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Outline

Part 1: Compressed sensing and sparse recovery

@ Overview of sparse recovery from sub-Nyquist sampling.
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Outline

Part 1: Compressed sensing and sparse recovery

@ Overview of sparse recovery from sub-Nyquist sampling.

Part 2: Weighted /1 minimization

@ Sparse recovery with partial support information.
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Outline

Part 1: Compressed sensing and sparse recovery

@ Overview of sparse recovery from sub-Nyquist sampling.

Part 2: Weighted /1 minimization

@ Sparse recovery with partial support information.

Part 3: Optimization for sparse recovery
@ The WSPGL1 algorithm.
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Outline

Part 1: Compressed sensing and sparse recovery

@ Overview of sparse recovery from sub-Nyquist sampling.

Part 2: Weighted /1 minimization

@ Sparse recovery with partial support information.

Part 3: Optimization for sparse recovery
@ The WSPGL1 algorithm.

Part 4: Sparse randomized Kaczmarz

@ Application to least-squares migration.

Kaczmarz
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Compressed sensing: sub-Nyquist data acquisition

@ We wish to acquire a signal f using compressive measurements y.
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Compressed sensing: sub-Nyquist data acquisition

@ We wish to acquire a signal f using compressive measurements y.

@ f admits a sparse or compressible representation x in some domain D.
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Compressed sensing: sub-Nyquist data acquisition

@ We wish to acquire a signal f using compressive measurements y.
@ f admits a sparse or compressible representation x in some domain D.

@ Shannon-Nyquist sampling imposes a sampling interval 1" > % (e.g. > 90
samples).
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Compressed sensing: sub-Nyquist data acquisition

@ We wish to acquire a signal f using compressive measurements y.

@ f admits a sparse or compressible representation x in some domain D.

@ Shannon-Nyquist sampling imposes a sampling interval 1" > % (e.g. > 90

samples).

@ Compressed sensing addresses the question of how to recovery x from
sub-Nyquist measurements y (e.g. around 50 random samples).
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Compressed sensing: sub-Nyquist data acquisition

@ We wish to acquire a signal f using compressive measurements y.
@ f admits a sparse or compressible representation x in some domain D.

@ Shannon-Nyquist sampling imposes a sampling interval 1" > % (e.g. > 90
samples).

@ Compressed sensing addresses the question of how to recovery x from
sub-Nyquist measurements y (e.g. around 50 random samples).
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Example: Seismic data interpolation

@ Economical acquisition of seismic traces that are sparse in the curvelet
domain.
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Example: Seismic data interpolation

@ Economical acquisition of seismic traces that are sparse in the curvelet
domain.
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Compressed sensing basics

@ We want to recover a k-sparse signal x € RV,

@ Given n < N linear and noisy sub-Nyquist measurements y = Ax + e,
where A = D',

e
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Compressed sensing basics

@ We want to recover a k-sparse signal x € RV,

@ Given n < N linear and noisy sub-Nyquist measurements y = Ax + e,
where A = D',

@ Under certain conditions on x and A, the signal x can be recovered from y
by solving certain optimization problems:

Definition: Restricted Isometry Property (RIP) (Candés and Tao '05)

The RIP constant oy is defined as the smallest constant such that Vx & E{CV

(1= d)ll=llz < [lA]Z < (1 + dk)ll2]l2,
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Compressed sensing basics

@ We want to recover a k-sparse signal x € RV,

@ Given n < N linear and noisy sub-Nyquist measurements y = Ax + e,
where A = D',

@ Under certain conditions on x and A, the signal x can be recovered from y
by solving certain optimization problems:

e The combinatorial /o minimization problem.

Constrained ¢p-minimization

@ min |[ullp subject toy = Ax
ueRN
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Compressed sensing basics

@ We want to recover a k-sparse signal x € RV,

@ Given n < N linear and noisy sub-Nyquist measurements y = Ax + e,
where A = D',

@ Under certain conditions on x and A, the signal x can be recovered from y
by solving certain optimization problems:

e The combinatorial /o minimization problem.
e The polynomial-time £; minimization problem.

