Fast sparsity-promoting imaging with message passing

Felix J. Herrmann

thanks to Xiang Li

SLIM

Seismic Laboratory for Imaging and Modeling the University of British Columbia

Big data

"We are drowning in data but starving for understanding" USGS director Marcia McNutt
"Got data now what" Carlsson \& Ghrist SIAM

Drivers

Recent technology push calls for collection

- high-quality broad-band data volumes (>100k channels)
- larger offsets \& full azimuth

Exposes vulnerabilities in our ability to control

- acquisition costs / time / quality
- processing costs / time / quality

Drivers cont'd

Complexity of inversion algorithms exposes the "curse of dimensionality" in

- sampling: exponential growth of \# samples for high dimensions
- optimization: exponential growth of \# parameter combinations that need to be evaluated to minimize our objective functions

Drivers cont'd

Problems exacerbated by IO bottleneck:

Goals

Replace a 'sluggish' inversion paradigm that

- relies on touching all data all the time
by an agile optimization paradigm that works on
- small randomized subsets of data iteratively

Confront "data explosion" by

- reducing acquisition costs
- removing IO \& PDEs-solve bottlenecks

Imaging results [migration w/ "all" data]

Imaging results [linearized inversion w/ small subsets]

Key technologies

Fast imaging with Stochastic optimization / Compressive Sensing:

- subsets of simultaneous sources - supershots generated by random amplitude-weighted superpositions
- random subsets of sequential sources

Imaging via large-scale curvelet-domain sparsity promoting convex optimization with cooling

Acceleration with "approximate message passing"

Imaging [background model]

Imaging [true perturbation]

Migration [single migration with "all" data]

Too expensive to invert with "all" data...

Fast imaging [via stochastic optimization]

Rerandomized sampling

- linear speed up by reducing \# PDE solves
- increases convergence but may fail to converge

Exploits multi-experiment redundancy of seismic data volumes

- regularly draw independent subsets of shots
- cancels crosstalk by rerandomization

Heuristic of current phase-encoding migration/FWI methods

Linearized inversion [ℓ_{2} w/o rerandomization 3 super shots]

Linearized inversion [ℓ_{2} w/ rerandomization 3 super shots]

Fast imaging [via compressive sensing]

Incoherent randomized sampling

- linear speed up by reducing \# PDE solves
- coherent source crosstalk turns into non-sparse incoherent noise

Exploits structure exhibited by migrated images

- leverages curvelet-domain sparsity promotion
- maps "noisy" crosstalk to coherent reflectors

Convex optimization [$p=2$ or $p=1$]

Linearized inversion with randomized supershots:
$\delta \widetilde{\mathbf{m}}=\mathbf{S}^{*} \underset{\delta \mathbf{x}}{\arg \min }\|\delta \mathbf{x}\|_{\ell_{p}} \quad$ subject to $\quad\|\delta \underline{\mathbf{d}}-\overbrace{\nabla \mathcal{F}\left[\mathbf{m}_{0} ; \underline{\mathbf{Q}}\right]}^{\text {demigration }} \mathbf{S}^{*} \delta \mathbf{x}\|_{2} \leq \sigma$
$\delta \mathbf{x}=$ Sparse curvelet-coefficient vector
$\mathrm{S}^{*}=$ Curvelet synthesis
$\underline{\mathrm{Q}}=$ Simultaneous sources
$\delta \underline{\mathrm{d}}=$ Super shots

Linearized inversion [$\ell_{2} 3$ super shots]

Linearized inversion [$\ell_{1} 3$ super shots]

Observations [reasonable PDE solve budget]

Rerandomization and curvelet-domain sparsity promotion:

- partly eliminate "noisy" crosstalk
fail to remove "small" incoherent crosstalk

Can we somehow combine these two methods?
\Rightarrow continuation method for large-scale convex optimization
\downarrow use insights from approximate message passing

Convex optimization

Involves iterations of the type

$$
\begin{aligned}
& \begin{array}{c}
\text { soft } \\
\text { threshold } \\
\downarrow
\end{array} \\
& \mathbf{x}^{t+1}=\eta_{t}\left(\mathbf{A}^{*} \mathbf{r}^{t}+\mathbf{x}^{t}\right) \\
& \mathbf{r}^{t}=\mathbf{b}-\mathbf{A} \mathbf{x}^{t}
\end{aligned}
$$

Corresponds to vanilla denoising if \mathbf{A} is a Gaussian matrix. But does the same hold for later ($\mathrm{t}>\mathrm{I}$) iterations...?

