5.0rg/licenses/by/4.0).

Navid Ghadermarzy

University of British Columbia
SINDBAD consortium Meeting 2012

December 1, 2012

Navid Ghadermarzy (UBC) Non-convex compressed sensing using partial support i December 1, 2012 1/ 34

Monday, 3 December, 12



Collaborators

Joint work with:

@ Hassan Mansour

) (")zgijr Yilmaz

Navid Ghadermarzy (UBC) Non-convex compressed sensing using partial support i December 1, 2012 2 /34

Monday, 3 December, 12



Outline

@ Introduction and overview

Navid Ghadermarzy (UBC) Non-convex compressed sensing using partial support i December 1, 2012 3/34

Monday, 3 December, 12



Outline

@ Introduction and overview

@ Recovery by weighted ¢,

Navid Ghadermarzy (UBC) Non-convex compressed sensing using partial support i December 1, 2012 3/34

Monday, 3 December, 12



Outline

@ Introduction and overview
@ Recovery by weighted ¢,

@ Experimental results

Navid Ghadermarzy (UBC) Non-convex compressed sensing using partial support i December 1, 2012 3/34

Monday, 3 December, 12



Outline

@ Introduction and overview
@ Recovery by weighted ¢,
@ Experimental results

@ Weighted £, minimization for seismic data interpolation

Navid Ghadermarzy (UBC) Non-convex compressed sensing using partial support i December 1, 2012 3/34

Monday, 3 December, 12



Introduction

Notation

Consider a signal z € RN s.t. z = Dx where D is a transform matrix and x is a
k-sparse vector.
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Introduction

Notation

Consider a signal z € RN s.t. z = Dx where D is a transform matrix and x is a
k-sparse vector.

We want to recover x, given n linear and noisy measurements y = WDx + e where
n < N and ||e]| < e
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Introduction

Notation

Consider a signal z € RN s.t. z = Dx where D is a transform matrix and x is a
k-sparse vector.

We want to recover x, given n linear and noisy measurements y = WDx + e where
n < N and ||e]| < e

Assuming A = WD we should solve the underdetermined system y = Ax + e.
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Introduction

Problem formulation

Theorem

The following optimization problem can approximately recover x from the
measurements y if k < 5 and A is in general position:

minimize,crn||z||lo  subject to ||Az — yl||2< €
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Introduction

Problem formulation

Theorem

The following optimization problem can approximately recover x from the
measurements y if k < 5 and A is in general position:

minimize,crn||z||lo  subject to ||Az — yl||2< €

This problem is a combinatorial problem, so now different optimization problems

Is used to approximate x.
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Introduction

Recovery by £; minimization

Candes, Romberg and Tao showed that if A is sufficiently incoherent, solving the
following convex optimization problem recovers x from measurements y = Ax + e:

minimize,cgn||z|[1  subject to ||Az — y|[2< €.
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Introduction

Recovery by £; minimization

Candes, Romberg and Tao showed that if A is sufficiently incoherent, solving the
following convex optimization problem recovers x from measurements y = Ax + e:

minimize,cgn||z|[1  subject to ||Az — y|[2< €.

Assuming x* as the solution and x, as the best k-term approximation of x, then:

X = xilla

vk

IxX* = x|l < G e+ G
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Introduction

Recovery by £; minimization

Candes, Romberg and Tao showed that if A is sufficiently incoherent, solving the
following convex optimization problem recovers x from measurements y = Ax + e:

minimize,cgn||z|[1  subject to ||Az — y|[2< €.

Assuming x* as the solution and x, as the best k-term approximation of x, then:

X = xilla

vk

IxX* = x|l < G e+ G

Remark

If the measurement matrix A is a random Gaussian matrix then the sufficient
condition would be k < —Z+— which is much worse than the £y sufficient

~ log(X)
condition k < g
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Introduction

Recovery by £, minimization

Solving the following non-convex problem also estimates x with weaker sufficient
conditions on A than 4;:

minimize,cgn||z||, subject to ||Az — y|[2< €.
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Introduction

Recovery by £, minimization

Solving the following non-convex problem also estimates x with weaker sufficient
conditions on A than 4;:

minimize,cgn||z||, subject to ||Az — y|[2< €.

