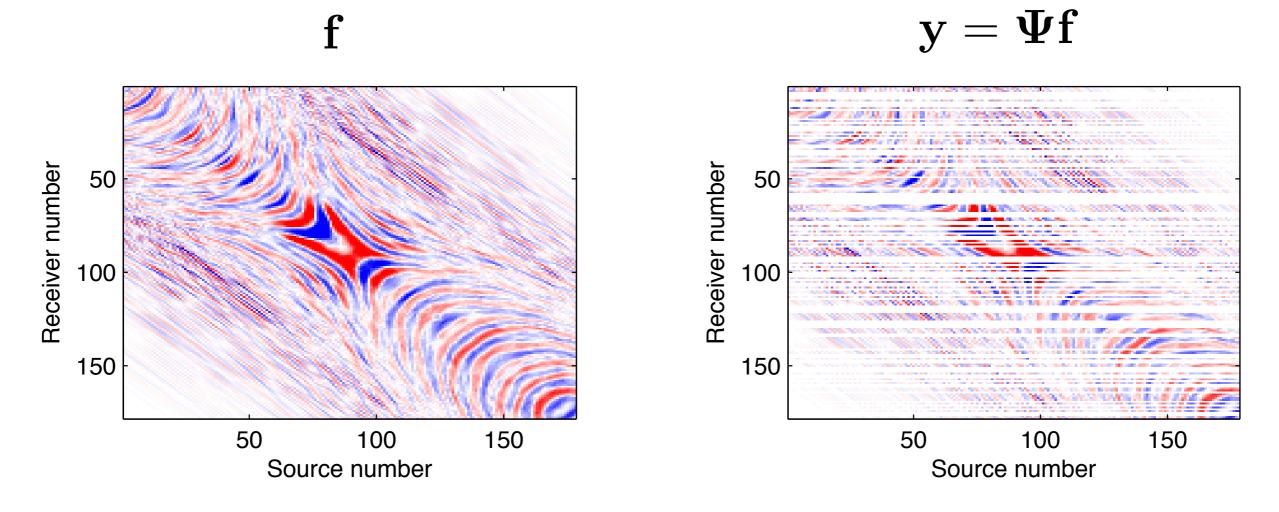
- Consider a seismic line with 178 sources, 178 receivers, and 500 time samples.
- The receiver spread is randomly subsampled using the mask Ψ .



WSPGL1 00000000

Randomized acquisition of seismic lines

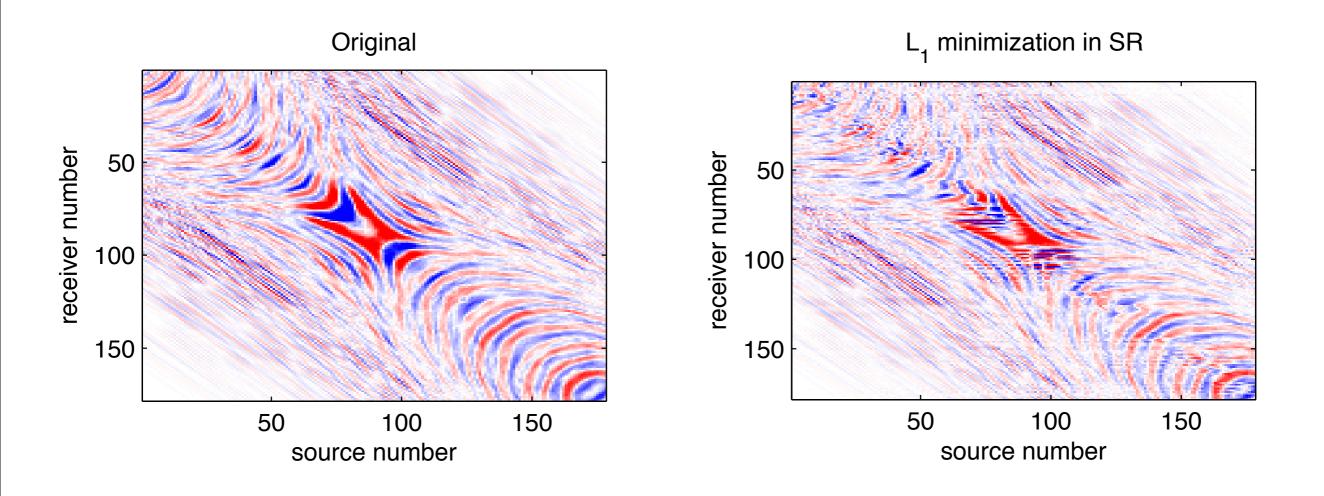
- Consider a seismic line with 178 sources, 178 receivers, and 500 time samples.
- The receiver spread is randomly subsampled using the mask Ψ .



WSPGL1 00000000

Randomized acquisition of seismic lines

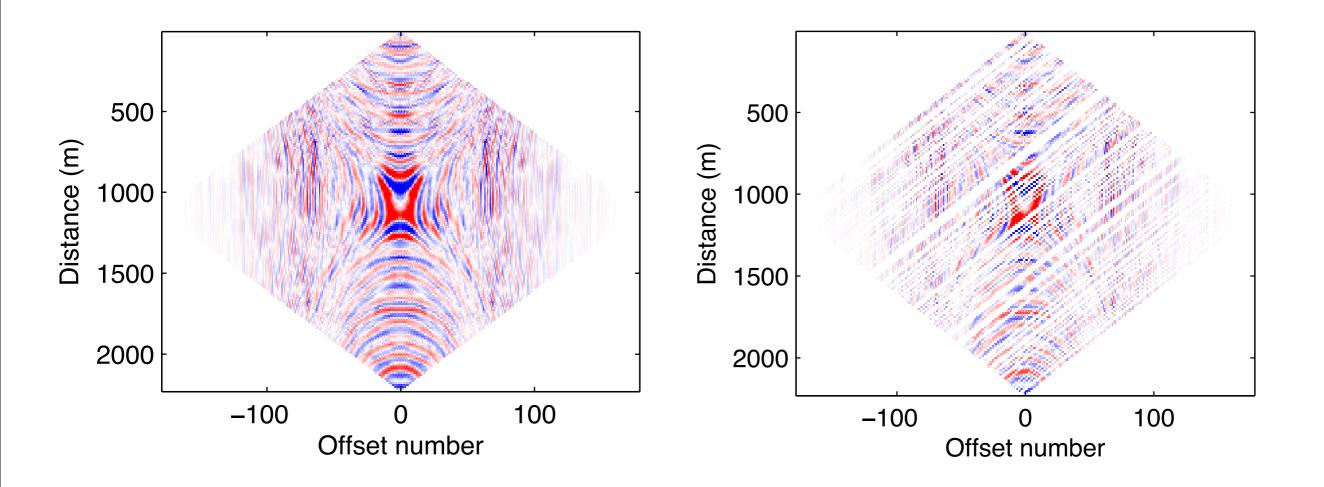
- Consider a seismic line with 178 sources, 178 receivers, and 500 time samples.
- Recovery using ℓ_1 minimization on frequency slices.



WSPGL1 00000000 Kaczmarz 0000000

What more can be done?

- Improve the RIP of $\mathbf{A} = \Psi \mathbf{D}^{\mathbf{H}}$ by changing the interaction of Ψ and \mathbf{D}^{H} .
- E.g.: Perform recovery in the midpoint-offset domain.



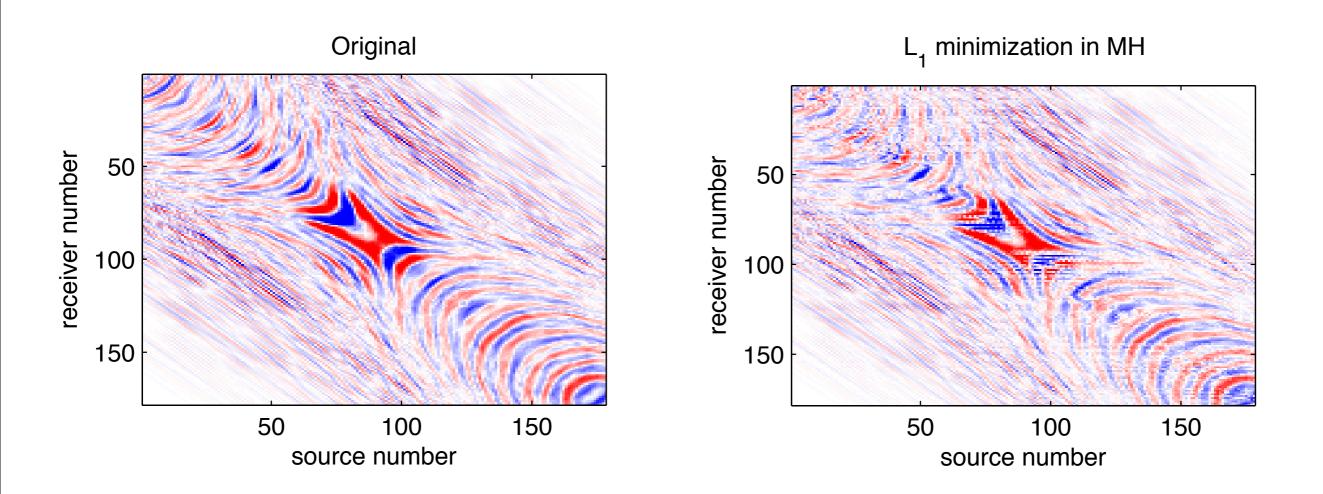
Weighted ℓ_1 minimization 0000000000

WSPGL1 0000000

0000000

What more can be done?

- Incorporate support information using weighted- ℓ_1 minimization.
- E.g.: Adjacent frequency slices and offset slices have highly correlated curvelet domain support sets.



