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Outline
Part 1: Compressed sensing and sparse recovery

Overview of sparse recovery from sub-Nyquist sampling.
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Sparse recovery with partial support information.
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The WSPGL1 algorithm.
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Compressed sensing: sub-Nyquist data acquisition
We wish to acquire a signal f using compressive measurements y.

f admits a sparse or compressible representation x in some domain D.

Shannon-Nyquist sampling imposes a sampling interval T � 1
2� (e.g. � 90

samples).

Compressed sensing addresses the question of how to recovery x from
sub-Nyquist measurements y (e.g. around 50 random samples).
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Example: Seismic data interpolation
Economical acquisition of seismic traces that are sparse in the curvelet
domain.
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Compressed sensing basics
We want to recover a k-sparse signal x ⇥ RN .

Given n � N linear and noisy sub-Nyquist measurements y = Ax+ e,
where A = �DT .

Under certain conditions on x and A, the signal x can be recovered from y
by solving certain optimization problems:

The combinatorial �0 minimization problem.
The polynomial-time �1 minimization problem.
Other algorithms, e.g.: OMP, CoSaMP, AMP, IRLS,...

!

!"

"!

#" $#! %" &"

$! $! %!

6 / 37

Monday, 3 December, 12



Compressed sensing Weighted �1 minimization WSPGL1 Kaczmarz

Compressed sensing basics
We want to recover a k-sparse signal x ⌅ RN .

Given n ⇤ N linear and noisy sub-Nyquist measurements y = Ax+ e,
where A = �DT .

Under certain conditions on x and A, the signal x can be recovered from y
by solving certain optimization problems:

The combinatorial �0 minimization problem.
The polynomial-time �1 minimization problem.
Other algorithms, e.g.: OMP, CoSaMP, AMP, IRLS,...

Definition: Restricted Isometry Property (RIP) (Candés and Tao ’05)

The RIP constant �k is defined as the smallest constant such that ⇧x ⌅ �N
k

(1� �k)⌃x⌃22 ⇥ ⌃Ax⌃22 ⇥ (1 + �k)⌃x⌃22,
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Constrained `0-minimization
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⇤u⇤0 subject to y = Ax
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Stability and Robustness
If k < n/2 and A has the RIP with �2k < 1, then ⇧0 minimization recovers
x exactly.

When k . n/ log(N/n) and under stricter conditions on the RIP of A,
solving the ⇧1-minimization problem also recovers x.
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Stability and Robustness
If k < n/2 and A has the RIP with �2k < 1, then �0 minimization recovers
x exactly.

When k . n/ log(N/n) and under stricter conditions on the RIP of A,
solving the �1-minimization problem also recovers x.

Theorem (Candés, Romberg, Tao ’06); (Donoho)

If for some a > 1 the matrix A satisfies the RIP with �(a+1)k < a�1
a+1 ,

then the solution x⇥ to the �1 minimization problem obeys

⇤x⇥ � x⇤2 ⇥ C0⇤e⇤22 + C1k
�1/2⇤x� xk⇤1
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The `1 – `0 gap

Recovery using �1 minimization.
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Bridging the `1 – `0 gap

Incorporate support information: weighted �1 minimization (FMSY ’12).

Optimization for sparse recovery: the WSPGL1 algorithm (Mansour ’12).
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Part 1: Compressed sensing and sparse recovery

Part 2: Weighted �1 minimization

Part 3: �1 solvers and the WSPGL1 algorithm

Part 4: Sparse randomized Kaczmarz
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Beyond `1 minimization
Suppose k, n and N are such that ⇧1-minimization fails to recover x.

Suppose we have prior information on the support of x.

How do we incorporate this knowledge in the recovery algorithm while
keeping the measurement process non-adaptive?

Inexact recovery using `1 minimization

Eg. when k > k̂ � n/ log(N/n)
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Suppose k, n and N are such that ⇧1-minimization fails to recover x.

Suppose we have prior information on the support of x.