Theorem

(SY) Assuming x* as the solution and xi as the best k-term approximation of x,
then if A is sufficiently incoherent, we have:

¢ e X = xillp
X" = xll§ < G - e + G -
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Introduction

Phase-diagrams for reconstruction via £, minimization

This diagram shows the success rate of recovering S-sparse signals using ¢,
minimization for a Gaussian matrix A € R199x300,

The light-shaded areas show the pairs (p,S) that we have guaranteed recovery.

Region where recovery with Ap is guaranteed for p and S

Empirical Recovery Rates with A
(Light Shading = Recoverable) P

.
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(a) theoretical results (b) empirical results
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Introduction

Recovery by weighted £; minimization

Mansour et al. used a new method to recover x using prior information about it.
Assume x Is a k-sparse vector which has its support on set Ty and we estimate the
support to be on the set T which is partially correct.

T

Ts

T NnT,
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Introduction

Recovery by weighted £; minimization

Mansour et al. used a new method to recover x using prior information about it.
Assume x Is a k-sparse vector which has its support on set Ty and we estimate the
support to be on the set T which is partially correct.

= TU

[
. Tﬂ

T NnT, T nT¢

=3

Then minimizing the following weighted £; optimization gives us better recovery
when we have a good estimate by using the weighted ¢; norm, ||z||1w = Z;w;|zj]|
instead of the £; norm.

4 ~

1 fre T°¢

minimize z subject to ||Az — <€ with wj=1<{"" -
ezl subject to [|Az—yl]; < e e
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Introduction

Stable and robust recovery guarantees of weighted £,

~

Let \7’\ = pk and a = |T|°%T|, where p defines size of the support estimate and o

determines the accuracy of the estimate.
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Introduction

Stable and robust recovery guarantees of weighted £,

~

Let \7’\ = pk and a = |T|°%T|, where p defines size of the support estimate and o

determines the accuracy of the estimate.

Theorem
(FMSY) If A is sufficiently incoherent, the solution x* to weighted ¢, obeys:

1).

—1
Ix* = xllo < G e+ G kT (Wllx =il + (1= w)llxe e
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Introduction

Stable and robust recovery guarantees of weighted £,

~

Let \7’\ = pk and a = |T|°%T|, where p defines size of the support estimate and o

determines the accuracy of the estimate.

Theorem
(FMSY) If A is sufficiently incoherent, the solution x* to weighted ¢, obeys:

1).

—1
Ix* = xllo < G e+ G kT (Wllx =il + (1= w)llxe e

If o, the accuracy of our estimate is better than 50% then weighted £; recovers
better than £; in terms of sufficient recovery conditions and error bounds.
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Introduction

Stable and robust recovery guarantees of weighted £,

This plot shows the results of using weighted £;, recovering 40-sparse signal when
N = 500 .

a =0.7 a =0.5 a =0.3
160 160 T T
140 F 140
120F 120
100 F 100 -
o« oc oc
= 80F = = 80
(72 [22) [22)
60 | 60
40rF —_—— =0 40
—f— o = 0.3
s0h —6— » =0.5|] 0l
——t—w = 0.7
w=1
o of L L L .
80 100 120 140 160 180 200 80 100 120 140 160 180 200 80 100 120 140 160 180 200
number of measurements n number of measurements n number of measurements n
( ) .
o =0.3
25
o o' o'
= = =
2] 2] 2]
d
o L L L L L o L L L L L o L L L L L
80 100 120 140 160 180 200 80 100 120 140 160 180 200 80 100 120 140 160 180 200
number of measurements n number of measurements n number of measurements n

(d) 5% noise
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Recovery by weighted £,

Motivation

Using £, minimization recovers the true signal for a wider range of measurement
matrices compared to 4.
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Recovery by weighted £,

Motivation

Using £, minimization recovers the true signal for a wider range of measurement
matrices compared to 4.

