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SLIM

Big data
“We are drowning in data but starving for understanding” USGS 
director Marcia McNutt 

“Got data now what” Carlsson & Ghrist SIAM

http://bigdatablog.emc.com/wp-­‐content/uploads/2012/03/gotbigdata.png

http://www.newschool.edu/uploadedImages/events/lang/Data%20Deluge%20compressed(2).jpg
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SLIM

Drivers
Recent technology push calls for collection

‣ high-quality broad-band data volumes (>100k channels)

‣ larger offsets &  full azimuth

Exposes vulnerabilities in our ability to control

‣ acquisition costs / time / quality

‣ processing costs / time / quality
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Drivers cont’d

Complexity of inversion algorithms exposes the “curse of 
dimensionality” in

‣ sampling: exponential growth of # samples for 
high dimensions

‣ optimization: exponential growth of # 
parameter combinations that need to be evaluated 
to minimize our objective functions
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Drivers cont’d
Problems exacerbated by IO bottleneck: 

Credit to John McCaplin, University of Texas, HPC.
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Goals
Replace a ‘sluggish’ inversion paradigm that

‣  relies on touching all data all the time

by an agile optimization paradigm that works on

‣ small randomized subsets of data iteratively

Confront “data explosion” by 

‣ reducing acquisition costs

‣ removing IO & PDEs-solve bottlenecks
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Imaging results
[migration w/ “all” data]
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Imaging results
[linearized inversion w/ small subsets]
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Key technologies
Fast imaging with Stochastic optimization / Compressive 
Sensing:

‣ subsets of simultaneous sources – supershots generated 
by random amplitude-weighted superpositions

‣ random subsets of sequential sources

Imaging via large-scale curvelet-domain sparsity promoting 
convex optimization with cooling

Acceleration with “approximate message passing”
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Imaging
[background model]
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Imaging
[true perturbation]
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Migration
[single migration with “all” data]

Too expensive to invert with “all” data...
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Fast imaging
[via stochastic optimization]

Rerandomized sampling

‣ linear speed up by reducing # PDE solves

‣ increases convergence but may fail to converge

Exploits multi-experiment redundancy of seismic data volumes

‣ regularly draw independent subsets of shots 

‣ cancels crosstalk by rerandomization

Heuristic of current phase-encoding migration/FWI methods
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Linearized inversion
[     w/o rerandomization 3 super shots]`2
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Linearized inversion
[     w/ rerandomization 3 super shots]`2
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Fast imaging
[via compressive sensing]

Incoherent randomized sampling

‣ linear speed up by reducing # PDE solves

‣ coherent source crosstalk turns into non-sparse 
incoherent noise

Exploits structure exhibited by migrated images

‣ leverages curvelet-domain sparsity promotion

‣ maps “noisy” crosstalk to coherent reflectors

Tuesday, 4 December, 12



SLIM

� em = S
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�x = Sparse curvelet-coe�cient vector

S

⇤
= Curvelet synthesis

Q = Simultaneous sources

�d = Super shots

Linearized inversion with randomized supershots:

Convex optimization
[p=2 or p=1]
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Linearized inversion
[     3 super shots]`2
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Linearized inversion
[     3 super shots ]`1
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Observations
[reasonable PDE solve budget]

Rerandomization and curvelet-domain sparsity promotion:

‣ partly eliminate “noisy” crosstalk

‣ fail to remove “small” incoherent crosstalk

Can we somehow combine these two methods?

‣ continuation method for large-scale convex optimization

‣ use insights from approximate message passing

Tuesday, 4 December, 12
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x

t+1 = ⌘t
�
A

⇤
r

t + x

t
�

r

t = b�Ax

t

Convex optimization
Involves iterations of the type

Corresponds to vanilla denoising if A is a Gaussian matrix.

But does the same hold for later (t>1) iterations...?

soft
threshold

[Daubechies et. al, ’04; Hennenfent et. al.,’08, Mallat, ’09, Donoho et. al, ’09]

[Montanari, ’12]
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Iteration t=2
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Iteration t=3
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Iteration t=4
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Problem

After first iteration the interferences become ‘spiky’ because 
of correlations between model iterate xt & the matrix A

‣ assumption spiky vs Gaussian noise no longer holds

‣ renders soft thresholding less effective

Leads to stalling of sparsity-promoting algorithms...
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Add a term to iterative soft thresholding, i.e.,

Holds for

‣ normalized Gaussian matrices

‣ large-scale limit and for specific thresholding strategy

x

t+1 = ⌘t
�
A

⇤
r

t + x

t
�

r

t = b�Ax

t+
kxt+1k0

n
r

t�1

Approximate 
message passing

[Donoho et. al, ’09-’12; Montanari, ’10-’12, Rangan, ’11]

Aij 2 n�1/2N(0, 1)

