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Introduction

Notation

Consider a signal z R

N s.t. z = Dx where D is a transform matrix and x is a
k-sparse vector.

We want to recover x , given n linear and noisy measurements y =  Dx + e where
n N and e .

Assuming A =  D we should solve the underdetermined system y = Ax + e.

Navid Ghadermarzy (UBC) Non-convex compressed sensing using partial support information December 1, 2012 4 / 34

Monday, 3 December, 12



Introduction

Notation

Consider a signal z R

N s.t. z = Dx where D is a transform matrix and x is a
k-sparse vector.

We want to recover x , given n linear and noisy measurements y =  Dx + e where
n N and e .

Assuming A =  D we should solve the underdetermined system y = Ax + e.

Navid Ghadermarzy (UBC) Non-convex compressed sensing using partial support information December 1, 2012 4 / 34

Monday, 3 December, 12



Introduction

Notation

Consider a signal z R

N s.t. z = Dx where D is a transform matrix and x is a
k-sparse vector.

We want to recover x , given n linear and noisy measurements y =  Dx + e where
n N and e .

Assuming A =  D we should solve the underdetermined system y = Ax + e.

Navid Ghadermarzy (UBC) Non-convex compressed sensing using partial support information December 1, 2012 4 / 34

Monday, 3 December, 12



Introduction

Problem formulation

Theorem

The following optimization problem can approximately recover x from the

measurements y if k

n
2

and A is in general position:

minimizez RN
z

0

subject to Az y

2

.

This problem is a combinatorial problem, so now di↵erent optimization problems
is used to approximate x .
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Introduction

Recovery by 1 minimization

Candes, Romberg and Tao showed that if A is su�ciently incoherent, solving the
following convex optimization problem recovers x from measurements y = Ax + e:

minimizez RN
z

1

subject to Az y

2

Assuming x as the solution and xk as the best k-term approximation of x , then:

x x

2

C

1

1

+ C

1

2

x xk 1

k

Remark

If the measurement matrix A is a random Gaussian matrix then the su�cient

condition would be k . n
log( N

n )
which is much worse than the

0

su�cient

condition k

n
2

.
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Introduction

Recovery by
p

minimization

Solving the following non-convex problem also estimates x with weaker su�cient
conditions on A than

1

:

minimizez RN
z p subject to Az y

2

Theorem

(SY) Assuming x as the solution and xk as the best k-term approximation of x,

then if A is su�ciently incoherent, we have:

x x

p
2

C

p

1

p + C

p

2

x xk
p
p

k

1

p
2
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Introduction

Phase-diagrams for reconstruction via
p

minimization

This diagram shows the success rate of recovering S-sparse signals using p

minimization for a Gaussian matrix A R100 300.

The light-shaded areas show the pairs (p,S) that we have guaranteed recovery.

Region where recovery with Δp is guaranteed for p and S
 (Light Shading = Recoverable)
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Introduction

Recovery by weighted 1 minimization

Mansour et al. used a new method to recover x using prior information about it.
Assume x is a k-sparse vector which has its support on set T

0

and we estimate the
support to be on the set T which is partially correct.

Then minimizing the following weighted
1

optimization gives us better recovery
when we have a good estimate by using the weighted

1

norm, z

1 w = ⌃iwi zi

instead of the
1

norm.

minimizez RN
z

1 w subject to Az y

2

with wi =
1 if i T

c

w 1 if i T
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Introduction

Stable and robust recovery guarantees of weighted 1

Let T = k and = T
0

T

T
, where defines size of the support estimate and

determines the accuracy of the estimate.

Theorem

(FMSY) If A is su�ciently incoherent, the solution x to weighted

1

obeys:

x x

2

C

w
1

1

+ C

w
1

2

k

1

2 (w x xk 1

+ (1 w) x

Tc Tc
0

1

)

If , the accuracy of our estimate is better than 50% then weighted
1

recovers
better than

1

in terms of su�cient recovery conditions and error bounds.

Navid Ghadermarzy (UBC) Non-convex compressed sensing using partial support information December 1, 2012 10 / 34

Monday, 3 December, 12



Introduction

Stable and robust recovery guarantees of weighted 1

Let T = k and = T
0

T

T
, where defines size of the support estimate and

determines the accuracy of the estimate.