Iteration $\dagger=1$

$\mathbf{A}^{*} \mathbf{A} \mathbf{x}_{0} \quad \mathbf{x}_{\mathbf{0}}$ is $k=2$-sparse and $N=10^{4}$

Iteration t=2

Iteration t=3

Iteration t=4

Problem

After first iteration the interferences become 'spiky' because of correlations between model iterate $\mathbf{x}^{\mathrm{t}} \&$ the matrix \mathbf{A}

- assumption spiky vs Gaussian noise no longer holds
- renders soft thresholding less effective

Leads to stalling of sparsity-promoting algorithms...

Approximate

message passing

Add a term to iterative soft thresholding, i.e.,

$$
\begin{aligned}
\mathbf{x}^{t+1} & =\eta_{t}\left(\mathbf{A}^{*} \mathbf{r}^{t}+\mathbf{x}^{t}\right) \\
\mathbf{r}^{t} & =\mathbf{b}-\mathbf{A} \mathbf{x}^{t}+\frac{\left\|\mathbf{x}^{t+1}\right\|_{0}}{n} \mathbf{r}^{t-1} \longleftarrow
\end{aligned}
$$

Holds for

- normalized Gaussian matrices $\mathbf{A}_{i j} \in n^{-1 / 2} N(0,1)$
- large-scale limit and for specific thresholding strategy

Approximate

message passing

Statistically equivalent to

$$
\begin{aligned}
\mathbf{x}^{t+1} & =\eta_{t}\left(\mathbf{A}_{t}^{*} \mathbf{r}^{t}+\mathbf{x}^{t}\right) \\
\mathbf{r}^{t} & =\mathbf{b}_{t}-\mathbf{A}_{t} \mathbf{x}^{t}
\end{aligned}
$$

by drawing new independent pairs $\left\{\mathbf{b}_{t}, \mathbf{A}_{t}\right\}$ for each iteration
Changes the story completely

- breaks correlation buildup
- faster convergence

Iteration $t=1$

$$
\mathbf{r}^{t}=\mathbf{b}-\mathbf{A} \mathbf{x}^{t}+\stackrel{\left\|\mathbf{x}^{t+1}\right\|_{0}}{ } \mathbf{r}^{t-1} \quad \eta_{t}\left(\mathbf{A}^{*} \mathbf{r}^{t}+\mathbf{x}^{t}\right)
$$

With renewals

Iteration $t=2$
$\mathbf{r}^{t}=\mathbf{b}-\mathbf{A} \mathbf{x}^{t}+\left\|\mathbf{x}^{t+1}\right\|_{0} \mathbf{r}^{t-1} \quad \eta_{t}\left(\mathbf{A}^{*} \mathbf{r}^{t}+\mathbf{x}^{t}\right)$

$$
\mathbf{r}^{t}=\mathbf{b}-\mathbf{A} \mathbf{x}^{t}+\left\|\mathbf{x}^{t+1}\right\|_{0} \mathbf{r}^{t-1} \quad \eta_{t}\left(\mathbf{A}^{*} \mathbf{r}^{t}+\mathbf{x}^{t}\right)
$$

$$
\mathbf{r}^{t}=\mathbf{b}-\mathbf{\mathbf { A } ^ { t } +}+\mathbf{x x}^{t+1}\| \|^{t} \mathbf{o}^{t-1} \quad \eta_{t}\left(\mathbf{A}^{*} \mathbf{r}^{t}+\mathbf{x}^{t}\right)
$$

Supercooling

Break correlations between the model iterate and matrix \mathbf{A} by rerandomization
\downarrow draw new independent $\left\{\mathbf{b}_{t}, \mathbf{A}_{t}\right\}$ after each subproblem is solved

- brings in "extra" information without growing the system
- minimal extra computational \& memory cost