Constrained ¢{-minimization

@ min [|ully subject to ||[Au—yl|2 < |lel2, [ulli =" |u

ucRY i=1
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Compressed sensing basics

@ We want to recover a k-sparse signal x € RY.

@ Given n < N linear and noisy sub-Nyquist measurements y = Ax + e,
where A = D',

@ Under certain conditions on x and A, the signal x can be recovered from y
by solving certain optimization problems:

@ The combinatorial /o minimization problem.
e The polynomial-time ¢; minimization problem.
e Other algorithms, e.g.: OMP, CoSaMP, AMP, IRLS,...
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Stability and Robustness

o If k <n/2 and A has the RIP with o, < 1, then £y minimization recovers
x exactly.
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Stability and Robustness

o If k <n/2 and A has the RIP with o, < 1, then £y minimization recovers
x exactly.

@ When k£ < n/log(/N/n) and under stricter conditions on the RIP of A,
solving the /{-minimization problem also recovers x.

Theorem (Candés, Romberg, Tao '06); (Donoho)

a—1

If for some a > 1 the matrix A satisfies the RIP with 0, 11)x < 737

then the solution x* to the £; minimization problem obeys

[x* —x|l2 < Collell3 + C1k™""2||x — xi s
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The 01 — ¢y gap

@ Recovery using /1 minimization.
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Bridging the {1 — ¢y gap

@ Incorporate support information: weighted ¢; minimization (FMSY '12).

e Optimization for sparse recovery: the WSPGL1 algorithm (Mansour '12).
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Part 2: Weighted ¢1; minimization
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Beyond ¢; minimization

@ Suppose k,n and N are such that /;-minimization fails to recover x.

Inexact recovery using £; minimization

o Eg. when k > k ~ n/log(N/n)
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Beyond ¢; minimization

@ Suppose k,n and N are such that /;-minimization fails to recover x.

@ Suppose we have prior information on the support of x.

Recovery using prior information

o Eg. when k > k ~ n/log(N/n)

@ Eg. indices 1, 3, and 6 are non-zero.
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Beyond /; minimization

@ Suppose k,n and N are such that /;-minimization fails to recover x.
@ Suppose we have prior information on the support of x.

@ How do we incorporate this knowledge in the recovery algorithm while
keeping the measurement process non-adaptive?
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Weighted ¢; minimization

@ Suppose that x is an arbitrary signal in RY and let T, = supp(xz).

A
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A 4
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Weighted ¢; minimization

@ Suppose that x is an arbitrary signal in RY and let T, = supp(xz).

o Let T be a known support estimate that is partially accurate.
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Weighted /1 minimization

@ Suppose that x is an arbitrary signal in RY and let T, = supp(xz).

Compressed sensing
O00000

o Let T be a known support estimate that is partially accurate.

@ Define the weighted ¢; norm ||x||1w := >, W;|z;| and the problem

f ~
; C
. . . 1, 1e€71°,
min ||X||1.w subject to [|[Ax —y|l2 <€ with w; = ~
Y .
X W, 1€ 1.
< TO e T(f >
. w?_:: n ‘{'_:" ;{:: -.‘{.-:.-.. " \Fi"_:":' \‘;‘%;:’qﬁ‘%-\“{‘{": \R"_:‘s'
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(FMSY '12) (Vaswani and Lu) (Khajehnejad et al.) (L. Jacques)
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Stability and Robustness

@ Two parameters determine the performance of weighted /;:

o p= % is the relative size of T.

TﬂTO . -
o a0 = % is the accuracy of T'.
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Stability and Robustness

@ Two parameters determine the performance of weighted /;:

o p= % is the relative size of T.

Is the accuracy of T.

Theorem (FMSY '12)

If for some a > (1 — a)p, a > 1, the matrix A satisfies O(at1)k < a+,y

Then the solution x* to the weighted ¢; problem obeys

Ix* — xll2 < Ch(1)e + CLE Y (wllxrg |l + (1~ @) X 1)

o v=(w+ (1 —w)V/I+p-—2ap)
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Recovery of Sparse Signals

@ SNR averaged over 20 experiments for k-sparse signals z with £ = 40, and
N = 500.