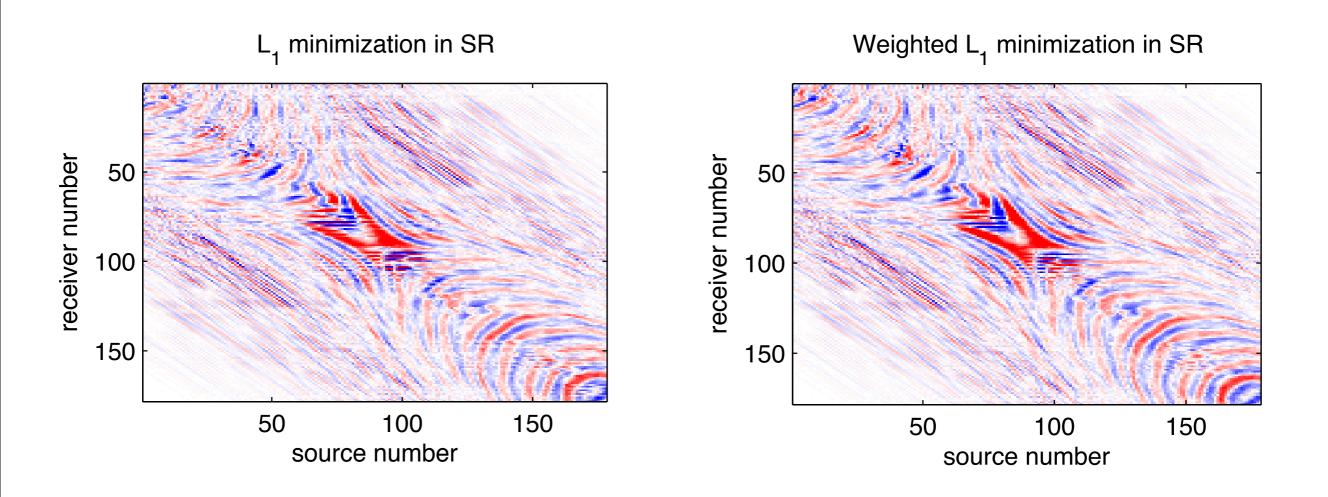
Kaczmarz

0000000

WSPGL1 00000000

What more can be done?

- Incorporate support information using weighted- ℓ_1 minimization.
- E.g.: Adjacent frequency slices and offset slices have highly correlated curvelet domain support sets.



Kaczmarz

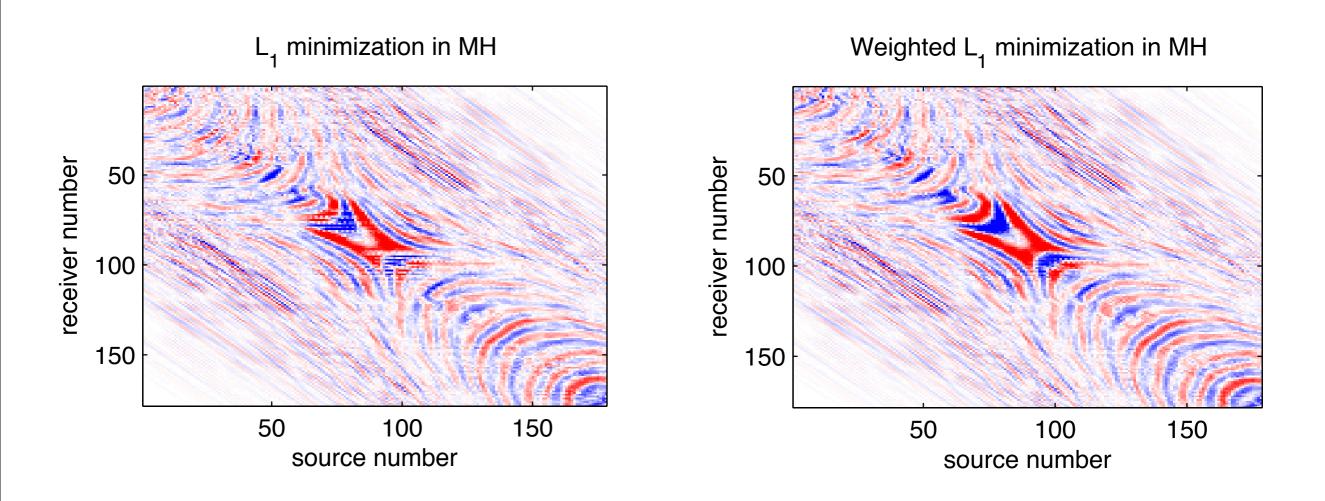
0000000

WSPGL1 00000000

Kaczmarz 0000000

What more can be done?

- Incorporate support information using weighted- ℓ_1 minimization.
- E.g.: Adjacent frequency slices and offset slices have highly correlated curvelet domain support sets.

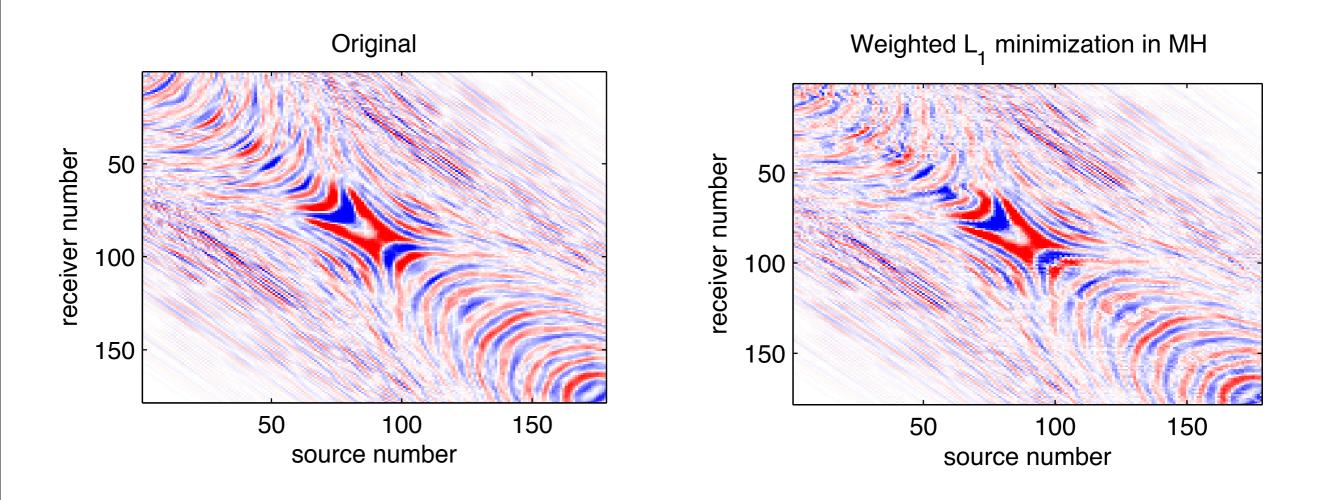


WSPGL1 00000000

Kaczmarz 0000000

What more can be done?

- Incorporate support information using weighted- ℓ_1 minimization.
- E.g.: Adjacent frequency slices and offset slices have highly correlated curvelet domain support sets.

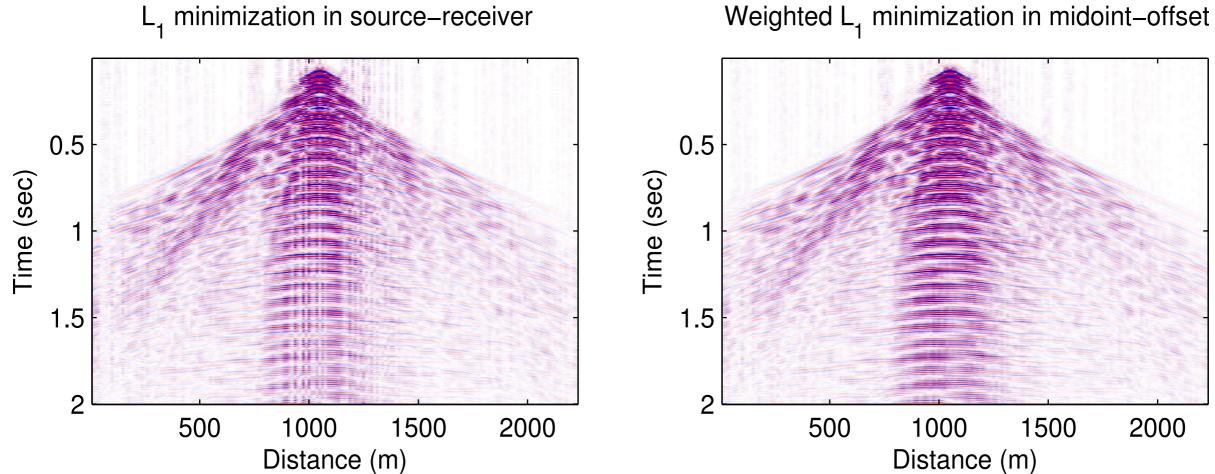


Weighted ℓ_1 minimization 00000000000

WSPGL1 00000000

What more can be done?

- Incorporate support information using weighted- ℓ_1 minimization. ٩
- E.g.: Adjacent frequency slices and offset slices have highly correlated curvelet domain support sets.



Kaczmarz

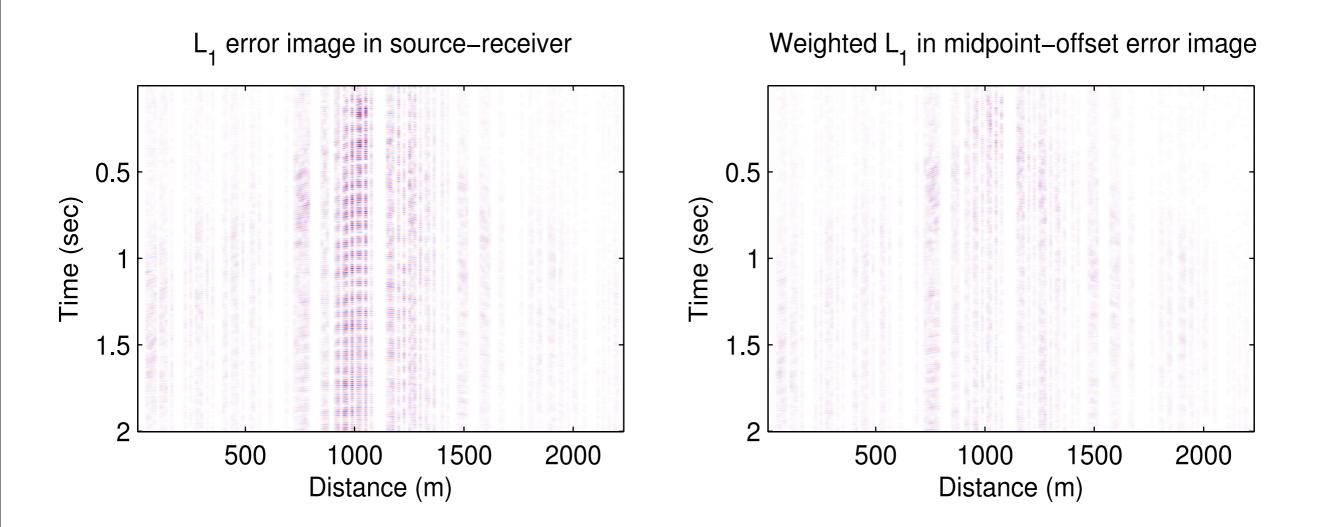
0000000

WSPGL1 00000000

Kaczmarz 0000000

What more can be done?