Supercooled

spectral-projected gradients

[Hennefent et. al., '08]
[Lin \& FJH, '09-]

Supercooled

spectral-projected gradients

Supercooled

spectral-projected gradients

Supercooled

spectral-projected gradients

Supercooled spectral-projected gradients

```
Algorithm 1: Modified \({\mathrm{SPG} \ell_{1} \text { with message passing. }}_{\text {w }}\).
Result: Estimate for the model \(\mathbf{x}^{t+1}\)
\(\mathbf{1} \mathbf{x}^{0}, \widetilde{\mathbf{x}} \longleftarrow \mathbf{0}\) and \(t, \tau^{0} \longleftarrow 0 ; \quad / /\) Initialize
2 while \(t \leq T\) do
\(3 \quad \mathbf{A} \longleftarrow \mathbf{A} \sim P(\mathbf{A})\);
        \(\mathbf{b} \longleftarrow \mathbf{A x}\);
        \(\mathbf{x}^{t+1} \longleftarrow \operatorname{spgl1}\left(\mathbf{A}, \mathbf{b}, \tau^{t}, \sigma=0, \mathbf{x}^{t}\right) ;\)
        \(\tau^{t} \longleftarrow\left\|\mathbf{x}^{t+1}\right\|_{1} ;\)
        \(t \longleftarrow t+\Delta T ; ; \quad / /\) Add \(\#\) of iterations of spgl1
    end
```


Sparse example [$\mathrm{n}=500$; $\mathrm{N}=10000$; k=35; $\mathrm{T}=50$]

Ideal 'Seismic' example [n/N=0.13;N=248759;T=500]

Ideal 'Seismic' example [n/N=0.13;N=248759;T=500]

10 X

solution path

Ideal 'Seismic' example [n/N=0.13;N=248759;T=500]

10 X

recovery
supercooled SPGI1 error

error

solution path

Supercooled

Solution paths

Independent redraws of $\left\{\mathbf{b}_{t}, \mathbf{A}_{t}\right\}$ lead to improved recovery

MCC experiments [\# of iterations \& subsampling]

Linearized inversion

Split-spread surface-free 'land' acquisition:

- 350 sources with sampling interval 20 m
- 701 receivers with sampling interval 10 m
- maximal offset 7 km ($3.5 \times$ depth of model)
- Ricker wavelet with central frequency of 30 Hz
- recording time for each shot is 3.6 s

Linearized inversion

Time-harmonic Helmholtz:

- $409 \times 140 \mathrm{I}$ with mesh size of 5 m
- 9 point stencil [c. jo et.al., 96]
- absorbing boundary condition with damping layer with thickness proportional to wavelength
- solve wavefields on the fly with direct solver

Linearized inversion [background model]

Linearized inversion [true perturbation]

Linearized inversion [estimated coefficients]

Linearized inversion [ℓ_{1} w/o rerandomization 3 super shots】

Linearized inversion [ℓ_{1} w/ rerandomization 3 super shots]

Linearized inversion [ℓ_{1} w/ rerandomization 3 super shots]

cost of I/2 RTM w/ all data

Linearized inversion [solution paths ℓ_{1}]

with
rerandomization

Linearized inversion [ℓ_{1} w/ rerandomization 3 super shots]

Linearized inversion [ℓ_{2} w/ rerandomization 3 super shots]

Linearized inversion [model errors]

Marine linearized inversion [ℓ_{1} w/o rerandomization 17 shots】

Marine linearized inversion [ℓ_{1} w/ rerandomization 17 shots]

Conclusions

Message passing improves image quality

- computationally feasible one-norm regularization

Message passing via rerandomization

- small system size with small IO and memory imprints

Possibility to exploit new computer architectures that employ model space parallelism to speed up wavefield simulations...

Acknowledgments

We would like to thank Charles Jones from BG for providing us with the BG Compass model. This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R8I254) and the Collaborative Research and Development Grant DNOISE II (375 142-08).

This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BP, BGP, Chevron, ConocoPhillips, Petrobras, PGS, Total SA, and WesternGeco.

Thank you

slim.eos.ubc.ca

