Non-convex compressed sensing using partial support information

.org/licenses/by/4.0).

Navid Ghadermarzy

University of British Columbia SINDBAD consortium Meeting 2012

December 1, 2012

Collaborators

Joint work with:

- Hassan Mansour
- Özgür Yılmaz

Outline

- Introduction and overview
- Recovery by weighted ℓ_p

- Introduction and overview
- Recovery by weighted ℓ_p
- Experimental results

- Introduction and overview
- Recovery by weighted ℓ_p
- Experimental results
- Weighted ℓ_p minimization for seismic data interpolation

- Introduction and overview
- Recovery by weighted ℓ_p
- Experimental results
- Weighted ℓ_p minimization for seismic data interpolation

Consider a signal $z \in R^N$ s.t. z = Dx where D is a transform matrix and x is a k-sparse vector.

We want to recover x, given n linear and noisy measurements $y = \Psi Dx + e$ where $n \ll N$ and $||e|| < \epsilon$.

Consider a signal $z \in R^N$ s.t. z = Dx where D is a transform matrix and x is a k-sparse vector.

We want to recover x, given n linear and noisy measurements $y = \Psi Dx + e$ where $n \ll N$ and $||e|| < \epsilon$.

Assuming $A = \Psi D$ we should solve the underdetermined system y = Ax + e.

Consider a signal $z \in R^N$ s.t. z = Dx where D is a transform matrix and x is a k-sparse vector.

We want to recover x, given n linear and noisy measurements $y = \Psi Dx + e$ where $n \ll N$ and $||e|| < \epsilon$.

Assuming $A = \Psi D$ we should solve the underdetermined system y = Ax + e.

Theorem

The following optimization problem can approximately recover x from the measurements y if $k < \frac{n}{2}$ and A is in general position:

 $minimize_{z \in R^N} ||z||_0$ $subject to ||Az - y||_2 \le \epsilon$

This problem is a combinatorial problem, so now different optimization problems is used to approximate x.

Theorem

The following optimization problem can approximately recover x from the measurements y if $k < \frac{n}{2}$ and A is in general position:

 $minimize_{z \in R^N} ||z||_0$ $subject to ||Az - y||_2 \le \epsilon$

This problem is a combinatorial problem, so now different optimization problems is used to approximate x.

Recovery by ℓ_1 minimization

Candes, Romberg and Tao showed that if A is sufficiently incoherent, solving the following convex optimization problem recovers x from measurements y = Ax + e:

```
minimize<sub>z \in R^N</sub> ||z||_1 subject to ||Az - y||_2 \le \epsilon.
```

Assuming x^* as the solution and x_k as the best k-term approximation of x, then:

$$||x^* - x||_2 \le C_1^{\ell_1} \cdot \epsilon + C_2^{\ell_1} \cdot \frac{||x - x_k||_1}{\sqrt{k}}.$$

Recovery by ℓ_1 minimization

Candes, Romberg and Tao showed that if A is sufficiently incoherent, solving the following convex optimization problem recovers x from measurements y = Ax + e:

```
minimize<sub>z \in R^N</sub> ||z||_1 subject to ||Az - y||_2 \le \epsilon.
```

Assuming x^* as the solution and x_k as the best k-term approximation of x, then:

$$||x^* - x||_2 \leq C_1^{\ell_1} \cdot \epsilon + C_2^{\ell_1} \cdot \frac{||x - x_k||_1}{\sqrt{k}}.$$

Remark

If the measurement matrix A is a random Gaussian matrix then the sufficient condition would be $k \leq \frac{n}{\log(\frac{N}{n})}$ which is much worse than the ℓ_0 sufficient condition $k < \frac{n}{2}$.

Recovery by ℓ_1 minimization

Candes, Romberg and Tao showed that if A is sufficiently incoherent, solving the following convex optimization problem recovers x from measurements y = Ax + e:

```
minimize<sub>z \in R^N</sub> ||z||_1 subject to ||Az - y||_2 \le \epsilon.
```

Assuming x^* as the solution and x_k as the best k-term approximation of x, then:

$$||x^* - x||_2 \leq C_1^{\ell_1} \cdot \epsilon + C_2^{\ell_1} \cdot \frac{||x - x_k||_1}{\sqrt{k}}.$$

Remark

If the measurement matrix A is a random Gaussian matrix then the sufficient condition would be $k \leq \frac{n}{\log(\frac{N}{n})}$ which is much worse than the ℓ_0 sufficient condition $k < \frac{n}{2}$.