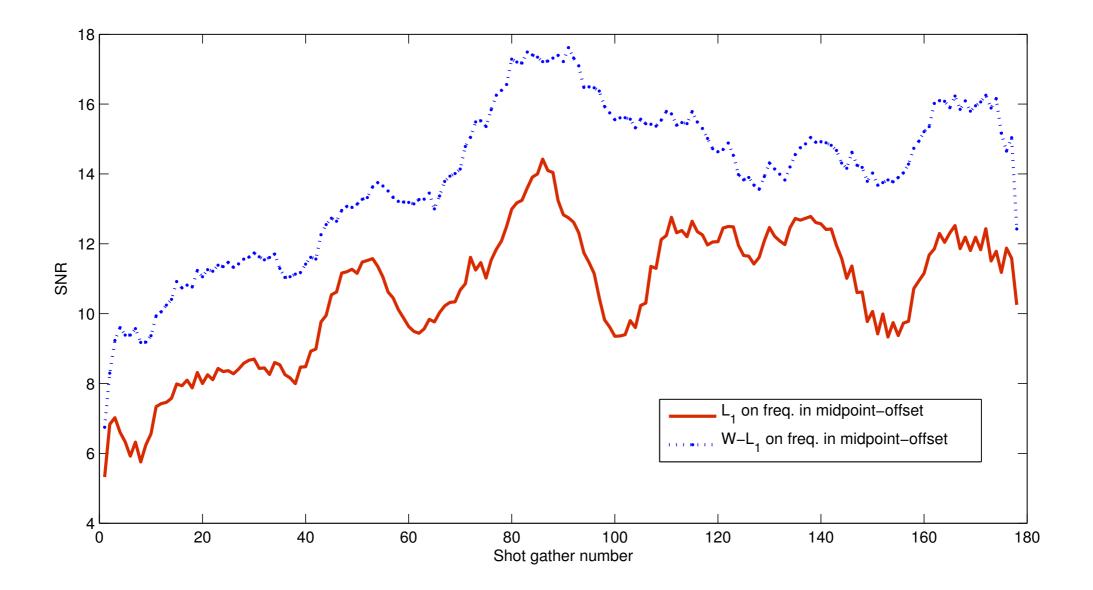
- Incorporate support information using weighted- ℓ_1 minimization.
- E.g.: Adjacent frequency slices and offset slices have highly correlated curvelet domain support sets.



WSPGL1 00000000

Seismic recovery using weighted ℓ_1 minimization

(Mansour, Herrmann, Yilmaz '12)



Weighted ℓ_1 minimization 00000000

WSPGL1 00000000 Kaczmarz 0000000

Recap of weighted ℓ_1

- If a prior support estimate is available, then weighted ℓ_1 minimization guarantees better recovery when $\alpha > 0.5$.
 - Can we extend this analysis to multiple weighting sets? Yes! (Mansour, Yilmaz '11)
- What if we had no prior support estimate:
 - How would an iterative weighted ℓ_1 algorithm that incorporates support accuracy perform?
 - The SDRL1 algorithm. (Mansour, Yilmaz '12) (CWB '08)
 - Is there a computationally efficient algorithm that achieves the gains of re-weighted 6.
 - The WSPGL1 algorithm. (Mansour '12) (Asif and Romberg '12)

Weighted ℓ_1 minimization 00000000

WSPGL1 00000000 Kaczmarz 0000000

Recap of weighted ℓ_1

- If a prior support estimate is available, then weighted ℓ_1 minimization guarantees better recovery when $\alpha > 0.5$.
 - Can we extend this analysis to multiple weighting sets? Yes! (Mansour, Yilmaz '11)
- What if we had no prior support estimate:
 - How would an iterative weighted ℓ_1 algorithm that incorporates support accuracy perform?
 - The SDRL1 algorithm. (Mansour, Yilmaz '12) (CWB '08)
 - Is there a computationally efficient algorithm that achieves the gains of re-weighted ℓ_1 ?

The WSPGL1 algorithm. (Mansour '12) (Asif and Romberg '12)

Weighted ℓ_1 minimization 00000000

WSPGL1 00000000 Kaczmarz 0000000

Recap of weighted ℓ_1

- If a prior support estimate is available, then weighted ℓ_1 minimization guarantees better recovery when $\alpha > 0.5$.
 - Can we extend this analysis to multiple weighting sets?
 Yes! (Mansour, Yilmaz '11)
- What if we had no prior support estimate:
 - How would an iterative weighted ℓ_1 algorithm that incorporates support accuracy perform?

The SDRL1 algorithm. (Mansour, Yilmaz '12) (CWB '08)

• Is there a computationally efficient algorithm that achieves the gains of re-weighted ℓ_1 ?

The WSPGL1 algorithm. (Mansour '12) (Asif and Romberg '12)

Weighted ℓ_1 minimization 00000000

WSPGL1 00000000

Recap of weighted ℓ_1

- If a prior support estimate is available, then weighted ℓ_1 minimization guarantees better recovery when $\alpha > 0.5$.
 - Can we extend this analysis to multiple weighting sets?
 Yes! (Mansour, Yilmaz '11)
- What if we had no prior support estimate:
 - How would an iterative weighted ℓ_1 algorithm that incorporates support accuracy perform?

The SDRL1 algorithm. (Mansour, Yilmaz '12) (CWB '08)

• Is there a computationally efficient algorithm that achieves the gains of re-weighted ℓ_1 ?

The WSPGL1 algorithm. (Mansour '12) (Asif and Romberg '12)

Weighted ℓ_1 minimization 000000000

WSPGL1 00000000 Kaczmarz 0000000

Part 1: Compressed sensing and sparse recovery

Part 2: Weighted ℓ_1 minimization

Part 3: ℓ_1 solvers and the WSPGL1 algorithm

Part 4: Sparse randomized Kaczmarz

Weighted ℓ_1 minimization 0000000000

WSPGL1 •0000000 Kaczmarz 0000000

A BPDN solver

• van den Berg and Friedlander '08 developed the *Spectral Projected Gradient for* ℓ_1 *minimization* (SPGL1) algorithm.

• Given $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{e}$, want to solve the ℓ_1 problem

 $\mathbf{x}^* = \arg\min_{\mathbf{u}\in\mathbb{R}^N} \|\mathbf{u}\|_1$ subject to $\|\mathbf{A}\mathbf{u} - \mathbf{y}\|_2 \leq \epsilon$

• If $\tau^* = ||\mathbf{x}||_1$ is known, then \mathbf{x}^* can be found by solving the following LASSO problem:

$$\mathbf{x}^* = rg\min_{\mathbf{u} \in \mathbb{R}^N} \|\mathbf{A}\mathbf{u} - \mathbf{y}\|_2$$
 subject to $\|\mathbf{u}\|_1 \leq au^*$

• SPGL1 develops an efficient framework for finding the correct τ^* .

Weighted ℓ_1 minimization 0000000000

WSPGL1 •0000000 Kaczmarz 0000000

A BPDN solver

• van den Berg and Friedlander '08 developed the *Spectral Projected Gradient for* ℓ_1 *minimization* (SPGL1) algorithm.

• Given $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{e}$, want to solve the ℓ_1 problem

 $\mathbf{x}^* = \arg\min_{\mathbf{u}\in\mathbb{R}^N} \|\mathbf{u}\|_1$ subject to $\|\mathbf{A}\mathbf{u} - \mathbf{y}\|_2 \leq \epsilon$

• If $\tau^* = ||\mathbf{x}||_1$ is known, then \mathbf{x}^* can be found by solving the following LASSO problem:

 $\mathbf{x}^* = \arg\min_{\mathbf{u}\in\mathbb{R}^N} \|\mathbf{A}\mathbf{u} - \mathbf{y}\|_2$ subject to $\|\mathbf{u}\|_1 \leq \tau^*$

• SPGL1 develops an efficient framework for finding the correct τ^* .

Weighted ℓ_1 minimization 0000000000

WSPGL1 •0000000 Kaczmarz 0000000

A BPDN solver

- van den Berg and Friedlander '08 developed the *Spectral Projected Gradient for* ℓ_1 *minimization* (SPGL1) algorithm.
 - Given $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{e}$, want to solve the ℓ_1 problem

$$\mathbf{x}^* = \arg\min_{\mathbf{u}\in\mathbb{R}^N} \|\mathbf{u}\|_1$$
 subject to $\|\mathbf{A}\mathbf{u} - \mathbf{y}\|_2 \leq \epsilon$

• If $\tau^* = ||\mathbf{x}||_1$ is known, then \mathbf{x}^* can be found by solving the following LASSO problem:

$$\mathbf{x}^* = \arg\min_{\mathbf{u}\in\mathbb{R}^N} \|\mathbf{A}\mathbf{u} - \mathbf{y}\|_2$$
 subject to $\|\mathbf{u}\|_1 \leq \tau^*$

• SPGL1 develops an efficient framework for finding the correct au^* .

Weighted ℓ_1 minimization 0000000000

WSPGL1 •0000000 Kaczmarz 0000000

A BPDN solver

- van den Berg and Friedlander '08 developed the *Spectral Projected Gradient for* ℓ_1 *minimization* (SPGL1) algorithm.
 - Given $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{e}$, want to solve the ℓ_1 problem

$$\mathbf{x}^* = \arg\min_{\mathbf{u}\in\mathbb{R}^N} \|\mathbf{u}\|_1$$
 subject to $\|\mathbf{A}\mathbf{u} - \mathbf{y}\|_2 \leq \epsilon$

• If $\tau^* = ||\mathbf{x}||_1$ is known, then \mathbf{x}^* can be found by solving the following LASSO problem:

$$\mathbf{x}^* = rg\min_{\mathbf{u} \in \mathbb{R}^N} \|\mathbf{A}\mathbf{u} - \mathbf{y}\|_2$$
 subject to $\|\mathbf{u}\|_1 \le au^*$

• SPGL1 develops an efficient framework for finding the correct τ^* .

• Solves a sequence of LASSO subproblems (LS $_{\tau}$)

$$\mathbf{x}^{\tau_t} = \arg\min_{\mathbf{u}\in\mathbb{R}^N} \|\mathbf{A}\mathbf{u}-\mathbf{y}\|_2 \text{ subject to } \|\mathbf{u}\|_1 \leq \tau_t$$

• Initialize the algorithm at a point $\mathbf{x}^{(0)}$ giving an initial $au_0 = \|\mathbf{x}^{(0)}\|_1$.