If we can guess a support estimate which is at least 50% accurate, then using
weighted £; minimization guarantees recovery with weaker RIP conditions and
smaller recovery error bounds compared to ;.
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Recovery by weighted £,

Motivation

Using £, minimization recovers the true signal for a wider range of measurement
matrices compared to 4.

If we can guess a support estimate which is at least 50% accurate, then using
weighted £; minimization guarantees recovery with weaker RIP conditions and

smaller recovery error bounds compared to ;.

By using weighted £, minimization we can enjoy the advantages of both.
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Recovery by weighted £,

Weighted £, minimization

We estimate x from measurements y by solving the following optimization
problem:

1, ific Te

minimize Z subject to ||Az — <€ with w; = <
cemrl|Zllpu sublect to Az —y]l2 < e itic T

T =

where 0 < w < 1 and ||z]|p,.w = (Zi|w;z|P)
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Recovery by weighted £,

Stable and robust recovery guarantees of weighted £,

= ToNT
Recall that |T| = pk and a = %
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Recovery by weighted £,

Stable and robust recovery guarantees of weighted £,

Recall that | T| = pk and a = %

Theorem

(G, Mansour, Yilmaz) If A satisfies some sufficient conditions which are weaker
than the analogous sufficient conditions of £, and weighted £,, then the solution
x* to weighted £, obeys:

Ix* = x|l5 < Ci - €@ + Gok2H(wWPllx — xillf + (1 - WO IXe e 1)
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Recovery by weighted £,

Comparison of sufficient recovery conditions

This plot compares the sufficient recovery conditions on the measurement matrix
A, using weighted £; and weighted £,

When a = 0.5 the sufficient recovery conditions of weighted minimizers is the
same as using regular minimizers.

)
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Recovery by weighted £,

Comparison of constants

As the following plot shows when a > 0.5 using smaller weights results in better
error bounds.

(¢)]

—0— 0 =0.1

>
[

N
T

w
[

w
T

n
(&)}
T

Error bound noise constant (C1)

Error bound compressibility constant (Cz)

N
T

1 1 1 1 1 15 1 1 | 1
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Weights (w) Weights (w)
(e) Measurement noise constant (f) Signal compressibility constant
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Recovery by weighted £,

Example 1: Regular £; vs Weighted ¢;

We generate a 40-sparse random vector x and try to recover x by measurements
b = Ax where A is a 80 x 500 random Gaussian matrix.

The following plot shows the x — Xyecovered When we use regular £; and weighted ¢4
when a = 0.7.

11 recovery error wl1 recovery error

0.2 ‘ ‘ ‘ ‘ 0.2
0.15} - 0.15
01t - 0.1
0.05} - 0.05
0 0
-0.05 -0.05
0.1 0.1
-0.15 -0.15
0% 100 200 300 400 500 0% 100 200 300 400 500
Figure: Recovery error by regular £; Figure: Recovery error by weighted ¢;
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Recovery by weighted £,

Example 1: Regular £, vs Weighted £,

Following plot shows the result when we use regular £, and weighted £, to recover
the same signal when o = 0.7 and p = 0.5.

Ip recovery error wlp recovery error
0.2 ‘ ‘ ‘ ‘ 0.2
0.15¢ 1 0.151
0.1r i 0.1r
0.05 b 0.05
0 0
-0.05 -0.05
-0.1 -0.1
-0.15 -0.15
0% 100 200 300 400 500 0% 100 200 300 400 500

Figure: Recovery error by regular £, Figure: Recovery error by weighted £,
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Recovery by weighted £,

Example 2: £; vs £,

This time we generate a 40-sparse random vector x and try to recover x by
measurements b = Ax where A is a 100 x 500 random Gaussian matrix.