Theorem

(FMSY) If A is su�ciently incoherent, the solution x to weighted

1

obeys:

x x

2

C

w
1

1

+ C

w
1

2

k

1

2 (w x xk 1

+ (1 w) x

Tc Tc
0

1

)

If , the accuracy of our estimate is better than 50% then weighted
1

recovers
better than

1

in terms of su�cient recovery conditions and error bounds.

Navid Ghadermarzy (UBC) Non-convex compressed sensing using partial support information December 1, 2012 10 / 34

Monday, 3 December, 12



Introduction

Stable and robust recovery guarantees of weighted 1

Let T = k and = T
0

T

T
, where defines size of the support estimate and

determines the accuracy of the estimate.

Theorem

(FMSY) If A is su�ciently incoherent, the solution x to weighted

1

obeys:

x x

2

C

w
1

1

+ C

w
1

2

k

1

2 (w x xk 1

+ (1 w) x

Tc Tc
0

1

)

If , the accuracy of our estimate is better than 50% then weighted
1

recovers
better than

1

in terms of su�cient recovery conditions and error bounds.

Navid Ghadermarzy (UBC) Non-convex compressed sensing using partial support information December 1, 2012 10 / 34

Monday, 3 December, 12



Introduction

Stable and robust recovery guarantees of weighted 1

This plot shows the results of using weighted
1

, recovering 40-sparse signal when
N = 500 .
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Recovery by weighted p

Motivation

Using p minimization recovers the true signal for a wider range of measurement
matrices compared to

1

.

If we can guess a support estimate which is at least 50% accurate, then using
weighted

1

minimization guarantees recovery with weaker RIP conditions and
smaller recovery error bounds compared to

1

.

By using weighted p minimization we can enjoy the advantages of both.

Navid Ghadermarzy (UBC) Non-convex compressed sensing using partial support information December 1, 2012 12 / 34

Monday, 3 December, 12



Recovery by weighted p

Motivation

Using p minimization recovers the true signal for a wider range of measurement
matrices compared to

1

.

If we can guess a support estimate which is at least 50% accurate, then using
weighted

1

minimization guarantees recovery with weaker RIP conditions and
smaller recovery error bounds compared to

1

.

By using weighted p minimization we can enjoy the advantages of both.

Navid Ghadermarzy (UBC) Non-convex compressed sensing using partial support information December 1, 2012 12 / 34

Monday, 3 December, 12



Recovery by weighted p

Motivation

Using p minimization recovers the true signal for a wider range of measurement
matrices compared to

1

.

If we can guess a support estimate which is at least 50% accurate, then using
weighted

1

minimization guarantees recovery with weaker RIP conditions and
smaller recovery error bounds compared to

1

.

By using weighted p minimization we can enjoy the advantages of both.

Navid Ghadermarzy (UBC) Non-convex compressed sensing using partial support information December 1, 2012 12 / 34

Monday, 3 December, 12



Recovery by weighted p

Weighted
p

minimization

We estimate x from measurements y by solving the following optimization
problem:

minimizez RN
z p w subject to Az y

2

with wi =
1 if i T

c

w 1 if i T

where 0 w 1 and z p w = (⌃i wizi
p)

1

p .
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Recovery by weighted p

Stable and robust recovery guarantees of weighted
p

Recall that T = k and = T
0

T

T
.

Theorem

(G, Mansour, Yılmaz) If A satisfies some su�cient conditions which are weaker

than the analogous su�cient conditions of p and weighted

1

, then the solution

x to weighted p obeys:

x x

p
2

C

1

p + C

2

k

p
2

1(wp
x xk

p
p + (1 w

p) x

Tc Tc
0

p
p)
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Recovery by weighted p

Comparison of su�cient recovery conditions

This plot compares the su�cient recovery conditions on the measurement matrix
A, using weighted

1

and weighted p.

When = 0 5 the su�cient recovery conditions of weighted minimizers is the
same as using regular minimizers.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Weights (ω)

R
es

tri
ct

ed
 Is

om
et

ry
 C

on
st

an
t (

R
IC

)

 

 

wlp α = 0.1
wlp α = 0.3
lp
wlp α = 0.7
wlp α = 0.9
wl1 α=0.3
l1
wl1 α=0.9

Navid Ghadermarzy (UBC) Non-convex compressed sensing using partial support information December 1, 2012 15 / 34

Monday, 3 December, 12



Recovery by weighted p

Comparison of constants

As the following plot shows when 0 5 using smaller weights results in better
error bounds.
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Recovery by weighted p

Example 1: Regular 1 vs Weighted 1

We generate a 40-sparse random vector x and try to recover x by measurements
b = Ax where A is a 80 500 random Gaussian matrix.