• Update τ by traversing the Pareto curve defined by the function $\phi(\tau) = \|\mathbf{y} - \mathbf{A}\mathbf{x}^{\tau_t}\|_2$.

$$\tau_{t+1} = \tau_t + \frac{\phi(\tau_t) - \epsilon}{\phi'(\tau_t)},$$

• Solves a sequence of LASSO subproblems (LS $_{\tau}$)

$$\mathbf{x}^{\tau_t} = \arg\min_{\mathbf{u}\in\mathbb{R}^N} \|\mathbf{A}\mathbf{u}-\mathbf{y}\|_2$$
 subject to $\|\mathbf{u}\|_1 \leq \tau_t$

• Initialize the algorithm at a point $\mathbf{x}^{(0)}$ giving an initial $\tau_0 = \|\mathbf{x}^{(0)}\|_1$.

• Update τ by traversing the Pareto curve defined by the function $\phi(\tau) = \|\mathbf{y} - \mathbf{A}\mathbf{x}^{\tau_t}\|_2$.

$$\tau_{t+1} = \tau_t + \frac{\phi(\tau_t) - \epsilon}{\phi'(\tau_t)},$$

• Solves a sequence of LASSO subproblems (LS $_{\tau}$)

$$\mathbf{x}^{\tau_t} = \arg\min_{\mathbf{u}\in\mathbb{R}^N} \|\mathbf{A}\mathbf{u}-\mathbf{y}\|_2$$
 subject to $\|\mathbf{u}\|_1 \leq \tau_t$

- Initialize the algorithm at a point $\mathbf{x}^{(0)}$ giving an initial $\tau_0 = \|\mathbf{x}^{(0)}\|_1$.
- Update τ by traversing the Pareto curve defined by the function $\phi(\tau) = \|\mathbf{y} \mathbf{A}\mathbf{x}^{\tau_t}\|_2$.

$$\tau_{t+1} = \tau_t + \frac{\phi(\tau_t) - \epsilon}{\phi'(\tau_t)},$$

• Solves a sequence of LASSO subproblems (LS $_{\tau}$)

$$\mathbf{x}^{\tau_t} = \arg\min_{\mathbf{u}\in\mathbb{R}^N} \|\mathbf{A}\mathbf{u}-\mathbf{y}\|_2$$
 subject to $\|\mathbf{u}\|_1 \leq \tau_t$

- Initialize the algorithm at a point $\mathbf{x}^{(0)}$ giving an initial $\tau_0 = \|\mathbf{x}^{(0)}\|_1$.
- Update τ by traversing the Pareto curve defined by the function $\phi(\tau) = \|\mathbf{y} \mathbf{A}\mathbf{x}^{\tau_t}\|_2$.

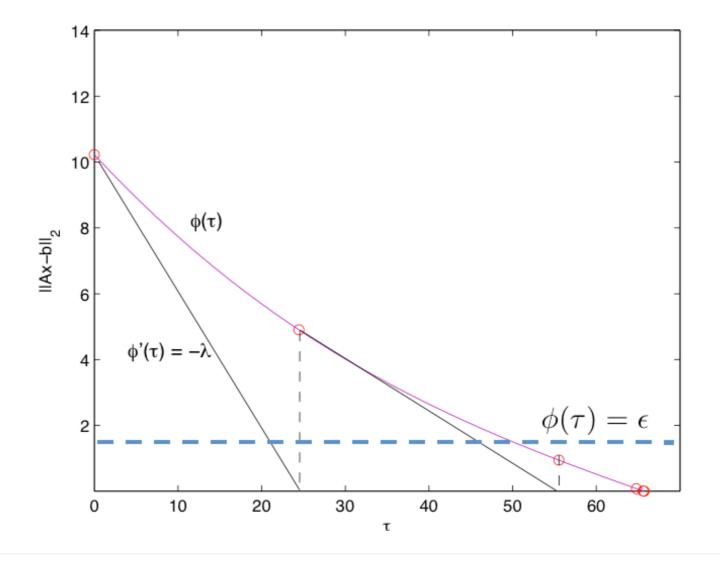
$$\tau_{t+1} = \tau_t + \frac{\phi(\tau_t) - \epsilon}{\phi'(\tau_t)},$$

Weighted ℓ_1 minimization 0000000000

WSPGL1 00000000 Kaczmarz 0000000

Traversing the Pareto curve

- Traces the optimal tradeoff between $\|\mathbf{y} \mathbf{A}\mathbf{x}^{\tau}\|_2$ and $\|\mathbf{x}^{\tau}\|_1$.
- The solution to the ℓ_1 problem is found at $\phi(\tau) = \epsilon$.

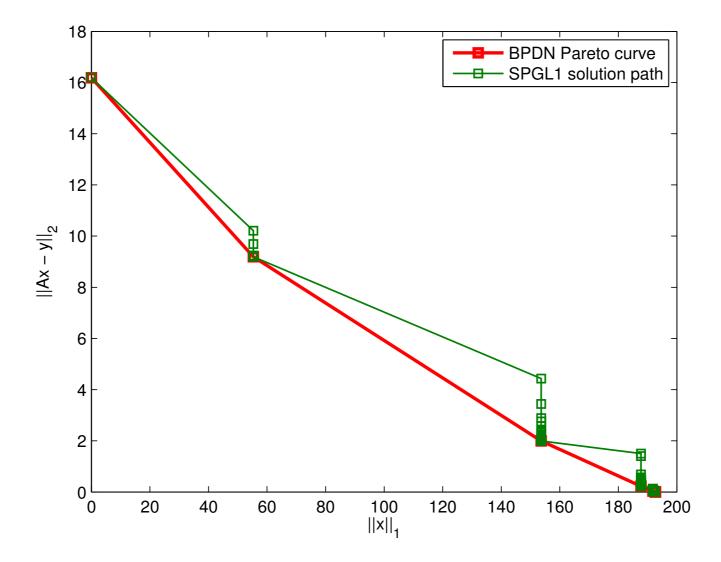


Weighted ℓ_1 minimization 0000000000

WSPGL1 00000000 Kaczmarz 0000000

Traversing the Pareto curve

- Traces the optimal tradeoff between $\|\mathbf{y} \mathbf{A}\mathbf{x}^{\tau}\|_2$ and $\|\mathbf{x}^{\tau}\|_1$.
- The solution to the ℓ_1 problem is found at $\phi(\tau) = \epsilon$.



WSPGL1 00000000

The WSPGL1 algorithm (Mansour '12)

• What if we incorporate support information in the LASSO subproblems?

Solve a sequence of weighted LASSO subproblems.

$$\mathbf{x}^{\tau_t} = \arg\min_{\mathbf{u}\in\mathbb{R}^N} \|\mathbf{A}\mathbf{u}-\mathbf{y}\|_2$$
 subject to $\|\mathbf{u}\|_{1,\mathrm{w}} \leq \tau_t$

Update the weight vector based on the solution of the previous subproblem.

$$\mathbf{w}_i = \left\{ egin{array}{ccc} \omega, & i \in \widetilde{T} \ 1, & i \in \widetilde{T}^c \end{array}, ext{ where } \widetilde{T} = ext{supp}(\mathbf{x}^{t-1}|_k). \end{array}
ight.$$

WSPGL1 00000000

The WSPGL1 algorithm (Mansour '12)

- What if we incorporate support information in the LASSO subproblems?
- Solve a sequence of weighted LASSO subproblems.

$$\mathbf{x}^{\tau_t} = \arg\min_{\mathbf{u}\in\mathbb{R}^N} \|\mathbf{A}\mathbf{u}-\mathbf{y}\|_2 \text{ subject to } \|\mathbf{u}\|_{1,\mathrm{w}} \leq \tau_t$$

Update the weight vector based on the solution of the previous subproblem.

$$\mathbf{w}_i = \left\{ egin{array}{ccc} \omega, & i \in \widetilde{T} \ 1, & i \in \widetilde{T}^c \end{array} , ext{ where } \widetilde{T} = \mathrm{supp}(\mathbf{x}^{t-1}|_k). \end{array}
ight.$$

WSPGL1 00000000

The WSPGL1 algorithm (Mansour '12)

- What if we incorporate support information in the LASSO subproblems?
- Solve a sequence of weighted LASSO subproblems.

$$\mathbf{x}^{\tau_t} = \arg\min_{\mathbf{u}\in\mathbb{R}^N} \|\mathbf{A}\mathbf{u} - \mathbf{y}\|_2$$
 subject to $\|\mathbf{u}\|_{1,w} \leq \tau_t$

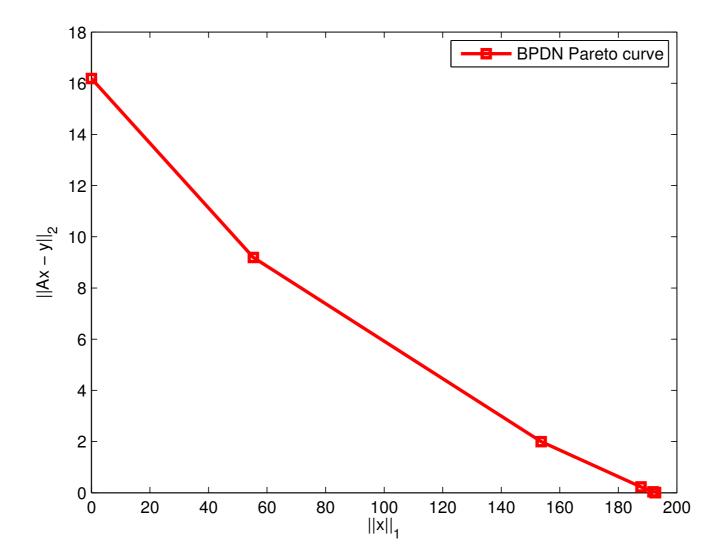
• Update the weight vector based on the solution of the previous subproblem.

$$\mathbf{w}_i = \begin{cases} \omega, & i \in \widetilde{T} \\ 1, & i \in \widetilde{T}^c \end{cases}, \text{ where } \widetilde{T} = \operatorname{supp}(\mathbf{x}^{t-1}|_k). \end{cases}$$