Recovery by ℓ_p minimization

Solving the following non-convex problem also estimates x with weaker sufficient conditions on A than ℓ_1 :

minimize_{$$z \in R^N$$} $||z||_p$ subject to $||Az - y||_2 \le \epsilon$.

Theorem

(SY) Assuming x^* as the solution and x_k as the best k-term approximation of x, then if A is sufficiently incoherent, we have:

$$||x^* - x||_2^p \leq C_1^{\ell_p} \cdot \epsilon^p + C_2^{\ell_p} \cdot \frac{||x - x_k||_p^p}{k^{1 - \frac{p}{2}}}.$$

Recovery by ℓ_p minimization

Solving the following non-convex problem also estimates x with weaker sufficient conditions on A than ℓ_1 :

minimize_{$$z \in R^N$$} $||z||_p$ subject to $||Az - y||_2 \le \epsilon$.

Theorem

(SY) Assuming x^* as the solution and x_k as the best k-term approximation of x, then if A is sufficiently incoherent, we have:

$$||x^* - x||_2^p \leq C_1^{\ell_p} \cdot \epsilon^p + C_2^{\ell_p} \cdot \frac{||x - x_k||_p^p}{k^{1 - \frac{p}{2}}}.$$

Phase-diagrams for reconstruction via ℓ_p minimization

This diagram shows the success rate of recovering S-sparse signals using ℓ_p minimization for a Gaussian matrix $A \in \mathbb{R}^{100 \times 300}$.

The light-shaded areas show the pairs (p,S) that we have guaranteed recovery.

8 / 34

Monday, 3 December, 12

Recovery by weighted ℓ_1 minimization

Mansour et al. used a new method to recover x using prior information about it. Assume x is a k-sparse vector which has its support on set T_0 and we estimate the support to be on the set \tilde{T} which is partially correct.

Then minimizing the following weighted ℓ_1 optimization gives us better recovery when we have a good estimate by using the weighted ℓ_1 norm, $||z||_{1,w} = \sum_i w_i |z_i|$ instead of the ℓ_1 norm.

$$\begin{array}{ll} \mathsf{minimize}_{z \in R^N} \|z\|_{1,w} \ \mathsf{subject to} \ \|Az - y\|_2 \leq \epsilon \ with \ w_i = \begin{cases} 1, & \text{if } i \in \widetilde{T}^c \\ w < 1, \ \text{if } i \in \widetilde{T} \end{cases} \\ w < 1, \ \text{if } i \in \widetilde{T} \end{cases} \end{array}$$

Recovery by weighted ℓ_1 minimization

Mansour et al. used a new method to recover x using prior information about it. Assume x is a k-sparse vector which has its support on set T_0 and we estimate the support to be on the set \tilde{T} which is partially correct.

Then minimizing the following weighted ℓ_1 optimization gives us better recovery when we have a good estimate by using the weighted ℓ_1 norm, $||z||_{1,w} = \sum_i w_i |z_i|$ instead of the ℓ_1 norm.

$$\mathsf{minimize}_{z \in R^N} \|z\|_{1,w} \text{ subject to } \|Az - y\|_2 \le \epsilon \text{ with } w_i = \begin{cases} 1, & \text{if } i \in \widetilde{T}^c \\ w < 1, \text{ if } i \in \widetilde{T} \end{cases}$$

Stable and robust recovery guarantees of weighted ℓ_1

Let $|\tilde{T}| = \rho k$ and $\alpha = \frac{|T_0 \cap \tilde{T}|}{|\tilde{T}|}$, where ρ defines size of the support estimate and α determines the accuracy of the estimate.

Theorem

(FMSY) If A is sufficiently incoherent, the solution x^* to weighted ℓ_1 obeys:

 $||x^* - x||_2 \leq C_1^{w\ell_1} \cdot \epsilon + C_2^{w\ell_1} k^{\frac{-1}{2}} (w||x - x_k||_1 + (1 - w)||x_{T^c \cap T_0^c}||_1).$

Stable and robust recovery guarantees of weighted ℓ_1

Let $|\tilde{T}| = \rho k$ and $\alpha = \frac{|T_0 \cap \tilde{T}|}{|\tilde{T}|}$, where ρ defines size of the support estimate and α determines the accuracy of the estimate.

Theorem

(FMSY) If A is sufficiently incoherent, the solution x^* to weighted ℓ_1 obeys:

$$||x^* - x||_2 \leq C_1^{w\ell_1} \cdot \epsilon + C_2^{w\ell_1} k^{\frac{-1}{2}} (w||x - x_k||_1 + (1 - w) ||x_{T^c \cap T_0^c}||_1).$$

If α , the accuracy of our estimate is better than 50% then weighted ℓ_1 recovers better than ℓ_1 in terms of sufficient recovery conditions and error bounds.