@ [ he noise free case:
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Recovery of Sparse Signals

@ SNR averaged over 20 experiments for k-sparse signals z with £ = 40, and
N = 500.
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Application to seismic trace interpolation
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Seismic data acquisition
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Randomized acquisition of seismic lines

@ Consider a seismic line with 178 sources, 178 receivers, and 500 time
samples.

Receivers

Time
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Randomized acquisition of seismic lines

@ Consider a seismic line with 178 sources, 178 receivers, and 500 time
samples.

@ The receiver spread is randomly subsampled using the mask W.
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Randomized acquisition of seismic lines

@ Consider a seismic line with 178 sources, 178 receivers, and 500 time

samples.

@ The receiver spread is randomly subsampled using the mask W.
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Randomized acquisition of seismic lines

@ Consider a seismic line with 178 sources, 178 receivers, and 500 time
samples.

@ Recovery using ¢1 minimization on frequency slices.

Original L, minimization in SR
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What more can be done?
e Improve the RIP of A = WD by changing the interaction of ¥ and D*’.

@ E.g.: Perform recovery in the midpoint-offset domain.
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What more can be done?

@ Incorporate support information using weighted-£; minimization.

@ E.g.: Adjacent frequency slices and offset slices have highly correlated
curvelet domain support sets.

Original L1 minimization in MH
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What more can be done?

@ Incorporate support information using weighted-£; minimization.

@ E.g.: Adjacent frequency slices and offset slices have highly correlated
curvelet domain support sets.

L1 minimization in SR Weighted L1 minimization in SR
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What more can be done?

@ Incorporate support information using weighted-£; minimization.

@ E.g.: Adjacent frequency slices and offset slices have highly correlated
curvelet domain support sets.

L1 minimization in MH Weighted L1 minimization in MH
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What more can be done?

@ Incorporate support information using weighted-£; minimization.

@ E.g.: Adjacent frequency slices and offset slices have highly correlated
curvelet domain support sets.
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What more can be done?

@ Incorporate support information using weighted-£; minimization.

@ E.g.: Adjacent frequency slices and offset slices have highly correlated
curvelet domain support sets.

L 1 minimization in source-receiver Weighted L1 minimization in midoint-offset
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What more can be done?

@ Incorporate support information using weighted-£; minimization.

@ E.g.: Adjacent frequency slices and offset slices have highly correlated
curvelet domain support sets.

L , error Image in source-receiver Weighted L1 in midpoint-offset error image
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Seismic recovery using weighted /1 minimization

(Mansour, Herrmann, Yilmaz '12)
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Recap of weighted ¢

@ If a prior support estimate is available, then weighted /; minimization
guarantees better recovery when o > 0.5.
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Recap of weighted ¢

@ If a prior support estimate is available, then weighted /; minimization
guarantees better recovery when o > 0.5.

e Can we extend this analysis to multiple weighting sets?
Yes! (Mansour, Yilmaz '11)
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Recap of weighted ¢

@ If a prior support estimate is available, then weighted ¢; minimization
guarantees better recovery when o > 0.5.

e Can we extend this analysis to multiple weighting sets?
Yes! (Mansour, Yilmaz '11)

@ What if we had no prior support estimate:

e How would an iterative weighted ¢, algorithm that incorporates support
accuracy perform?

The SDRL1 algorithm. (Mansour, Yilmaz '12) (CWB '08)
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Recap of weighted ¢

@ If a prior support estimate is available, then weighted ¢; minimization
guarantees better recovery when o > 0.5.

e Can we extend this analysis to multiple weighting sets?
Yes! (Mansour, Yilmaz '11)

@ What if we had no prior support estimate:

e How would an iterative weighted ¢, algorithm that incorporates support
accuracy perform?
The SDRL1 algorithm. (Mansour, Yilmaz '12) (CWB '08)
o Is there a computationally efficient algorithm that achieves the gains of
re-weighted /17
The WSPGL1 algorithm. (Mansour '12) (Asif and Romberg '12)
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Part 3: /; solvers and the WSPGL1 algorithm
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A BPDN solver

@ van den Berg and Friedlander '08 developed the Spectral Projected
Gradient for {1 minimization (SPGL1) algorithm.
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A BPDN solver