Weighted ℓ_1 minimization 0000000000

WSPGL1 00000000 Kaczmarz 0000000

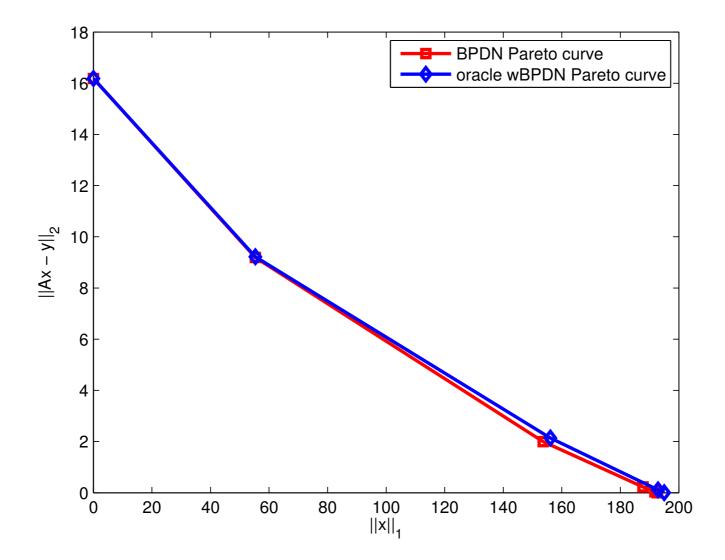
WSPGL1 and the Pareto curve



Weighted ℓ_1 minimization 0000000000

WSPGL1 00000000 Kaczmarz 0000000

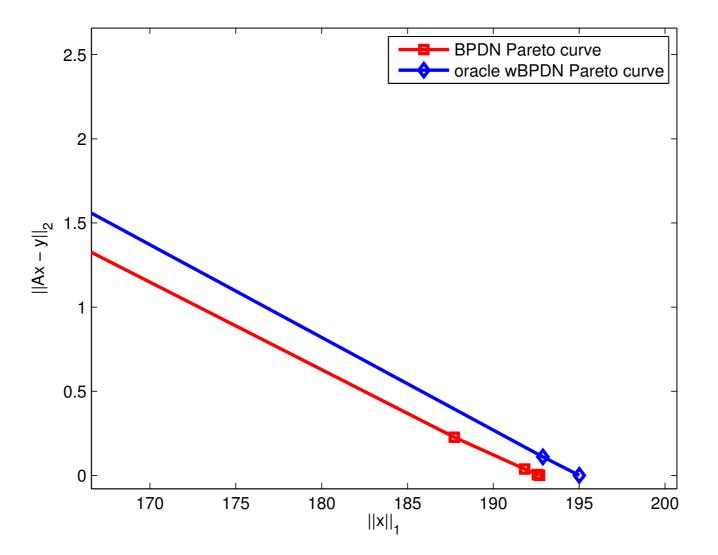
WSPGL1 and the Pareto curve



Weighted ℓ_1 minimization 0000000000

WSPGL1 00000000

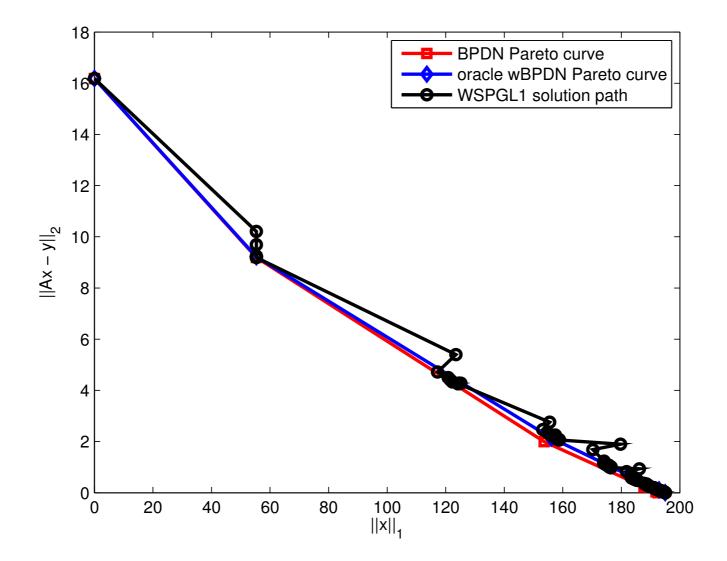
WSPGL1 and the Pareto curve



Weighted ℓ_1 minimization 0000000000

WSPGL1 00000000

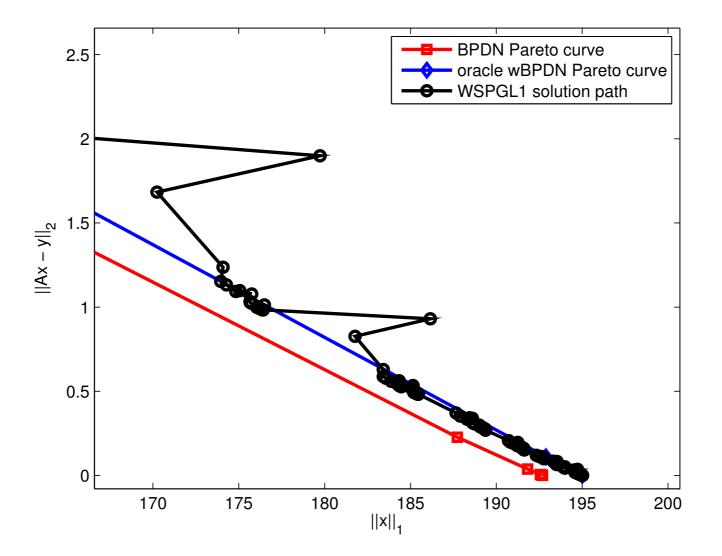
WSPGL1 and the Pareto curve



Weighted ℓ_1 minimization 0000000000

WSPGL1 00000000 Kaczmarz 0000000

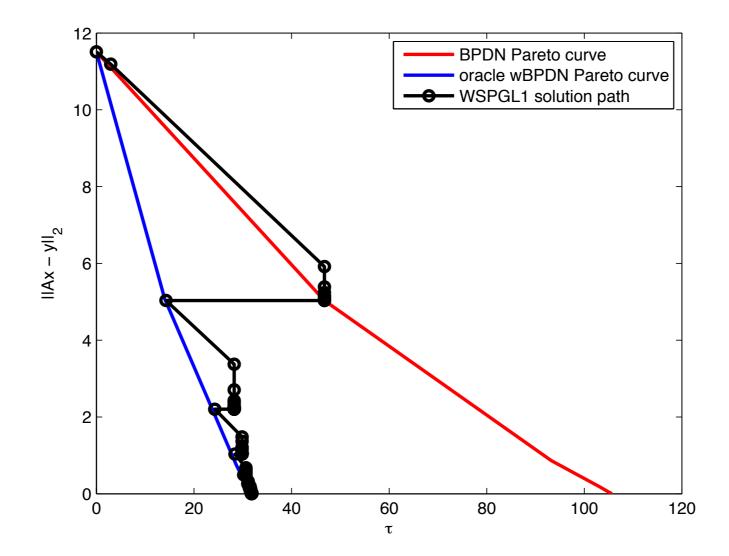
WSPGL1 and the Pareto curve



Weighted ℓ_1 minimization 0000000000

WSPGL1 00000000

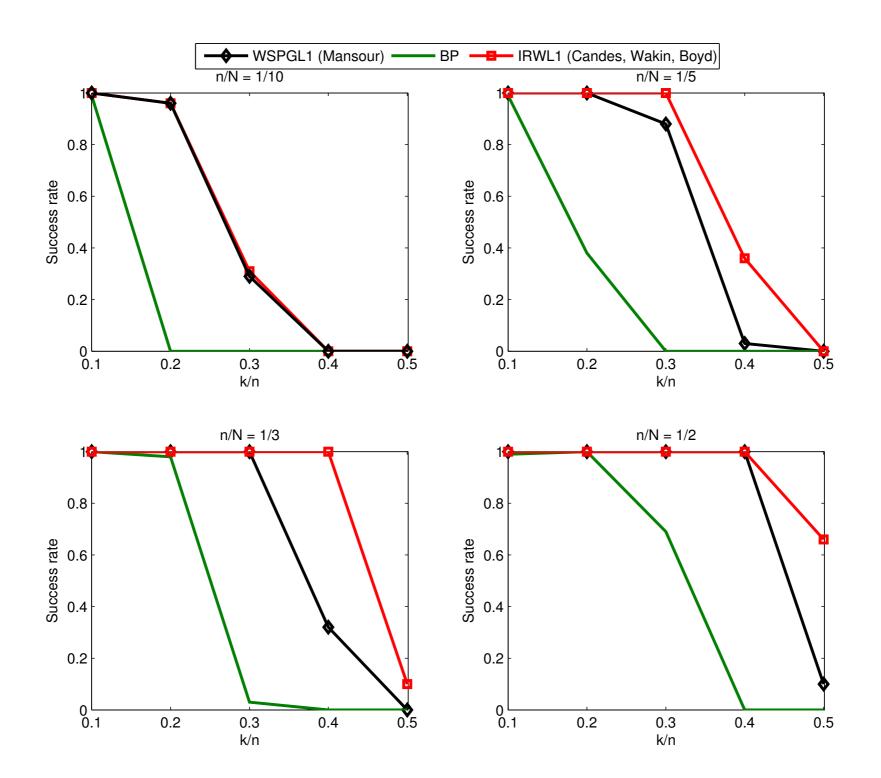
WSPGL1 and the Pareto curve



WSPGL1 000000000

Exact recovery rate (sparse signal, no noise)