How do we incorporate this knowledge in the recovery algorithm while
keeping the measurement process non-adaptive?
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Eg. when k > k̂ � n/ log(N/n)

Eg. indices 1, 3, and 6 are non-zero.
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Weighted `1 minimization
Suppose that x is an arbitrary signal in RN and let T0 = supp(xk).

Let ⇤T be a known support estimate that is partially accurate.

Define the weighted ⌃1 norm ⇧x⇧1,w :=
⇥

i wi|xi| and the problem

min
x

⇧x⇧1,w subject to ⇧Ax� y⇧2 ⇥ � with wi =

�
1, i ⇤ ⇤T c,

⇥, i ⇤ ⇤T .





  
x :


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Stability and Robustness
Two parameters determine the performance of weighted �1:

⇥ = | eT |
|T0|

is the relative size of �T .

� = | eT�T0|
| eT | is the accuracy of �T .
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Stability and Robustness
Two parameters determine the performance of weighted ↵1:

⇥ = | eT |
|T0|

is the relative size of �T .

� = | eT�T0|
| eT | is the accuracy of �T .

Theorem (FMSY ’12)

If for some a ⇤ (1� �)⇧, a > 1, the matrix A satisfies ⇤(a+1)k < a��2

a+�2 .

Then the solution x⇥ to the weighted ↵1 problem obeys

⌅x⇥ � x⌅2 ⇥ C ⇤
0(⇥)⌅+ C ⇤

1(⇥)k
�1/2

⇤
⌃⌅xT c

0
⌅1 + (1� ⌃)⌅xeT c⌅T c

0
⌅1
⌅
.

⇥ =
�
⌃ + (1� ⌃)

⇧
1 + ⇧� 2�⇧

⇥
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Recovery of Sparse Signals
SNR averaged over 20 experiments for k-sparse signals x with k = 40, and
N = 500.

The noise free case:
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Application to seismic trace interpolation
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Seismic data acquisition

* Figure courtesy of DNOISE and ION.
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Randomized acquisition of seismic lines
Consider a seismic line with 178 sources, 178 receivers, and 500 time
samples.

17 / 37

Monday, 3 December, 12



Compressed sensing Weighted �1 minimization WSPGL1 Kaczmarz

Randomized acquisition of seismic lines
Consider a seismic line with 178 sources, 178 receivers, and 500 time
samples.
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Randomized acquisition of seismic lines
Consider a seismic line with 178 sources, 178 receivers, and 500 time
samples.

Recovery using �1 minimization on frequency slices.

L1 minimization in SR
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What more can be done?
Improve the RIP of A = �DH by changing the interaction of � and DH .

E.g.: Perform recovery in the midpoint-o�set domain.
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What more can be done?
Incorporate support information using weighted-�1 minimization.

E.g.: Adjacent frequency slices and o�set slices have highly correlated
curvelet domain support sets.
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What more can be done?
Incorporate support information using weighted-�1 minimization.

E.g.: Adjacent frequency slices and o�set slices have highly correlated
curvelet domain support sets.
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What more can be done?
Incorporate support information using weighted-�1 minimization.

E.g.: Adjacent frequency slices and o�set slices have highly correlated
curvelet domain support sets.
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Seismic recovery using weighted `1 minimization
(Mansour, Herrmann, Yilmaz ’12)
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Recap of weighted `1
If a prior support estimate is available, then weighted ⌅1 minimization
guarantees better recovery when � > 0.5.

Can we extend this analysis to multiple weighting sets?
Yes! (Mansour, Yilmaz ’11)

What if we had no prior support estimate:
How would an iterative weighted �1 algorithm that incorporates support
accuracy perform?

The SDRL1 algorithm. (Mansour, Yilmaz ’12) (CWB ’08)
Is there a computationally e�cient algorithm that achieves the gains of
re-weighted �1?

The WSPGL1 algorithm. (Mansour ’12) (Asif and Romberg ’12)
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Part 1: Compressed sensing and sparse recovery

Part 2: Weighted �1 minimization

Part 3: �1 solvers and the WSPGL1 algorithm

Part 4: Sparse randomized Kaczmarz
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A BPDN solver
van den Berg and Friedlander ’08 developed the Spectral Projected
Gradient for �1 minimization (SPGL1) algorithm.

