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Regularized Inverse Problems
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General Formulation

Consider the pair of problems

( A 4

min ¢(z)

Po : s.t. ,a(b—f(:zj))ga> —

\ / \

m ¢(x) can be
w ([zll1, [[zll2, 1 X (2] +6 (= [RY)

m p(-) can be
m || - ||3, Huber, Student’s t penalty

m f(z) can be

m linear or nonlinear forward model
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General Formulation

Main results:

(

P4

min ¢(z)
st. plb—f(x)) <o

/

r

o(7) :=min p(b — f(x))

s.t. ¢(x) < T

m We can solve P, while working with P_ alone, if we solve v(7) = 0.

m We can characterize v'(7) for any linear f, convex ¢ and convex p,
allowing Newton's method to be used in most practically useful cases.

m We obtain explicit formulae for broad function classes, and these work
even when the linearity of f or convexity of p are violated.
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Inverse Function Theorem

[ v (0) =min ¢(z)

s.t.  p(b— f(2))

Theorem (A., Burke, Friedlander)

Define S, = {c : 0 # argminP, C {z : p(b — f(z)) = o}}. Then for

each o € S, we have

m uy(v(0)) =0
——

To

m argminP, = argminP_

<

o

/

(b — f(2))

=

e

b(z)

m We can indeed solve one problem by working with the other

m What are the ingredients to make this a practical approach?
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m Penalty p should be differentiable.

m We need a fast projection onto {z : ¢(z) < 7}.

m We need to compute v'(7), in order to solve v(7) = 0.

Theorem (A., Burke, Friedlander)

For convex p and linear forward model b = Ax, if  solves P_, then

(1) = — argmin {m N (%(ATV,O(I) - A:Y:)) }

L

n I ¢() = [lal], v/(z) = [ ATV p(b— AZ)|..

m Even when p is nonconvex, formula is useful.
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Robust BPDN
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Formulation

Consider the sparse recovery problem:

min ||z||; s.t. p(b— Azx) < 0.

m [ he parameter o encodes the allotted error level below which we do
not want to fit the data.

m However, in the presence of outliers, different penalties p will behave
differently, even when the true error level is known.

m Two penalties we can immediately try are the huber and Student’s t
penalty. Even though the latter isn't convex, it turns out we can find
the root just fine when we use the formula for v’ (7).
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Non-negative spike train recovery

l l l l l““ “““ l l | A True errors

rue signal \ y ——

LS soln. ,|||||||l|,| |.||,| |, jllnullln..llhadw WWWMM LS residuals
Huber soln. L l | l | || JUI “ lLll l N Huber residuals

TV a

Student soln| l | | l lll “ M | | X Student residuals

I v

m In each case, 0 := p(b— Ax) = p(€).

m Huber does better than LS, and Student’s t does better than Huber in
this example.

m New SPG/; works just fine when you pass it the Student’s t penalty.

A.Y. Aravkin, J.V. Burke, M.P. Friedlander, Variational Properties of Value

Functions, submitted to Siam J. Opt. 11/2012.

8 /20

Wednesday, 5 December, 12



Sparse Robust Seismic Imaging (10% outlier error)
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SPARSE IMAGING WITH SOURCE
ESTIMATION




Formulation

Consider the seismic imaging problem with unknown source weights:

Y

min f|zf|; st Y ||d— o FiC a3 <o
(@
)

where

m 2 is the vector of Curvelet coefficients to recover
m «, are unknown source weights

m (' is the Curvelet transform

m d is frequency-domain data

We solve this problem by using a variable projection based forward model
in extended SPG/;.
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Formulation

min |z, min Y |d; — a; ;07 x|3
T,o
7

<
st. Y |ld;—a;F,C"al; < o
_ s.t. |z||; <7
1

m [ he problem on the right can be solved by variable projection, where
we compute
a;(z) = argmin||d; — a; F;C " z||3.

m The gradient is then easily computed using values of &, and the SPG
method can be used to solve the objective on the right.

min ]| min' 3" [1d; — oy(2) F; € T

11/20

Wednesday, 5 December, 12



Results

Image with correct wavelet Image with wrong wavelet
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Results: Wavelet

Wavelet amplitude Wavelet phase

Amplitude

5 10 15 20 5 10 15 20
Frequency (Hz) Frequency (Hz)

m [rue wavelet amplitude and phase shown with dotted lines

m Wrong guess shown in red

m Estimation results from variable projection shown in blue.

A.Y. Aravkin, T. van Leeuwen, N. Tu, Sparse Seismic Imaging Using Vari-

able Projection, submitted to ICASSP 11/2012.
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ROBUST LOW RANK ESTIMATION




Matrix Completion

Consider the matrix completion problem

m)%n | X1 s.t. p(AX)—-10b) <o.

m We can assume that p is differentiable.

m Dual norm to || X||, is the spectral norm (maximal eigenvalue),
relatively easy to compute.

m The main problem is projection onto {X : || X||. < 7}, since this
requires SVD.
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Matrix Factorization Idea (Recht et al.)

Let X = LR, Then

m We have the useful inequality
T Lo 1o
X1 = IR < SI1L0% + 5 I Rl
m Projection on the factors is easy, and
Lo 1o T
LIF + SIRIF <7 = |LRT|. <

We can formulate LASSO-type matrix completion formulations

. T
min p(b — A(LR™))

Lo 1o
st. SIILIF + S IIRIF <7

as well as penalized formulations

. T Loz o2
min p(0 — ALET)) + 3 51121 + 5121 )
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Matrix Factorization in SPG/,

We can also incorporate the idea into the extended SPG/; framework:

r

min || X ||,
%

\

s.t. p(b—A(X)) <o,

J/

)

I{{glp(b— A(LR
> —>

")
1 2
st SILI%+ LIRIE <7

We solve problem on the right with projected gradient — SVDs not
required. Note that the forward model is nonlinear in L, R.

For Newton root finding, we form X = LR" and then forget the factors.
The derivative of the value function is given by

o'(1) = —[A"Vp(b — A(LR )2,

and requires finding the largest singular value of a matrix.
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Robust Matrix Completion

We consider a joint recovery and denoising experiment, where 50% of
the data are missing, and 10% of data is very noisy.

nitial data (12 Hz, low freq) nitial data (60 Hz, high freq)
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We solve the following problem:

min [LRT|. st p(b—A(LRT)) <o

where p is the Student’s t penalty. We use rank 5 for low frequency, and
rank 30 for high frequency.
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Robust Matrix Completion: Results
Recovery ( SNR:19)

Recovery
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Summary and conclusions

In this talk we have presented the following applications:
m Robust BPDN (sparse imaging with outliers)

m Regularization: ||z||;
m Penalty: robust p
m Forward model: linear

m Sparse imaging with source estimation

m Regularization: ||z||;
m Penalty: LS (but can be robust!!)
m Forward model: nonlinear; uses variable projection

m Robust matrix completion

m Regularization: || X|.
m Penalty: student’s t (pick your own!)
m Forward model: nonlinear because of matrix factors

Future work:
m Impact in EPSI formulation (Tim Lin & Ning Tu)

m Sparse dictionary learning (with Hassan and Tristan)
m Sparse FWI (7?)
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Thank you!
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