Stable and robust recovery guarantees of weighted ℓ_1

Let $|\tilde{T}| = \rho k$ and $\alpha = \frac{|T_0 \cap \tilde{T}|}{|\tilde{T}|}$, where ρ defines size of the support estimate and α determines the accuracy of the estimate.

Theorem

(FMSY) If A is sufficiently incoherent, the solution x^* to weighted ℓ_1 obeys:

$$||x^* - x||_2 \leq C_1^{w\ell_1} \cdot \epsilon + C_2^{w\ell_1} k^{\frac{-1}{2}} (w||x - x_k||_1 + (1 - w)||x_{\mathcal{T}^c \cap \mathcal{T}_0^c}||_1).$$

If α , the accuracy of our estimate is better than 50% then weighted ℓ_1 recovers better than ℓ_1 in terms of sufficient recovery conditions and error bounds.

Stable and robust recovery guarantees of weighted ℓ_1

This plot shows the results of using weighted ℓ_1 , recovering 40-sparse signal when N = 500.

Motivation

Using ℓ_p minimization recovers the true signal for a wider range of measurement matrices compared to ℓ_1 .

If we can guess a support estimate which is at least 50% accurate, then using weighted ℓ_1 minimization guarantees recovery with weaker RIP conditions and smaller recovery error bounds compared to ℓ_1 .

Motivation

Using ℓ_p minimization recovers the true signal for a wider range of measurement matrices compared to ℓ_1 .

If we can guess a support estimate which is at least 50% accurate, then using weighted ℓ_1 minimization guarantees recovery with weaker RIP conditions and smaller recovery error bounds compared to ℓ_1 .

By using weighted ℓ_p minimization we can enjoy the advantages of both.

Using ℓ_p minimization recovers the true signal for a wider range of measurement matrices compared to ℓ_1 .

If we can guess a support estimate which is at least 50% accurate, then using weighted ℓ_1 minimization guarantees recovery with weaker RIP conditions and smaller recovery error bounds compared to ℓ_1 .

By using weighted ℓ_p minimization we can enjoy the advantages of both.

Weighted ℓ_p minimization

We estimate x from measurements y by solving the following optimization problem:

$$\text{minimize}_{z \in \mathbb{R}^N} ||z||_{p,w} \text{ subject to } ||Az - y||_2 \le \epsilon \text{ with } w_i = \begin{cases} 1, & \text{if } i \in \widetilde{T}^c \\ w < 1, \text{ if } i \in \widetilde{T} \end{cases}$$

where $0 \le w \le 1$ and $||z||_{p,w} = (\Sigma_i |w_i z_i|^p)^{\frac{1}{p}}$.

Navid Ghadermarzy (UBC)

2

Stable and robust recovery guarantees of weighted ℓ_p

Recall that
$$|\widetilde{T}| =
ho k$$
 and $lpha = rac{|T_0 \cap \widetilde{T}|}{|\widetilde{T}|}$.

Theorem

(G, Mansour, Yılmaz) If A satisfies some sufficient conditions which are weaker than the analogous sufficient conditions of l_p and weighted l_1 , then the solution x^* to weighted l_p obeys:

$$|x^* - x||_2^p \leq C_1 \cdot \epsilon^p + C_2 k^{\frac{p}{2}-1} (w^p ||x - x_k||_p^p + (1 - w^p) ||x_{\widetilde{T}^c \cap T_0^c}||_p^p).$$

Stable and robust recovery guarantees of weighted ℓ_p

Recall that
$$|\widetilde{\mathcal{T}}| =
ho k$$
 and $lpha = rac{|\mathcal{T}_0 \cap \widetilde{\mathcal{T}}|}{|\widetilde{\mathcal{T}}|}$.

Theorem

(G, Mansour, Yılmaz) If A satisfies some sufficient conditions which are weaker than the analogous sufficient conditions of ℓ_p and weighted ℓ_1 , then the solution x^* to weighted ℓ_p obeys:

$$||x^* - x||_2^p \leq C_1 \cdot \epsilon^p + C_2 k^{\frac{p}{2}-1} (w^p ||x - x_k||_p^p + (1 - w^p) ||x_{T^c \cap T_0^c}||_p^p).$$

Comparison of sufficient recovery conditions

This plot compares the sufficient recovery conditions on the measurement matrix A, using weighted ℓ_1 and weighted ℓ_p .

When $\alpha = 0.5$ the sufficient recovery conditions of weighted minimizers is the same as using regular minimizers.

Comparison of constants

As the following plot shows when $\alpha > 0.5$ using smaller weights results in better error bounds.