Given y = Ax+ e, want to solve the ⇤1 problem

x

� = arg min
u⇥RN

⇤u⇤1 subject to ⇤Au� y⇤2 ⇥ �

If ⇥� = ⇤x⇤1 is known, then x

� can be found by solving the following
LASSO problem:

x

� = arg min
u⇥RN

⇤Au� y⇤2 subject to ⇤u⇤1 ⇥ ⇥�

SPGL1 develops an e⇥cient framework for finding the correct ⇥�.
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The SPGL1 algorithm (van den Berg, Friedlander ’08)
Solves a sequence of LASSO subproblems (LS� )

x�t = arg min
u⇥RN

⇤Au� y⇤2 subject to ⇤u⇤1 ⇥ ⇥t

Initialize the algorithm at a point x(0) giving an initial ⇥0 = ⇤x(0)⇤1.
Update ⇥ by traversing the Pareto curve defined by the function
⇤(⇥) = ⇤y �Ax�t⇤2.

⇥t+1 = ⇥t +
⇤(⇥t)� �

⇤�(⇥t)
,

Stop when ⇤y �Ax�t⇤2 = �.
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Traversing the Pareto curve
Traces the optimal tradeo� between ⇥y �Ax�⇥2 and ⇥x�⇥1.
The solution to the ⌅1 problem is found at ⇤(⇥) = �.
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The WSPGL1 algorithm (Mansour ’12)
What if we incorporate support information in the LASSO subproblems?

Solve a sequence of weighted LASSO subproblems.

x�t = arg min
u⇥RN

⇧Au� y⇧2 subject to ⇧u⇧1,w ⇥ �t

Update the weight vector based on the solution of the previous subproblem.

wi =

�
⇥, i ⇤ ⇥T
1, i ⇤ ⇥T c , where ⇥T = supp(xt�1|k).
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WSPGL1 and the Pareto curve
The Pareto curve changes with the definition of every new weighted
LASSO subproblem.

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

||x||
1

||
A

x 
−

 y
||

2

 

 

BPDN Pareto curve

26 / 37

Monday, 3 December, 12



Compressed sensing Weighted �1 minimization WSPGL1 Kaczmarz

WSPGL1 and the Pareto curve
The Pareto curve changes with the definition of every new weighted
LASSO subproblem.

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

||x||
1

||
A

x 
−

 y
||

2

 

 

BPDN Pareto curve
oracle wBPDN Pareto curve

26 / 37

Monday, 3 December, 12



Compressed sensing Weighted �1 minimization WSPGL1 Kaczmarz

WSPGL1 and the Pareto curve
The Pareto curve changes with the definition of every new weighted
LASSO subproblem.

170 175 180 185 190 195 200

0

0.5

1

1.5

2

2.5

||x||
1

||
A

x 
−

 y
||

2

 

 

BPDN Pareto curve
oracle wBPDN Pareto curve

26 / 37

Monday, 3 December, 12



Compressed sensing Weighted �1 minimization WSPGL1 Kaczmarz

WSPGL1 and the Pareto curve
The Pareto curve changes with the definition of every new weighted
LASSO subproblem.

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

||x||
1

||
A

x 
−

 y
||

2

 

 
BPDN Pareto curve
oracle wBPDN Pareto curve
WSPGL1 solution path

26 / 37

Monday, 3 December, 12



Compressed sensing Weighted �1 minimization WSPGL1 Kaczmarz

WSPGL1 and the Pareto curve
The Pareto curve changes with the definition of every new weighted
LASSO subproblem.

170 175 180 185 190 195 200

0

0.5

1

1.5

2

2.5

||x||
1

||
A

x 
−

 y
||

2

 

 
BPDN Pareto curve
oracle wBPDN Pareto curve
WSPGL1 solution path

26 / 37

Monday, 3 December, 12



Compressed sensing Weighted �1 minimization WSPGL1 Kaczmarz

WSPGL1 and the Pareto curve
The Pareto curve changes with the definition of every new weighted
LASSO subproblem.