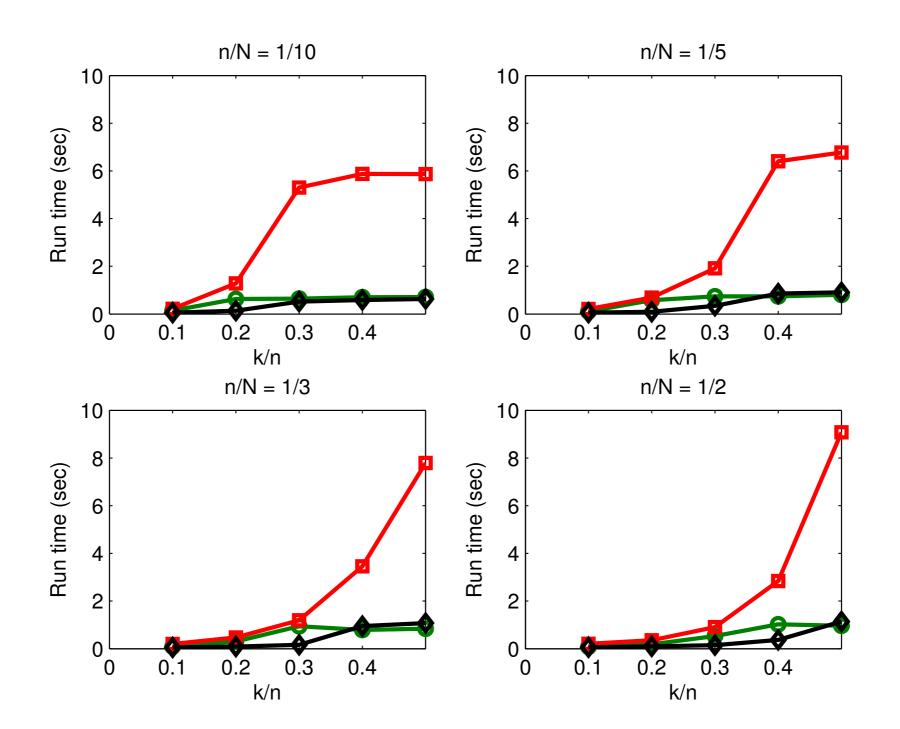
N = 1000



Weighted ℓ_1 minimization 0000000000

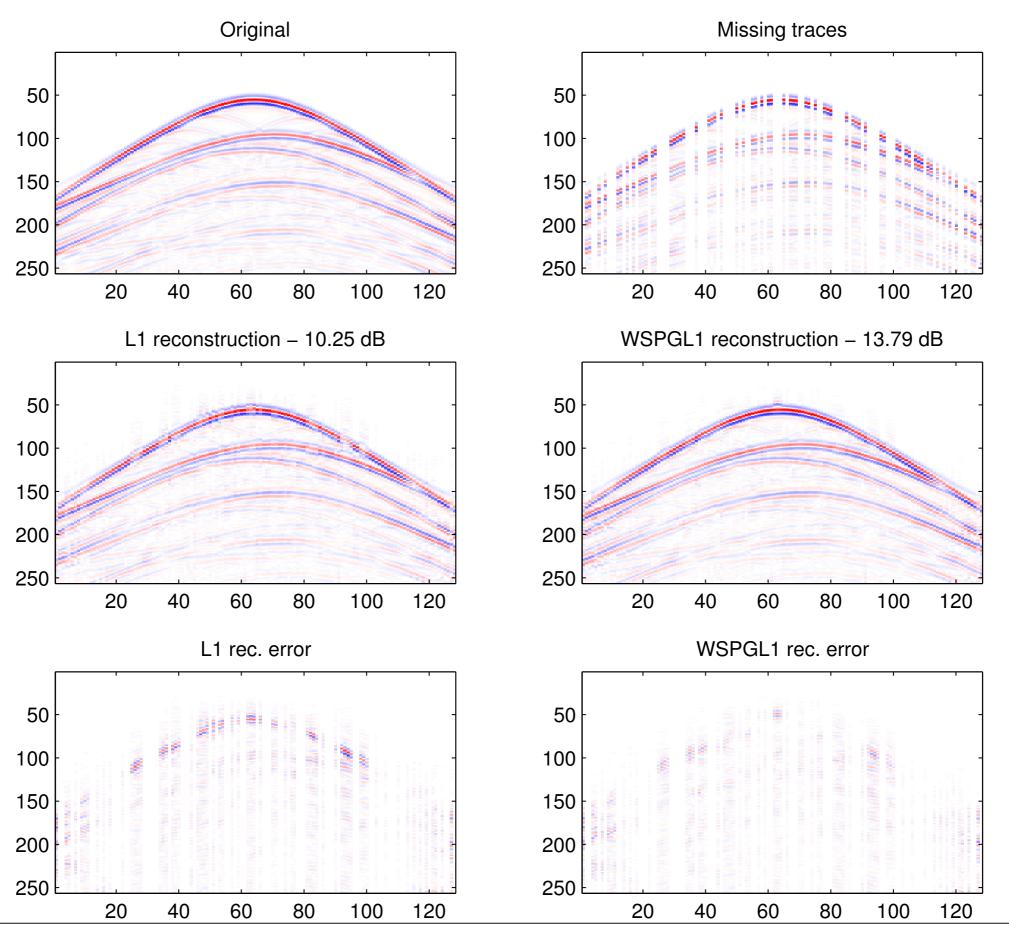
WSPGL1 000000●0 Kaczmarz 0000000

Algorithm runtime



Weighted ℓ_1 minimization 0000000000

WSPGL1 0000000



Monday, 3 December, 12

29 / 37

Weighted ℓ_1 minimization 000000000

WSPGL1 00000000 Kaczmarz

Part 1: Compressed sensing and sparse recovery

Part 2: Weighted ℓ_1 minimization

Part 3: ℓ_1 solvers and the WSPGL1 algorithm

Part 4: Sparse randomized Kaczmarz

Randomized Kaczmarz (Strohmer, Vershynin '06)

- Consider the overdetermined linear system: Ax = b.
- The randomized Kaczmarz (RK) algorithm solves for *x* by acting on individual rows of *A*.
- In every iteration *j*:
 - Select a row indexed by a_i indexed by $i \in \{1, \dots m\}$ with probability $rac{\|a_i\|_{2}^2}{\|A\|^2}$
 - Project x_{j-1} onto the solution space of $\langle a_i, x
 angle = b(i)$ using

$$x_j = x_{j-1} + rac{b(i) - \langle a_i, x_{j-1}
angle}{\|a_i\|_2^2} a_i^T$$

• RK is simple, memory efficient, and converges linearly.

WSPGL1 00000000

Randomized Kaczmarz (Strohmer, Vershynin '06)

- Consider the overdetermined linear system: Ax = b.
- The randomized Kaczmarz (RK) algorithm solves for x by acting on individual rows of A.
- In every iteration *j*:
 - Select a row indexed by a_i indexed by $i \in \{1, \dots m\}$ with probability $rac{\|a_i\|_2^2}{\|A\|^2}$
 - Project x_{j-1} onto the solution space of $\langle a_i, x
 angle = b(i)$ using

$$x_j = x_{j-1} + rac{b(i) - \langle a_i, x_{j-1}
angle}{\|a_i\|_2^2} a_i^T$$

• RK is simple, memory efficient, and converges linearly.

WSPGL1 00000000

Randomized Kaczmarz (Strohmer, Vershynin '06)

- Consider the overdetermined linear system: Ax = b.
- The randomized Kaczmarz (RK) algorithm solves for x by acting on individual rows of A.
- In every iteration *j*:
 - Select a row indexed by a_i indexed by $i \in \{1, \dots, m\}$ with probability $\frac{\|a_i\|_2^2}{\|A\|_2^2}$
 - Project x_{j-1} onto the solution space of $\langle a_i, x \rangle = b(i)$ using

$$x_j = x_{j-1} + \frac{b(i) - \langle a_i, x_{j-1} \rangle}{\|a_i\|_2^2} a_i^T$$

RK is simple, memory efficient, and converges linearly.

WSPGL1 00000000

Randomized Kaczmarz (Strohmer, Vershynin '06)

- Consider the overdetermined linear system: Ax = b.
- The randomized Kaczmarz (RK) algorithm solves for x by acting on individual rows of A.
- In every iteration *j*:
 - Select a row indexed by a_i indexed by $i \in \{1, \dots, m\}$ with probability $\frac{\|a_i\|_2^2}{\|A\|_2^2}$
 - Project x_{j-1} onto the solution space of $\langle a_i, x \rangle = b(i)$ using

$$x_j = x_{j-1} + \frac{b(i) - \langle a_i, x_{j-1} \rangle}{\|a_i\|_2^2} a_i^T$$

• RK is simple, memory efficient, and converges linearly.

WSPGL1 00000000

Sparse randomized Kaczmarz (Mansour, Yilmaz)

• If x is sparse, can we speed up the convergence of RK? Certainly!

- Using the same row selection as RK, in every iteration j:
 - Identify the support estimate $S = \operatorname{supp}(x_{j-1}|_{\max\{\hat{k}, n-j+1\}})$
 - Define the weight vector w_j such that

$$\mathrm{w}_j(l) = \left\{egin{array}{cc} 1 & , l \in S \ rac{1}{\sqrt{j}} & , l \in S^c \end{array}
ight.$$

(i) $b = \langle x_{i}, x \odot \langle y_{i} \rangle$ (in the solution space of $\langle w_{j} \odot y_{i} \rangle = b(i)$ using

$$\sum_{i=1}^{n} (a_i \otimes g_{i+1} - e^{i a_{i+1}}) = \sum_{i=1}^{n} (a_i \otimes$$

WSPGL1 00000000

Sparse randomized Kaczmarz (Mansour, Yilmaz)

- If x is sparse, can we speed up the convergence of RK? Certainly!
- Using the same row selection as RK, in every iteration j:
 - Identify the support estimate $S = \sup(x_{j-1}|_{\max\{\hat{k}, n-j+1\}})$.
 - Define the weight vector w_j such that

$$\mathbf{w}_{j}(l) = \begin{cases} 1 & , l \in S \\ \frac{1}{\sqrt{j}} & , l \in S^{c} \end{cases}$$

• Approximately project x_{j-1} onto the solution space of $\langle \mathbf{w}_j \odot a_i, x \rangle = b(i)$ using

$$x_j = x_{j-1} + \frac{b(i) - \langle \mathbf{w}_j \odot a_i, x_{j-1} \rangle}{\|\mathbf{w}_j \odot a_i\|_2^2} (\mathbf{w}_j \odot a_i)^T$$

WSPGL1 00000000

Sparse randomized Kaczmarz (Mansour, Yilmaz)

- If x is sparse, can we speed up the convergence of RK? Certainly!
- Using the same row selection as RK, in every iteration j:
 - Identify the support estimate $S = \sup(x_{j-1}|_{\max\{\hat{k}, n-j+1\}})$.
 - Define the weight vector \mathbf{w}_j such that

$$\mathbf{w}_{j}(l) = \begin{cases} 1 & , l \in S \\ \frac{1}{\sqrt{j}} & , l \in S^{c} \end{cases}$$

• Approximately project x_{j-1} onto the solution space of $\langle \mathbf{w}_j \odot a_i, x \rangle = b(i)$ using

$$x_j = x_{j-1} + \frac{b(i) - \langle \mathbf{w}_j \odot a_i, x_{j-1} \rangle}{\|\mathbf{w}_j \odot a_i\|_2^2} (\mathbf{w}_j \odot a_i)^T$$

WSPGL1 00000000

Sparse randomized Kaczmarz (Mansour, Yilmaz)