The following plot shows the x — Xrecovered When we use regular £; and regular £,
when p = 0.5.

o | 1 recovery error | 0 Ip recovery error
0.15} - 0.15}
01} - 0.1
0.05} - 0.05}
0 0
-0.05 -0.05
04 0.1
-0.15 -0.15
0% 100 200 300 400 500 0% 100 200 300 400 500
Figure: Recovery error by ¢; Figure: Recovery error by £,
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Recovery by weighted £,

Example 2: weighted ¢; vs Weighted £,

Following plot shows the result when we use weighted £; and weighted £, to
recover the same signal when a = 0.5 and p = 0.5.

wl1 recovery error wlp recovery error
0.2 \ \ \ \ 0.2
0.15 b 0.15
0.1} b 01
0.05 b 0.05
0 0
-0.05 -0.05
-0.1 -0.1
-0.15 -0.15
0% 100 200 300 400 500 0% 100 200 300 400 500

Figure: Recovery error by weighted ¢;  Figure: Recovery error by weighted £,
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Numerical results

Recovery of sparse signals

We take the averaged SNR over 10 experiments for k-sparse signals x with
k =40, and N =500 and p = 0.5 for variable weights and a.

The noise free case:

250 T T .

200

150

SNR

—+— weighted L_p, W =0
—6— weighted L_p, \w = 0.3
—#— weighted L_p, \w= 0.5
—&— weighted L_p, \w = 0.7
—— weighted L_p, \w= 1
weighted L_1,\w=0
—— weighted L_1, \w=0.5
weighted L_1, \w= 1

80 100 120 140

160 180 200

number of measurments n

(a) a =0.7
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Numerical results

Recovery of sparse signals

We take the averaged SNR over 10 experiments for k-sparse signals x with

k = 40, and N = 500 and p = 0.5 for variable weights and a.

The noisy case:

30 30
251
20
o
—+— weighted L_p,\Ww =0 [] (% 15
—©— weighted L_p, \w =0.3 :
—#— weighted L_p, \w=0.5 —— we!ghted L_p,\w=0
—+&— weighted L_p, \w = 0.7 | 10+ —6— wegghted L_p,\w=0.3
—— weighted L_p, \w=1 —¥— weighted L_p, \w= 0.5
weighted L_1,\w=0 —&— weighted L_p, \w = 0.7
—— weighted L_1,\w=0.5 || —%— weighted L_p, \w=1

weighted L_1, \w=1
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140

160 180 200
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(c) a=0.7 (d) «a=0.3
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Numerical results

Recovery of Compressible signals

We take the averaged SNR over 10 experiments for signals x whose coefficients

decay like j=9 where j € 1,2,..., N with d = 1.5, p = 0.5, N = 500 and n = 100
for variable weights and support estimate size. The accuracy of the support

estimate, a I1s calculated with respect to the best kK = 20 term approximation.

No noise case:
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N
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Numerical results

Recovery of Compressible signals

We take the averaged SNR over 10 experiments for signals x whose coefficients

decay like j=9 where j € 1,2,..., N with d = 1.5, p=0.5, N =500 and n = 100
for variable weights and support estimate size. The accuracy of the support
estimate, a I1s calculated with respect to the best kK = 20 term approximation.

Noisy case:
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Numerical results

Which p and w to use? sparse signals, n = 120

We take the averaged SNR over 10 experiments for k-sparse signals x with
k =40, and N =500 and a = 0.5 for variable weights and p.
n—= 120 :
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—#— weigted L p\Ww =0 24r
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(i) no noise (J) 5%noise
Navid Ghadermarzy (UBC) Non-convex compressed sensing using partial support i December 1, 2012 25 / 34

Monday, 3 December, 12



Numerical results

Which p and w to use? compressible signals, n = 120

We take the averaged SNR over 10 experiments for k-sparse signals x with
k =40, and N =500 and a = 0.5 for variable weights and p.
n—= 120 :

50,
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Weighted £, minimization for seismic data interpolation

Why weighted minimization is a good idea

Seismic data organized in a seismic line exhibit continuity in the time/frequency
dimension as well as continuity across the offset/azimuth directions.
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Weighted £, minimization for seismic data interpolation

Why weighted minimization is a good idea

Seismic data organized in a seismic line exhibit continuity in the time/frequency
dimension as well as continuity across the offset/azimuth directions.