0 20 40 60 80 100 120
0

2

4

6

8

10

12

�

||A
x 
− 

y|
| 2

 

 
BPDN Pareto curve
oracle wBPDN Pareto curve
WSPGL1 solution path

26 / 37

Monday, 3 December, 12



Compressed sensing Weighted �1 minimization WSPGL1 Kaczmarz

Exact recovery rate (sparse signal, no noise)
N = 1000
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Algorithm runtime
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WSPGL1 recovery of seismic tracesOriginal
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Part 1: Compressed sensing and sparse recovery

Part 2: Weighted �1 minimization

Part 3: �1 solvers and the WSPGL1 algorithm

Part 4: Sparse randomized Kaczmarz
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Randomized Kaczmarz (Strohmer, Vershynin ’06)
Consider the overdetermined linear system: Ax = b.

The randomized Kaczmarz (RK) algorithm solves for x by acting on
individual rows of A.

In every iteration j:

Select a row indexed by ai indexed by i ⇥ {1, . . .m} with probability ⇥ai⇥22
⇥A⇥2F

.

Project xj�1 onto the solution space of ⇧ai, x⌃ = b(i) using

xj = xj�1 +
b(i)� ⇧ai, xj�1⌃

⌥ai⌥22
aT
i

RK is simple, memory e�cient, and converges linearly.
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Sparse randomized Kaczmarz (Mansour, Yilmaz)
If x is sparse, can we speed up the convergence of RK? Certainly!

Using the same row selection as RK, in every iteration j:
Identify the support estimate S = supp(xj�1|max{k̂,n�j+1}).
Define the weight vector wj such that

wj(l) =

�
1 , l ⇤ S
1⌅
j

, l ⇤ Sc

Approximately project xj�1 onto the solution space of ⌅wj ⇥ ai, x⇧ = b(i)
using

xj = xj�1 +
b(i)� ⌅wj ⇥ ai, xj�1⇧

⌥wj ⇥ ai⌥22
(wj ⇥ ai)

T
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Convergence rates: overdetermined system
1000� 200 Gaussian matrix A
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Convergence rates: underdetermined system
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Convergence rates: underdetermined system
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Convergence rates: underdetermined system
100� 400 Gaussian matrix A
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Extensions and Works In Progress (with T. van Leeuwen)
FWI put simply is a massive nonlinear least-squares problem with an
expensive Jacobian:

m� = argmin
m

1

2
⇤d� F [m,Q]⇤22

m: velocity model

d: multi-source multi-frequency data residue

Q: sources

F [m,Q]: discretization of the inverse Helmholtz operator
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Extensions and Works In Progress (with T. van Leeuwen)
Linearized least squares migration:

�m̃ = argmin
�m

1

2
⇤�d� J [m0, Q]�m⇤22

Huge overdetermined system!

�m: model update

�d: multi-source multi-frequency data residue

m0: background velocity model

Q: sources

J [m0, Q] := ⌅F [m0, Q]: linearized Born-scattering operator
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Extensions and Works In Progress (with T. van Leeuwen)
Linearized least squares migration:

�m̃ = argmin
�m

1

2
⌅�d� J [m0, Q]�m⌅22

Apply a sparse randomized Kaczmarz approach to solving the least-squares
migration problem.

The algorithm can also be applied matrix-free:

xj = xj�1 + (WjJi)
† (b(i)� ⇥WjJi, xj�1⇤)
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Extensions and Works In Progress (with T. van Leeuwen)
Linearized least squares migration:

�m̃ = argmin
�m

1

2
⇥�d� J [m0, Q]�m⇥22

The data �d is a function of the #rec, #src, and #freq.

The operator Ji corresponds to the Born-scattering operator of:
single receiver, single source, single frequency
simultaneous receivers, single source, single frequency
all receivers, simultaneous sources, single frequency (block Kaczmarz)
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Conclusion
Scope of this talk:

Compressed sensing with prior support information.

The computationally e�cient WSPGL1 algorithm.

Sparse randomized Kaczmarz and its relation to LSM.
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Thank you

Questions?
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