Example 1: Regular ℓ_1 vs Weighted ℓ_1

We generate a 40-sparse random vector x and try to recover x by measurements b = Ax where A is a 80 × 500 random Gaussian matrix.

The following plot shows the $x - x_{recovered}$ when we use regular ℓ_1 and weighted ℓ_1 when $\alpha = 0.7$.

Figure: Recovery error by regular ℓ_1

Figure: Recovery error by weighted ℓ_1

Example 1: Regular ℓ_p vs Weighted ℓ_p

Following plot shows the result when we use regular ℓ_p and weighted ℓ_p to recover the same signal when $\alpha = 0.7$ and p = 0.5.

Figure: Recovery error by regular ℓ_p

Figure: Recovery error by weighted ℓ_p

Example 2: ℓ_1 vs ℓ_p

This time we generate a 40-sparse random vector x and try to recover x by measurements b = Ax where A is a 100 × 500 random Gaussian matrix.

The following plot shows the $x - x_{recovered}$ when we use regular ℓ_1 and regular ℓ_p when p = 0.5.

Example 2: weighted ℓ_1 vs Weighted ℓ_p

Following plot shows the result when we use weighted ℓ_1 and weighted ℓ_p to recover the same signal when $\alpha = 0.5$ and p = 0.5.

Figure: Recovery error by weighted ℓ_1

Figure: Recovery error by weighted ℓ_p

Monday, 3 December, 12

Recovery of sparse signals

We take the averaged SNR over 10 experiments for k-sparse signals x with k = 40, and N = 500 and p = 0.5 for variable weights and α . The noise free case:

Recovery of sparse signals

We take the averaged SNR over 10 experiments for k-sparse signals x with k = 40, and N = 500 and p = 0.5 for variable weights and α . The noisy case:

Recovery of Compressible signals

We take the averaged SNR over 10 experiments for signals x whose coefficients decay like j^{-d} where $j \in 1, 2, ..., N$ with d = 1.5, p = 0.5, N = 500 and n = 100 for variable weights and support estimate size. The accuracy of the support estimate, α is calculated with respect to the best k = 20 term approximation. No noise case:

23 / 34

Monday, 3 December, 12

Recovery of Compressible signals

We take the averaged SNR over 10 experiments for signals x whose coefficients decay like j^{-d} where $j \in 1, 2, ..., N$ with d = 1.5, p = 0.5, N = 500 and n = 100 for variable weights and support estimate size. The accuracy of the support estimate, α is calculated with respect to the best k = 20 term approximation. Noisy case:

Which p and w to use? sparse signals, n = 120

We take the averaged SNR over 10 experiments for k-sparse signals x with k = 40, and N = 500 and $\alpha = 0.5$ for variable weights and p. n = 120:

Which p and w to use? compressible signals, n = 120

We take the averaged SNR over 10 experiments for k-sparse signals x with k = 40, and N = 500 and $\alpha = 0.5$ for variable weights and p. n = 120:

Why weighted minimization is a good idea

Seismic data organized in a seismic line exhibit continuity in the time/frequency dimension as well as continuity across the offset/azimuth directions.

As a result there is high correlation between the support sets of adjacent time/frequency slices and of adjacent common-offset/common-azimuth slices.

Why weighted minimization is a good idea

Seismic data organized in a seismic line exhibit continuity in the time/frequency dimension as well as continuity across the offset/azimuth directions.

As a result there is high correlation between the support sets of adjacent time/frequency slices and of adjacent common-offset/common-azimuth slices.

We can use the support set of each slice as an estimate for the support of the next slice.

Why weighted minimization is a good idea

Seismic data organized in a seismic line exhibit continuity in the time/frequency dimension as well as continuity across the offset/azimuth directions.

As a result there is high correlation between the support sets of adjacent time/frequency slices and of adjacent common-offset/common-azimuth slices.

We can use the support set of each slice as an estimate for the support of the next slice.

We want to recover a high dimensional seismic data volume f by interpolating between a smaller number of measurements b = RMf.

To deal with the problem of dimensionality we partition the data along some dimension and then sequentially recover each partition.

We want to recover a high dimensional seismic data volume f by interpolating between a smaller number of measurements b = RMf.

To deal with the problem of dimensionality we partition the data along some dimension and then sequentially recover each partition.

The sensing matrix used at each partition is defined by $A^{(j)} = R^{(j)}S^H$ where $R^{(j)}$ is the subsampling operator restricted to j-th partition and S is the 2-D curvelet transform.

We want to recover a high dimensional seismic data volume f by interpolating between a smaller number of measurements b = RMf.