@ van den Berg and Friedlander '08 developed the Spectral Projected
Gradient for {1 minimization (SPGL1) algorithm.

e Given y = Ax + e, want to solve the /; problem

x* = arg min ||ul|; subject to ||Au—yll2 < e
ucRN
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A BPDN solver

@ van den Berg and Friedlander '08 developed the Spectral Projected
Gradient for {1 minimization (SPGL1) algorithm.

e Given y = Ax + e, want to solve the /; problem

X" = arg 1211@ |ul|1 subject to ||[Au —y|l2 <€
u

o If 7 = ||x||1 is known, then x™ can be found by solving the following
LASSO problem:

x" = arg min [|Au — y||2 subject to [lul[1 < 77
ucRN
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A BPDN solver

@ van den Berg and Friedlander '08 developed the Spectral Projected
Gradient for {1 minimization (SPGL1) algorithm.

e Given y = Ax + e, want to solve the /; problem

X" = arg 1211@ |ul|1 subject to ||[Au —y|l2 <€
u

o If 7 = ||x||1 is known, then x™ can be found by solving the following
LASSO problem:

x" = arg min [|Au — y||2 subject to [lul[1 < 77
ucRN

e SPGL1 develops an efficient framework for finding the correct 77.
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The SPGL1 algorithm (van den Berg, Friedlander '08)

@ Solves a sequence of LASSO subproblems (LS, )

X't = arg min |Au — y||2 subject to ||ul|; < 7
uc
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The SPGL1 algorithm (van den Berg, Friedlander '08)

@ Solves a sequence of LASSO subproblems (LS, )

X't = arg min |Au — y||2 subject to ||ul|; < 7
uc

o Initialize the algorithm at a point x(°) giving an initial 75 = ||x(9||;.
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The SPGL1 algorithm (van den Berg, Friedlander '08)

@ Solves a sequence of LASSO subproblems (LS, )

x"" = arg min |[[Au — yl|2 subject to |lu|; <7
ueRN
o Initialize the algorithm at a point x(°) giving an initial 75 = ||x(9||;.

@ Update 7 by traversing the Pareto curve defined by the function
o) = |ly — Ax™ 2.
| ¢(Tt) — €

T )
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The SPGL1 algorithm (van den Berg, Friedlander '08)

@ Solves a sequence of LASSO subproblems (LS, )

x"" = arg min |[[Au — yl|2 subject to |lu|; <7
ueRN
o Initialize the algorithm at a point x(°) giving an initial 75 = ||x(9||;.

@ Update 7 by traversing the Pareto curve defined by the function
o) = |ly — Ax™ 2.
| ¢(Tt) — €

T )

“l

® Stop when [ly — Ax™ |2 = e.
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Traversing the Pareto curve

@ Traces the optimal tradeoff between ||y — Ax" |2 and ||x"||;.

@ The solution to the ¢; problem is found at ¢(7) = e.

14 T T T T T

12
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Traversing the Pareto curve

@ Traces the optimal tradeoff between ||y — Ax" |2 and ||x"||;.

@ The solution to the ¢; problem is found at ¢(7) = e.

18 T T T T T | T T T
—8— BPDN Pareto curve
—+&— SPGL1 solution path | |

—
N
T

[
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T

0 | | | | | | | | |
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The WSPGL1 algorithm (Mansour '12)

@ What if we incorporate support information in the LASSO subproblems?
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The WSPGL1 algorithm (Mansour '12)

@ What if we incorporate support information in the LASSO subproblems?
@ Solve a sequence of weighted LASSO subproblems.

x™ = arg mir]lv |Au — y||2 subject to ||ul|;w < 7
uceR
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The WSPGL1 algorithm (Mansour '12)

@ What if we incorporate support information in the LASSO subproblems?

@ Solve a sequence of weighted LASSO subproblems.

x't = arg min ||Au — yl|2 subject to ||ul|;w < 7

ucRN
@ Update the weight vector based on the solution of the previous subproblem.

[ W, ieT = t—1
L oieTe where T = supp(x"™ ")

\
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WSPGL1 and the Pareto curve

@ The Pareto curve changes with the definition of every new weighted
LASSO subproblem.

