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Compressed sensing, random Fourier
matrix and jittered sampling
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Infroduction

Compressed sensing is a powerful
technique to reconstruct sparse data.

e What is the main advantage of jittered
sampling?
e What do we mean by better results?




Consider the following (severely) underdetermined system of
linear equations:
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s it possible to recover X accurately from b?

Compressed Sensing attempts to answer this questions rigorously.
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Sparse recovery
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Coarse sampling schemes
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NAIVE sparsity-promoting recovery
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Sampling schemes
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Regular 3-fold undersampling
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CRSI from regular 3-fold undersampling
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Random 3-fold undersampling

Offset (m)
—-2000 0 2000

Wavenumber (1/m)
—-0.04 -0.02 0 0.02

0

Frequency (Hz)
50

Seismic Laboratory for Imaging and Modeling

Monday, 3 December, 12



CRSI from random 3-fold undersampling
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Jittered 3-fold undersampling
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CRSI from jittered 3-fold undersampling
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Compressed sensing

How many measurements do we need to make?
Far less than what Shannon tells us.

y = Ax
x is a vector in R
y 1s a vector in R"
y 1S observation
A is a measurement matrix
A has n rows and N columns, where n < M.
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Measurement matrix

y = Ax A is a matrix

The matrix satisfies the RIP property:
nearly preserve length of sparse vectors.

Fourier matrix is more practical.

Gaussian matrix is easier to analyze .




Random Fourier matrix

e Start with a DFT matrix (N by N)

e Pick n rows at random

e Column entries are not independent
e How to pick the n rows?
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Regular sampling:
row 10, 20, 30, 40, 50, 60, ..., 990, 1000

Jittered sampling:
7,16,22,36,44,53,67,...,994

from row 1 to row 10, pick one row
from row 11 to row 20, pick the second row
from row 21 to row 30, pick the third row
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Recovery of sparse signal
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Sparsity

e Compressed sensing can be
applied when a signal is sparse.

e What if your signal is not sparse
enough?
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Recovery of sparse signal
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Partial recovery
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When signal is not sparse
enough, there can be

. low pass

reconstruction error.

high pass
But if most non-zero entries are
in the low pass region of the
signal, can we recover the
signal?

low pass

X
(signal)
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What if most non-zero entries are in low-pass!

Signal in 1000 dimensions is 60-sparse, with 50 entries
in the low pass and 10 entries in the high pass.

Suppose we make 200 measurements.

Goal: Compare the reconstruction error in Uniform
sampling versus Jittered sampling.

Reconstruction error
= Difference between actual and reconstructed signal
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Better recovery on lowpass
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SNR decreases as frequency increases
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What do you gain?

Uniform: flat error as function of
frequency

Jittered: SNR increases as
frequency decreases
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Moral of the story

What is one main advantage of jittered
sampling?

Better reconstruction on low pass
and without doing worse on high
pass.
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Potential improvement

o Jittered sampling is better than
uniform sampling

e Understand why

e Do educated jittered sampling
instead of random jitter
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Exploit sparsity structure

Data = sum of wave atoms

Each wave atom has the same shape.

X =11 + Y+ ... +enYN

Suppose coefficients are organized in
a tree structure.
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Better reconsitruction

e What does it mean to reconstruct a signal with
high probability?

e Uniform recovery implies nhon-uniform recovery,
but converse is not true
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Uniform recovery

Uniform recovery means that once the random
matrix is chosen, then with high probability, all k-
sparse sighals can be recovered.

Non-uniform recovery states only that each k-
sparse signal can be recovered with high
probability using a random draw of the DFT
matrix.
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Theory behind the scene

B={zcRY: |zl =1

Theorem: Let x, y be any two vectors in B.
Let A be a random projection into k-dimensional subspace.
Then the following holds.

k
Pr ( | Azl — | Ayll2 | > U\/; |z — ylz) < exp(—cu’k)
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Dimensional reduction

What does the theorem say in plain English?
N =1000 k=60 RY - RF"

Points in very high dimension that were near to each
other, when you project them to lower dimension,
(most likely) there will not be too much distortion.
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Theorem (on Dimensional reduction) applies to every random
projection. Itis stronger than the following theorem:

Given any two nearby points x and y, there exists a random
projection matrix A such that Ax and Ay will not be distorted

too much.
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Theorem (on Dimensional reduction) applies to every random
projection. Itis stronger than the following theorem:

Given any two nearby points x and y, there exists a random
projection matrix A such that Ax and Ay will not be distorted

too much.

This A can be taken to be a Gaussian matrix.
[Concentration of Measure argument does not apply to
random Fourier matrix.]
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Conclusion

Jittered sampling leads to better
reconstruction on low pass, without doing
worse on high pass.

Thank Youl!

Monday, 3 December, 12



Acknowledgement

o Ozgur Yilmaz

e Felix Herrmann

e Haneet Wason, Hassan Mansour
o Allsiblings from the SLIM family

This work was in part financially supported by a PIMS fellowship from the Pacific
Institute for Mathematical Sciences and by a NSERC Accelerator Discovery award
(Yilmaz - AID 411944-2011). This research was carried out as part of the SINBAD Il
project with support from the following organizations: BG Group, BGP, Chevron,
ConocoPhilips, Petrobras, PGS, Total SA, and WesternGeco.

Monday, 3 December, 12