To deal with the problem of dimensionality we partition the data along some dimension and then sequentially recover each partition.

The sensing matrix used at each partition is defined by $A^{(j)} = R^{(j)}S^H$ where $R^{(j)}$ is the subsampling operator restricted to j-th partition and S is the 2-D curvelet transform.

First we use the regular ℓ_1 optimization to solve the first partition. $\tilde{x}^{(1)} = \arg \min_u ||u||_1$ subject to $A^{(1)}u = b^{(1)}$.

We want to recover a high dimensional seismic data volume f by interpolating between a smaller number of measurements b = RMf.

To deal with the problem of dimensionality we partition the data along some dimension and then sequentially recover each partition.

The sensing matrix used at each partition is defined by $A^{(j)} = R^{(j)}S^H$ where $R^{(j)}$ is the subsampling operator restricted to j-th partition and S is the 2-D curvelet transform.

First we use the regular ℓ_1 optimization to solve the first partition.

$$\tilde{x}^{(1)} = \operatorname{arg\,min}_u ||u||_1$$
 subject to $A^{(1)}u = b^{(1)}$.

Then at each partition j we use the solution to the previous partition to construct a support estimate for the next iteration and solve the following weighted ℓ_p problem.

$$\tilde{x}^{(j)} = \arg \min_{u} ||u||_{p,w}$$
 subject to $A^{(j)}u = b^{(j)}$.

We want to recover a high dimensional seismic data volume f by interpolating between a smaller number of measurements b = RMf.

To deal with the problem of dimensionality we partition the data along some dimension and then sequentially recover each partition.

The sensing matrix used at each partition is defined by $A^{(j)} = R^{(j)}S^H$ where $R^{(j)}$ is the subsampling operator restricted to j-th partition and S is the 2-D curvelet transform.

First we use the regular ℓ_1 optimization to solve the first partition.

$$\tilde{x}^{(1)} = \arg \min_{u} ||u||_1$$
 subject to $A^{(1)}u = b^{(1)}$.

Then at each partition j we use the solution to the previous partition to construct a support estimate for the next iteration and solve the following weighted ℓ_p problem.

$$\tilde{x}^{(j)} = \arg \min_{u} ||u||_{p,w}$$
 subject to $A^{(j)}u = b^{(j)}$.

We want to recover a high dimensional seismic data volume f by interpolating between a smaller number of measurements b = RMf.

To deal with the problem of dimensionality we partition the data along some dimension and then sequentially recover each partition.

The sensing matrix used at each partition is defined by $A^{(j)} = R^{(j)}S^H$ where $R^{(j)}$ is the subsampling operator restricted to j-th partition and S is the 2-D curvelet transform.

First we use the regular ℓ_1 optimization to solve the first partition.

$$\tilde{x}^{(1)} = \arg \min_{u} ||u||_1$$
 subject to $A^{(1)}u = b^{(1)}$.

Then at each partition j we use the solution to the previous partition to construct a support estimate for the next iteration and solve the following weighted ℓ_p problem.

$$\tilde{x}^{(j)} = \arg \min_{u} ||u||_{p,w}$$
 subject to $A^{(j)}u = b^{(j)}$.

Partitioning in the time/frequency domain

Consider the following time slice in the source-receiver domain:

Fully Sampled time slice in source-receiver domain

Navid Ghadermarzy (UBC)

Monday, 3 December, 12

Partitioning in the time/frequency domain

We use the mask shown in the left to get the subsampled time slice in right. The subsampling ratio is 50%.

Results of partitioning in the time/frequency domain

We used weighted ℓ_p minimization for recovering a seismic line from the Gulf of Suez with 50% randomly subsampled receivers using the mask shown above. The seismic line at full resolution has $N_s = 178$ sources, $N_r = 178$ receivers with a sample distance of 12.5 meters, and $N_t = 500$ time samples acquired with a sampling interval of 4 milliseconds. Here the data are organized in the frequency-source-receiver domain.

- We derived stability and robustness guarantees for the recovery of a signal x with partial support estimate \tilde{T} using weighted ℓ_p minimization.
- We showed that by using ℓ_p recovery and partial support we get much better recovery guarantees in terms of RIP condition and error bounds.

- We derived stability and robustness guarantees for the recovery of a signal x with partial support estimate \tilde{T} using weighted ℓ_p minimization.
- We showed that by using ℓ_p recovery and partial support we get much better recovery guarantees in terms of RIP condition and error bounds.

We thank Rayan Saab for sharing his ℓ_p solver.

This work was in part financially supported by the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, BP, Chevron, ConocoPhillips, Petrobras, PGS, Total SA, and WesternGeco.