- If x is sparse, can we speed up the convergence of RK? Certainly!
- Using the same row selection as RK, in every iteration j:
 - Identify the support estimate $S = \sup(x_{j-1}|_{\max\{\hat{k}, n-j+1\}})$.
 - Define the weight vector w_j such that

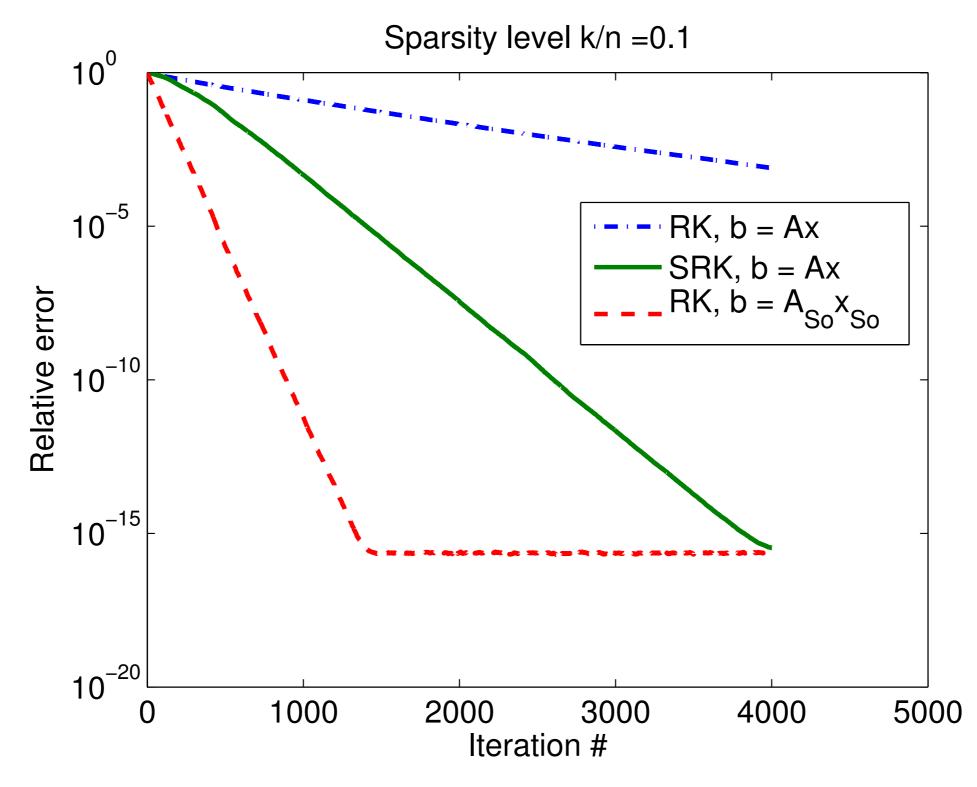
$$\mathbf{w}_{j}(l) = \begin{cases} 1 & , l \in S \\ \frac{1}{\sqrt{j}} & , l \in S^{c} \end{cases}$$

• Approximately project x_{j-1} onto the solution space of $\langle \mathbf{w}_j \odot a_i, x \rangle = b(i)$ using

$$x_j = x_{j-1} + \frac{b(i) - \langle \mathbf{w}_j \odot a_i, x_{j-1} \rangle}{\|\mathbf{w}_j \odot a_i\|_2^2} (\mathbf{w}_j \odot a_i)^T$$

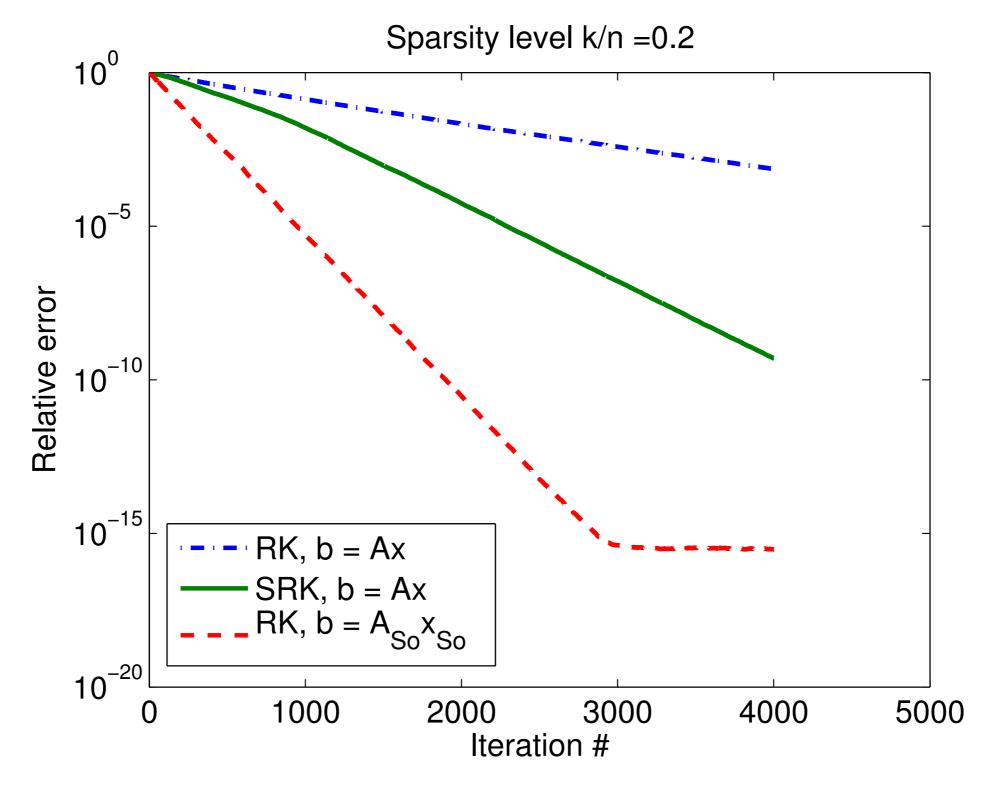
Convergence rates: overdetermined system

 1000×200 Gaussian matrix A



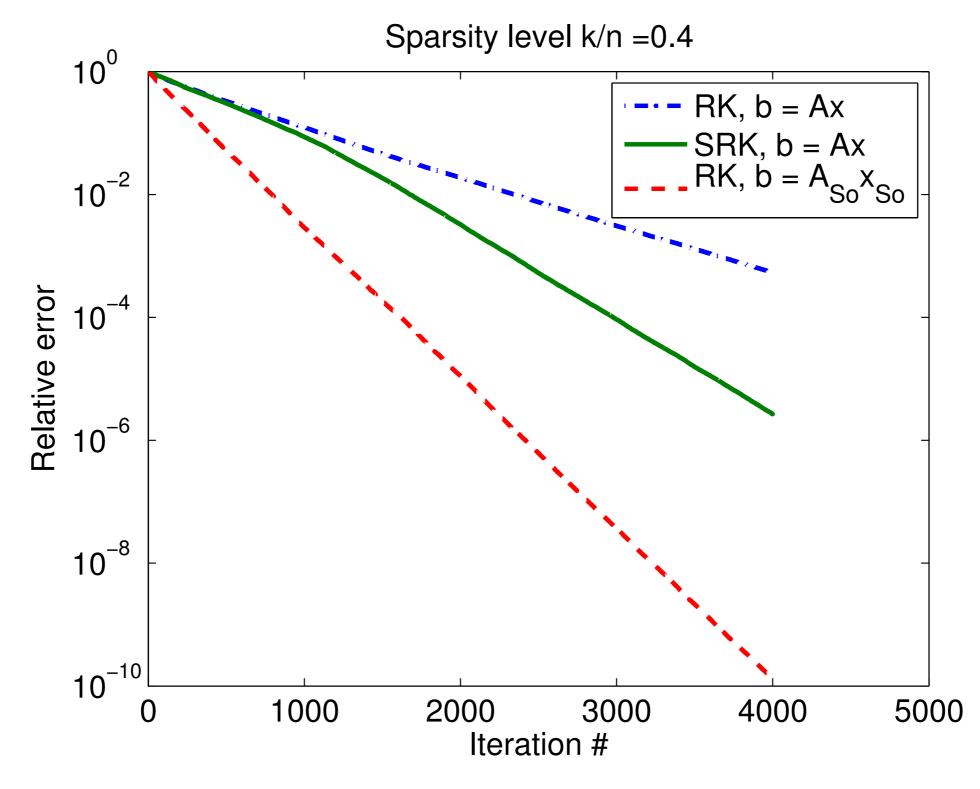
Convergence rates: overdetermined system