18 T T T T T T T T T
—f— BPDN Pareto curve

1A - yll,

O | | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200

Il
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WSPGL1 and the Pareto curve

@ The Pareto curve changes with the definition of every new weighted
LASSO subproblem.
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WSPGL1 and the Pareto curve

@ The Pareto curve changes with the definition of every new weighted
LASSO subproblem.
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WSPGL1 and the Pareto curve

@ The Pareto curve changes with the definition of every new weighted
LASSO subproblem.

-—g-— BPDN Pareto curve i
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WSPGL1 and the Pareto curve

@ The Pareto curve changes with the definition of every new weighted
LASSO subproblem.

12 T T T T T

BPDN Pareto curve

oracle wBPDN Pareto curve
10 —©— WSPGL1 solution path

IIAx—yII2
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Exact recovery rate (sparse signal, no noise)

N = 1000

—— WSPGL1 (Mansour)

BP =—8— IRWL1 (Candes, Wakin, Boyd)
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Success rate

o "
0.1 0.2 0.3 0.4 O%
k/n
n/N = 1/3

Success rate

Success rate

Success rate

n/N=1/5

n/N=1/2

1
0.8}
0.6t
04r¢
0.2t

0 I I

0.1 0.2 0.3 0.4 0.5

k/n

Kaczmarz
O000000

27 / 37

Monday, 3 December, 12



Compressed sensing Weighted £1 minimization WSPGL1 Kaczmarz
000000 0000000000 O000000e0 0000000

Algorithm runtime

n/N = 1/10 N =1/5
10 - - 10 - -
_ 8 __ 8
O O
(O] ()
) )
() ()
£ £
c c
> >
oC oc

n/N=1/3

Run time (sec)
Run time (sec)
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Part 4: Sparse randomized Kaczmarz
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Randomized Kaczmarz (Strohmer, Vershynin '06)

@ Consider the overdetermined linear system: Ax = b.
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Randomized Kaczmarz (Strohmer, Vershynin '06)

@ Consider the overdetermined linear system: Az = b.

@ The randomized Kaczmarz (RK) algorithm solves for x by acting on
individual rows of A.
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Randomized Kaczmarz (Strohmer, Vershynin '06)

@ Consider the overdetermined linear system: Az = b.

@ The randomized Kaczmarz (RK) algorithm solves for x by acting on
individual rows of A.

@ In every iteration j:

12
o Select a row indexed by a; indexed by i € {1,...m} with probability laillz.

1Al
o Project x;_1 onto the solution space of (a;,z) = b(i) using
b(i) — {(a;,x;—1) T
Tj =Tj—1+ Hai,ﬁ’% : i
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Randomized Kaczmarz (Strohmer, Vershynin '06)

@ Consider the overdetermined linear system: Az = b.

@ The randomized Kaczmarz (RK) algorithm solves for x by acting on
individual rows of A.

@ In every iteration j:

12
o Select a row indexed by a; indexed by ¢ € {1,...m} with probability HZ"’HHQQ.
F
o Project x;_1 onto the solution space of (a;,z) = b(i) using
b(Z) — <CL¢,CB'_1> T
Tj =Tj—1+ laal2 : i
@ RK is simple, memory efficient, and converges linearly.
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Sparse randomized Kaczmarz (Mansour, Yilmaz)

@ If x is sparse, can we speed up the convergence of RK? Certainly!
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Sparse randomized Kaczmarz (Mansour, Yilmaz)

@ If x is sparse, can we speed up the convergence of RK? Certainly!

@ Using the same row selection as RK, in every iteration j:
o ldentify the support estimate S = supp(gr;j_l|maX{f€ n—j—i—l})'
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Sparse randomized Kaczmarz (Mansour, Yilmaz)

@ If x is sparse, can we speed up the convergence of RK? Certainly!

@ Using the same row selection as RK, in every iteration j:

o ldentify the support estimate S = supp(ar;j_l|maX{f€ n—j—i—l})'
o Define the weight vector w; such that

1 e s
w={ % e
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Sparse randomized Kaczmarz (Mansour, Yilmaz)

@ If x is sparse, can we speed up the convergence of RK? Certainly!