“message term”
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Statistically equivalent to

by drawing new independent pairs              for each iteration

Changes the story completely

‣ breaks correlation buildup

‣ faster convergence

x

t+1 = ⌘t
�
A

⇤
t r

t + x

t
�

r

t = bt �Atx
t

Approximate 
message passing

[Montanari, ’12]

{bt,At}
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Iteration t=3
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Iteration t=4

0 2 4 6 8 10
x 104

−1

−0.5

0

0.5

a 1

Message passing

0 2 4 6 8 10
x 104

−1

−0.5

0

0.5

x 1

Message passing

0 2 4 6 8 10
x 104

−0.6

−0.4

−0.2

0

0.2

a 2

W/O Message passing

0 2 4 6 8 10
x 104

−0.6

−0.4

−0.2

0

0.2

x 2

W/O Message passing

0 2 4 6 8 10
x 104

−1.5

−1

−0.5

0

0.5

a 3

With renewals

0 2 4 6 8 10
x 104

−1

−0.5

0

0.5

x 2

With renewals

⌘t(A
⇤
r

t + x

t)

r

t = bt �Atx
t ⌘t(A

⇤
t r

t + x

t)

r

t = b�Ax

t+
kxt+1k0

n
r

t�1

Tuesday, 4 December, 12



SLIM

Supercooling
Break correlations between the model iterate and matrix A 
by rerandomization

‣ draw new independent               after each subproblem 
is solved

‣ brings in “extra” information without growing the 
system

‣ minimal extra computational & memory cost

{bt,At}
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Supercooled
spectral-projected gradients
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Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

Lasso problem
1

2

3

4

min
x

kA1x� b1k2 s.t kxk�1  �1

[van den Berg & Friedlander, ’08]

[Hennefent et. al., ’08]

[Lin & FJH, ’09-]
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Supercooled
spectral-projected gradients
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(c) Pareto curve and solution path

Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

Lasso problem
1

2

3

4

min
x

kA2x� b2k2 s.t kxk�1  �2
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Supercooled
spectral-projected gradients
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(c) Pareto curve and solution path

Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

Lasso problem
1

2

3

4

min
x

kA3x� b3k2 s.t kxk�1  �3
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Supercooled
spectral-projected gradients
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(c) Pareto curve and solution path

Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

Lasso problem
1

2

3

4

min
x

kA4x� b4k2 s.t kxk�1  �4
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Supercooled
spectral-projected gradients

Algorithm 1: Modified SPG`1 with message passing.

Result: Estimate for the model x

t+1

x

0, ex  � 0 and t, ⌧0  � 0 ; // Initialize1

while t  T do2

A � A ⇠ P (A); // Draw new sensing matrix3

b � Ax; // Collect new data4

x

t+1  � spgl1(A,b, ⌧ t,� = 0,xt
); // Reach Pareto5

⌧ t  � kxt+1k1; // New initial ⌧ value6

t � t+�T ; ; // Add # of iterations of spgl17

end8
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Sparse example
[n=500; N=10000; k=35; T=50]
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Ideal ‘Seismic’ example
[n/N=0.13;N=248759;T=500]
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Ideal ‘Seismic’ example
[n/N=0.13;N=248759;T=500]
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Linearized inversion
Split-spread surface-free ‘land’ acquisition:

• 350 sources with sampling interval 20m

• 701 receivers with sampling interval 10m

• maximal offset 7km (3.5 X depth of model)

• Ricker wavelet with central frequency of 30Hz

• recording time for each shot is 3.6s
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Linearized inversion

Time-harmonic Helmholtz:

• 409 X 1401 with mesh size of 5m

• 9 point stencil [C. Jo et. al., ’96]

• absorbing boundary condition with damping layer with 
thickness proportional to wavelength

• solve wavefields on the fly with direct solver
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Linearized inversion
[background model]
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Linearized inversion
[true perturbation]
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Linearized inversion
[     w/o rerandomization 3 super shots]`1
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Linearized inversion
[     w/ rerandomization 3 super shots]`1
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Linearized inversion
[     w/ rerandomization 3 super shots]`1

cost of 1/2 RTM w/ all data
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Linearized inversion
[solution paths    ]`1
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Linearized inversion
[     w/ rerandomization 3 super shots]`1
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Linearized inversion
[     w/ rerandomization 3 super shots]`2
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Linearized inversion
[model errors]
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Marine linearized inversion
[     w/o rerandomization 17 shots]`1
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Marine linearized inversion
[     w/ rerandomization 17 shots]`1
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Conclusions
Message passing improves image quality

‣ computationally feasible one-norm regularization

Message passing via rerandomization

‣ small system size with small IO and memory imprints

Possibility to exploit new computer architectures that employ   
model space parallelism to speed up wavefield simulations...
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Thank you

slim.eos.ubc.ca
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