 1000×200 Gaussian matrix A



Convergence rates: overdetermined system

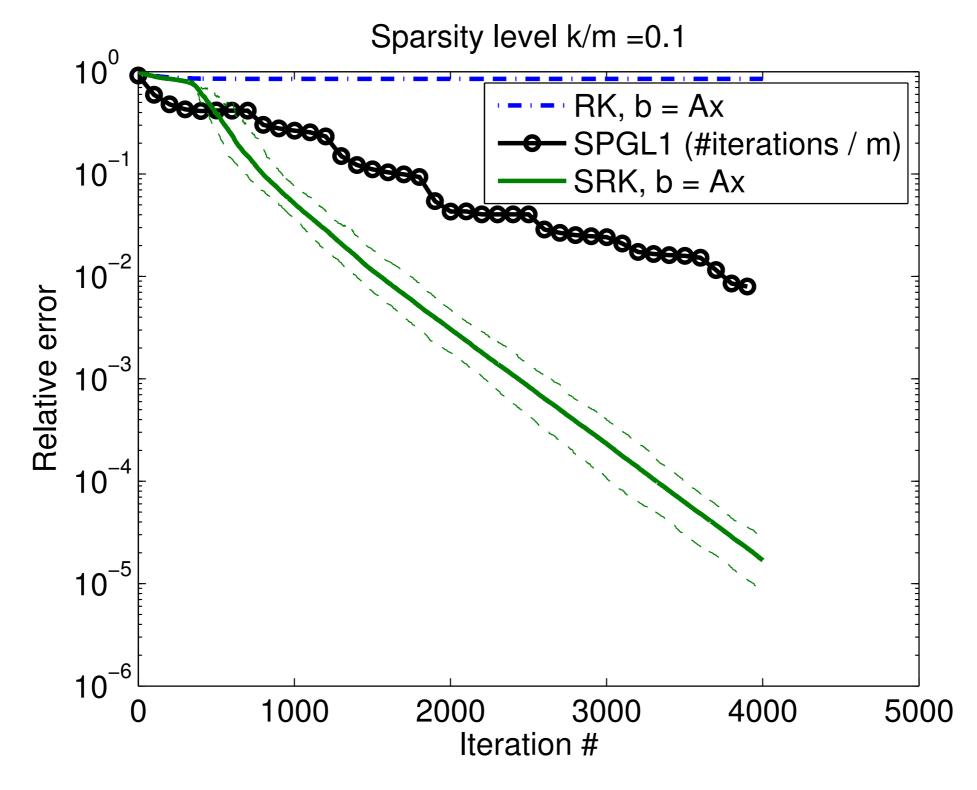
1000×200 Gaussian matrix A



WSPGL1 00000000

Convergence rates: underdetermined system

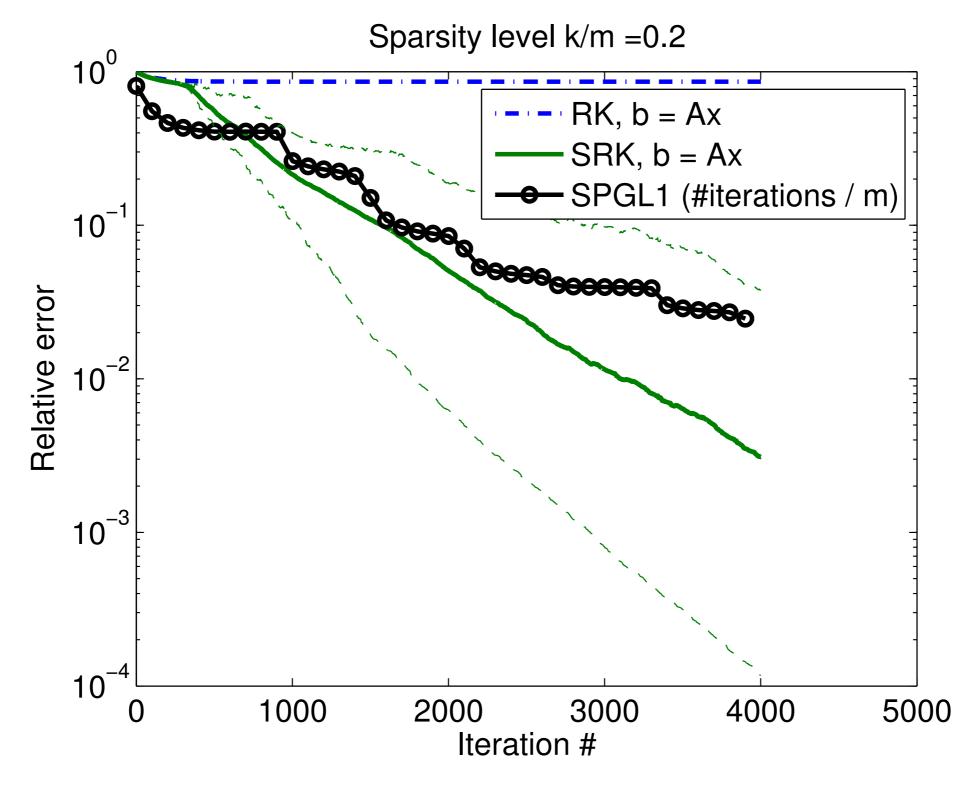
 100×400 Gaussian matrix A



WSPGL1 00000000

Convergence rates: underdetermined system

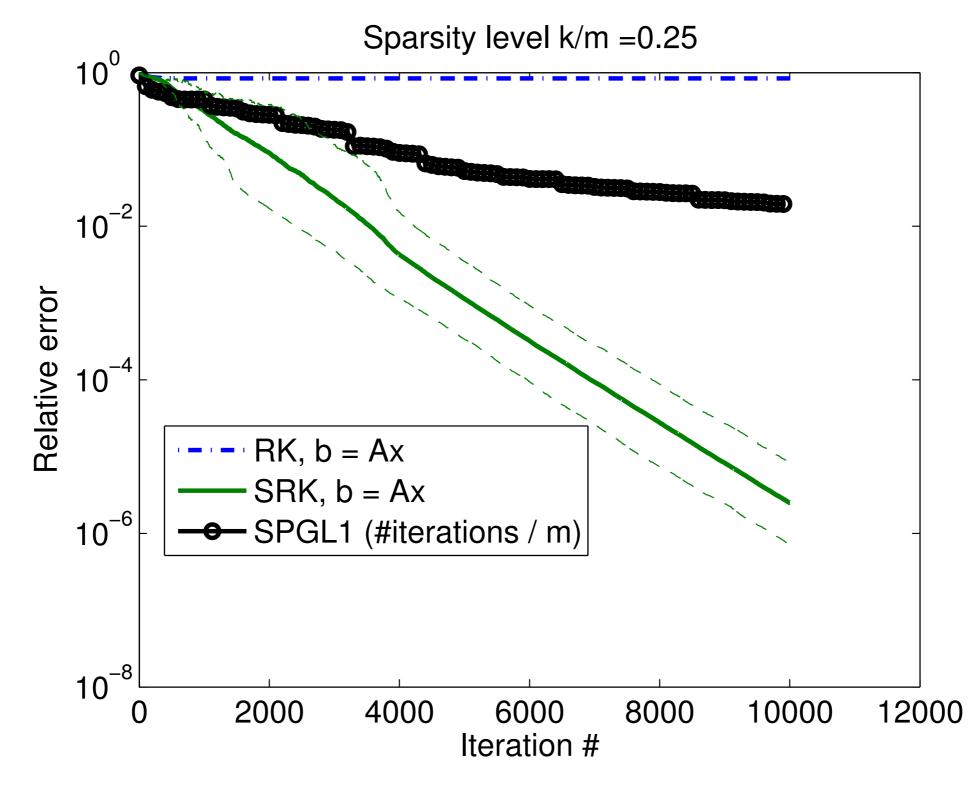
 100×400 Gaussian matrix A



WSPGL1 00000000

Convergence rates: underdetermined system

 100×400 Gaussian matrix A



Weighted ℓ_1 minimization 0000000000

WSPGL1 00000000

Extensions and Works In Progress (with T. van Leeuwen)

• FWI put simply is a massive nonlinear least-squares problem with an expensive Jacobian:

$$m^* = \arg\min_{m} \frac{1}{2} \|d - \mathcal{F}[m, Q]\|_2^2$$

m: velocity model

- *d*: multi-source multi-frequency data residue
- $Q: \ {\rm sources}$
- $\mathcal{F}[m,Q]$: discretization of the inverse Helmholtz operator

Compressed	sensing
000000	

Extensions and Works In Progress (with T. van Leeuwen)

• Linearized least squares migration:

$$\delta \tilde{m} = \arg \min_{\delta m} \frac{1}{2} \|\delta d - J[m_0, Q] \delta m\|_2^2$$

Huge overdetermined system!

 δm : model update

 $\delta d:$ multi-source multi-frequency data residue

 m_0 : background velocity model

Q: sources

 $J[m_0, Q] := \nabla \mathcal{F}[m_0, Q]$: linearized Born-scattering operator

Compressed	sensing
000000	

WSPGL1 00000000

Extensions and Works In Progress (with T. van Leeuwen)

• Linearized least squares migration:

$$\delta \tilde{m} = \arg \min_{\delta m} \frac{1}{2} \|\delta d - J[m_0, Q] \delta m\|_2^2$$

- Apply a sparse randomized Kaczmarz approach to solving the least-squares migration problem.
- The algorithm can also be applied matrix-free:

 $x_{j} = x_{j-1} + (W_{j}J_{i})^{\dagger} (b(i) - \langle W_{j}J_{i}, x_{j-1} \rangle)$

Compressed	sensing
000000	

WSPGL1 00000000

Extensions and Works In Progress (with T. van Leeuwen)

$$\delta \tilde{m} = \arg \min_{\delta m} \frac{1}{2} \|\delta d - J[m_0, Q] \delta m\|_2^2$$

- The data δd is a function of the #rec, #src, and #freq.
- The operator J_i corresponds to the Born-scattering operator of:
 - single receiver, single source, single frequency
 - simultaneous receivers, single source, single frequency
 - all receivers, simultaneous sources, single frequency (block Kaczmarz)

Compressed	sensing
000000	

WSPGL1 00000000

Extensions and Works In Progress (with T. van Leeuwen)

$$\delta \tilde{m} = \arg \min_{\delta m} \frac{1}{2} \|\delta d - J[m_0, Q] \delta m\|_2^2$$

- The data δd is a function of the #rec, #src, and #freq.
- The operator J_i corresponds to the Born-scattering operator of:
 - single receiver, single source, single frequency
 - simultaneous receivers, single source, single frequency
 - all receivers, simultaneous sources, single frequency (block Kaczmarz)

Compressed	sensing
000000	

WSPGL1 00000000

Extensions and Works In Progress (with T. van Leeuwen)

$$\delta \tilde{m} = \arg \min_{\delta m} \frac{1}{2} \|\delta d - J[m_0, Q] \delta m\|_2^2$$

- The data δd is a function of the #rec, #src, and #freq.
- The operator J_i corresponds to the Born-scattering operator of:
 - single receiver, single source, single frequency
 - simultaneous receivers, single source, single frequency
 - all receivers, simultaneous sources, single frequency (block Kaczmarz)

Compressed	sensing
000000	

WSPGL1 00000000

Extensions and Works In Progress (with T. van Leeuwen)

$$\delta \tilde{m} = \arg \min_{\delta m} \frac{1}{2} \|\delta d - J[m_0, Q] \delta m\|_2^2$$

- The data δd is a function of the #rec, #src, and #freq.
- The operator J_i corresponds to the Born-scattering operator of:
 - single receiver, single source, single frequency
 - simultaneous receivers, single source, single frequency
 - all receivers, simultaneous sources, single frequency (block Kaczmarz)

WSPGL1 00000000 Kaczmarz 00000●0

Conclusion

Scope of this talk:

- Compressed sensing with prior support information.
- The computationally efficient WSPGL1 algorithm.
- Sparse randomized Kaczmarz and its relation to LSM.

WSPGL1 00000000 Kaczmarz 00000●0

Conclusion

Scope of this talk:

- Compressed sensing with prior support information.
- The computationally efficient WSPGL1 algorithm.
- Sparse randomized Kaczmarz and its relation to LSM.

WSPGL1 00000000 Kaczmarz 00000●0

Conclusion

Scope of this talk:

- Compressed sensing with prior support information.
- The computationally efficient WSPGL1 algorithm.
- Sparse randomized Kaczmarz and its relation to LSM.

Weighted ℓ_1 minimization 0000000000

WSPGL1 00000000 Kaczmarz 000000●

Thank you

Questions?