As a result there is high correlation between the support sets of adjacent
time/frequency slices and of adjacent common-offset/common-azimuth slices.
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Weighted £, minimization for seismic data interpolation

Why weighted minimization is a good idea

Seismic data organized in a seismic line exhibit continuity in the time/frequency
dimension as well as continuity across the offset/azimuth directions.

As a result there is high correlation between the support sets of adjacent
time/frequency slices and of adjacent common-offset/common-azimuth slices.

We can use the support set of each slice as an estimate for the support of the
next slice.
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Weighted £, minimization for seismic data interpolation

Problem formulation

We want to recover a high dimensional seismic data volume f by interpolating
between a smaller number of measurements b = RMf.
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Weighted £, minimization for seismic data interpolation

Problem formulation
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We want to recover a high dimensional seismic data volume f by interpolating
between a smaller number of measurements b = RMf.

To deal with the problem of dimensionality we partition the data along some
dimension and then sequentially recover each partition.

The sensing matrix used at each partition is defined by AV) = RU) SHwhere RUY) is

the subsampling operator restricted to j-th partition and S is the 2-D curvelet
transform.

Navid Ghadermarzy (UBC) Non-convex compressed sensing using partial support i December 1, 2012 28 / 34

Monday, 3 December, 12




Weighted £, minimization for seismic data interpolation

Problem formulation

We want to recover a high dimensional seismic data volume f by interpolating
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dimension and then sequentially recover each partition.
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transform.

First we use the regular £; optimization to solve the first partition.

%) = arg min,||ul|s subject to ANy = p),
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Weighted £, minimization for seismic data interpolation

Problem formulation

We want to recover a high dimensional seismic data volume f by interpolating
between a smaller number of measurements b = RMf.

To deal with the problem of dimensionality we partition the data along some
dimension and then sequentially recover each partition.

The sensing matrix used at each partition is defined by AV) = RU) SHwhere RU) is
the subsampling operator restricted to j-th partition and S is the 2-D curvelet
transform.

First we use the regular £; optimization to solve the first partition.

%) = arg min,||ul|s subject to ANy = p),

Then at each partition j we use the solution to the previous partition to construct
a support estimate for the next iteration and solve the following weighted £,
problem.

%U) = arg min,||u||p.w subject to AWy = b\,
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Weighted £, minimization for seismic data interpolation

Partitioning in the time/frequency domain

Consider the following time slice in the source-receiver domain:
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Weighted £, minimization for seismic data interpolation

Partitioning in the time/frequency domain

We use the mask shown in the left to get the subsampled time slice in right.
subsampling ratio is 50%.
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Weighted £, minimization for seismic data interpolation

Results of partitioning in the time/frequency domain

We used weighted £, minimization for recovering a seismic line from the Gulf of
Suez with 50% randomly subsampled receivers using the mask shown above. The
seismic line at full resolution has N, = 178 sources, N, = 178 receivers with a
sample distance of 12.5 meters, and N; = 500 time samples acquired with a
sampling interval of 4 milliseconds. Here the data are organized in the
frequency-source-receiver domain.
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Conclusion

@ We derived stability and robustness guarantees for the recovery of a signal x
with partial support estimate T using weighted £, minimization.
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Conclusion

@ We derived stability and robustness guarantees for the recovery of a signal x
with partial support estimate T using weighted £, minimization.

@ We showed that by using £, recovery and partial support we get much better
recovery guarantees in terms of RIP condition and error bounds.
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