@ Using the same row selection as RK, in every iteration j:

o ldentify the support estimate S = supp(xj_1|max{f€ n—j—i—l})'
o Define the weight vector w; such that

1 eSS

wi={ L Ce
7 ,

o Approximately project x;_1 onto the solution space of (w; ® a;,z) = b(1)
using
b(i) — (W; © @i, x5-1)
lw; © a:3

Tj =Tj—1+ (W; © ai)T
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Convergence rates: overdetermined system
1000 x 200 Gaussian matrix A

Sparsity level k/n =0.1

107"}

Relative error
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Convergence rates: overdetermined system
1000 x 200 Gaussian matrix A

Relative error
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Convergence rates: underdetermined system

100 x 400 Gaussian matrix A
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Convergence rates: underdetermined system
100 x 400 Gaussian matrix A

Sparsity level k/m =0.2

Relative error
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Convergence rates: underdetermined system
100 x 400 Gaussian matrix A

Sparsﬂy level k/m =0.25

S

)

(D)

=

©

(D)

o
107°} | —e— SPGL1 (#iterations / m) -
10_8 I | I I I

0 2000 4000 6000 8000 10000 12000
lteration #

34 /37

Monday, 3 December, 12



Compressed sensing Weighted £1 minimization WSPGL1 Kaczmarz
000000 0000000000 00000000 O0000e00

Extensions and Works In Progress (with T. van Leeuwen)

@ FWI put simply is a massive nonlinear least-squares problem with an
expensive Jacobian:

1
m* = argmin -|d — Flm, Q)|

m: velocity model
d: multi-source multi-frequency data residue
(): sources

F|lm, Q]: discretization of the inverse Helmholtz operator
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Extensions and Works In Progress (with T. van Leeuwen)

@ Linearized least squares migration:

1
dm = arg Iglin §H5d — J[mo, Qlom|3

Huge overdetermined system!

om: model update

0d: multi-source multi-frequency data residue
mo: background velocity model

(): sources

Jmg, Q| := V. F|mg, Q]|: linearized Born-scattering operator
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Extensions and Works In Progress (with T. van Leeuwen)

@ Linearized least squares migration:
N .1 5
om = arg win §H5d — Jmg, Qlom||3

@ Apply a sparse randomized Kaczmarz approach to solving the least-squares
migration problem.

@ The algorithm can also be applied matrix-free:

rj = a1+ (Wi Ji)" (b(i) — (WiJs 25-1))
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Extensions and Works In Progress (with T. van Leeuwen)

@ Linearized least squares migration:

1
dm = arg Iglin §H5d — J[mo, Qlom|3

@ The data dd is a function of the #rec, #src, and # freq.
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Extensions and Works In Progress (with T. van Leeuwen)

@ Linearized least squares migration:

1
dm = arg Iglin §H5d — J[mo, Qlom|3

@ The data dd is a function of the #rec, #src, and # freq.
@ The operator J; corresponds to the Born-scattering operator of:

e single receiver, single source, single frequency
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Extensions and Works In Progress (with T. van Leeuwen)

@ Linearized least squares migration:

1
dm = arg Iglin §H5d — J[mo, Qlom|3

@ The data dd is a function of the #rec, #src, and # freq.
@ The operator J; corresponds to the Born-scattering operator of:

e single receiver, single source, single frequency
e simultaneous receivers, single source, single frequency
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Extensions and Works In Progress (with T. van Leeuwen)

@ Linearized least squares migration:

1
dm = arg Iglin §H5d — J[mo, Qlom|3

@ The data dd is a function of the #rec, #src, and # freq.
@ The operator J; corresponds to the Born-scattering operator of:

e single receiver, single source, single frequency
e simultaneous receivers, single source, single frequency
o all receivers, simultaneous sources, single frequency (block Kaczmarz)
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Conclusion

Scope of this talk:

@ Compressed sensing with prior support information.
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Conclusion

Scope of this talk:
@ Compressed sensing with prior support information.

@ The computationally efficient WSPGL1 algorithm.
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Conclusion

Scope of this talk:
@ Compressed sensing with prior support information.
@ The computationally efficient WSPGL1 algorithm.

@ Sparse randomized Kaczmarz and its relation to LSM.
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Thank you

(Questions”’
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