The following plot shows the x x

recovered

when we use regular
1

and weighted
1

when = 0 7.
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Figure: Recovery error by weighted

1
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Recovery by weighted p

Example 1: Regular
p

vs Weighted
p

Following plot shows the result when we use regular p and weighted p to recover
the same signal when = 0 7 and p = 0 5.
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Figure: Recovery error by weighted p
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Recovery by weighted p

Example 2: 1 vs p

This time we generate a 40-sparse random vector x and try to recover x by
measurements b = Ax where A is a 100 500 random Gaussian matrix.

The following plot shows the x x

recovered

when we use regular
1

and regular p

when p = 0 5.
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Figure: Recovery error by p
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Recovery by weighted p

Example 2: weighted 1 vs Weighted
p

Following plot shows the result when we use weighted
1

and weighted p to
recover the same signal when = 0 5 and p = 0 5.
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Numerical results

Recovery of sparse signals

We take the averaged SNR over 10 experiments for k-sparse signals x with
k = 40, and N = 500 and p = 0 5 for variable weights and .
The noise free case:
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Numerical results

Recovery of Compressible signals

We take the averaged SNR over 10 experiments for signals x whose coe�cients
decay like j

d where j 1 2 N with d = 1 5, p = 0 5, N = 500 and n = 100
for variable weights and support estimate size. The accuracy of the support
estimate, is calculated with respect to the best k = 20 term approximation.
No noise case:
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Numerical results

Which p and w to use? sparse signals, n = 120

We take the averaged SNR over 10 experiments for k-sparse signals x with
k = 40, and N = 500 and = 0 5 for variable weights and p.
n = 120 :
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Weighted p minimization for seismic data interpolation

Why weighted minimization is a good idea

Seismic data organized in a seismic line exhibit continuity in the time/frequency
dimension as well as continuity across the o↵set/azimuth directions.

As a result there is high correlation between the support sets of adjacent
time/frequency slices and of adjacent common-o↵set/common-azimuth slices.

We can use the support set of each slice as an estimate for the support of the
next slice.
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Weighted p minimization for seismic data interpolation

Problem formulation

We want to recover a high dimensional seismic data volume f by interpolating
between a smaller number of measurements b = RMf .

To deal with the problem of dimensionality we partition the data along some
dimension and then sequentially recover each partition.

The sensing matrix used at each partition is defined by A

(j) = R

(j)
S

Hwhere R

(j) is
the subsampling operator restricted to j-th partition and S is the 2-D curvelet
transform.

First we use the regular
1

optimization to solve the first partition.

x̃

(1) = arg minu u

1

subject to A

(1)

u = b

(1)

Then at each partition j we use the solution to the previous partition to construct
a support estimate for the next iteration and solve the following weighted p

problem.
x̃

(j) = arg minu u p w subject to A

(j)
u = b

(j)
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Weighted p minimization for seismic data interpolation

Partitioning in the time/frequency domain

Consider the following time slice in the source-receiver domain:

Fully Sampled time slice in source−receiver domain
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Weighted p minimization for seismic data interpolation

Partitioning in the time/frequency domain

We use the mask shown in the left to get the subsampled time slice in right. The
subsampling ratio is 50%.

Subsampling mask
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Weighted p minimization for seismic data interpolation

Results of partitioning in the time/frequency domain

We used weighted p minimization for recovering a seismic line from the Gulf of
Suez with 50% randomly subsampled receivers using the mask shown above. The
seismic line at full resolution has Ns = 178 sources, Nr = 178 receivers with a
sample distance of 12.5 meters, and Nt = 500 time samples acquired with a
sampling interval of 4 milliseconds. Here the data are organized in the
frequency-source-receiver domain.
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Conclusion

We derived stability and robustness guarantees for the recovery of a signal x
with partial support estimate T using weighted p minimization.

We showed that by using p recovery and partial support we get much better
recovery guarantees in terms of RIP condition and error bounds.
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