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Regularized Inverse Problems

Wednesday, 5 December, 12



General Formulation

Consider the pair of problems

P� :
�

min ⌅(x)
s.t. �(b � f (x)) ⇤ ⇥

⇥
⌅⇧

�
v(⇤) := min �(b � f (x))

s.t. ⌅(x) ⇤ ⇤

⇥
: P⇥

⌅(x) can be
⌅x⌅1, ⌅x⌅2, ⌅X⌅ú, ⌅x⌅ + � (x |Rn

+ )
�(·) can be

⌅ · ⌅2
2, Huber, Student’s t penalty

f (x) can be
linear or nonlinear forward model

⇥(b � f (x))

⇧(x)

(⌅, ⇤)
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General Formulation

Main results:

P� :
�

min ⌅(x)
s.t. �(b � f (x)) ⇥ ⇥

⇥
⇤⌅

�
v(⇤) := min �(b � f (x))

s.t. ⌅(x) ⇥ ⇤

⇥
: P⇥

We can solve P� while working with P⇥ alone, if we solve v(⇤) = ⇥.

We can characterize v�(⇤) for any linear f , convex ⌅ and convex �,
allowing Newton’s method to be used in most practically useful cases.

We obtain explicit formulae for broad function classes, and these work
even when the linearity of f or convexity of � are violated.
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Inverse Function Theorem

P� :
�

v1(⇥) = min ⌅(x)
s.t. �(b � f (x)) ⇥ ⇥

⇥
⌅

�
v2(⇤) = min �(b � f (x))

s.t. ⌅(x) ⇥ ⇤

⇥
: P⇥

Theorem (A., Burke, Friedlander)

Define S� = {⇥ : ⌥ ⌃= arg min P� ⇤ {x : �(b � f (x)) = ⇥}}. Then for
each ⇥ ⇧ S�, we have

v2(v1(⇥)⇧ ⌅⇤ ⌃
⇥‡

) = ⇥

arg min P� = arg min P⇥‡

fl(b ≠ f (x))

„(x)

‡

·‡

We can indeed solve one problem by working with the other

What are the ingredients to make this a practical approach?
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Penalty ⇥ should be di erentiable.

We need a fast projection onto {x : ⇧(x) ⇥ ⌅}.

We need to compute vÕ(⌅), in order to solve v(⌅) = ⇤.

Theorem (A., Burke, Friedlander)
For convex ⇥ and linear forward model b = Ax, if x̄ solves P⇥ , then

vÕ(⌅) = � arg min
µ

⇤
⌅µ + µ⇧ú

� 1
µ

(AT⌥⇥(b � Ax̄)
⇥⌅

If ⇧(x) = ⌃x⌃, vÕ(x) = �⌃AT⌥⇥(b � Ax̄)⌃ú.

Even when ⇥ is nonconvex, formula is useful.
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Robust BPDN
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Formulation

Consider the sparse recovery problem:

min
x

⇤x⇤1 s.t. �(b � Ax) ⇥ ⇥.

The parameter ⇥ encodes the allotted error level below which we do
not want to fit the data.

However, in the presence of outliers, di↵erent penalties � will behave
di↵erently, even when the true error level is known.

Two penalties we can immediately try are the huber and Student’s t
penalty. Even though the latter isn’t convex, it turns out we can find
the root just fine when we use the formula for v�(⇤).
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Non-negative spike train recovery
20 A. ARAVKIN, J. BURKE, and M. P. FRIEDLANDER

Fig. 7.1. Left, top to bottom: True signal, and reconstructions via least-squares, Huber, and
Student’s t. Right, top to bottom: true errors, and least-squares, Huber, and Student’s t residuals.

where w ⇤ N(0,⇤2) with ⇤ = 0.005 matches common practice, and � describes a small
randomly placed set of 5 outliers, sampled from N(0, 4). For each penalty ⇥, the ⇤
parameter is the true measure of the error in that penalty, i.e., ⇤� = ⇥(�). This allows
a fair comparison between the penalties.

We expect the Huber function to out-perform the least squares penalty by bud-
geting the error level ⇤ to allow a few large outliers, which will never happen with
the quadratic. We expect the Student’s t penalty to work even better, because it
is non convex, and the grows sublinearly as outliers increase. The results in Fig-
ure 7.1 demonstrate that this is indeed the case. In many instances the Huber
function is able to do just as well as the Student’s t; however, often the Student’s
t does better (and never worse). Both robust penalties always do better than the
least squares fit. The code is implemented in SPGL1, and can be downloaded from
https://github.com/saravkin/spgl1. The particular experiment presented here
can be found in tests/spgl1TestNN.m.

8. Appendix: Proofs of results.

Proof of Theorem 2.1. Let ⇤ ⇧ S1,2 and set ⌅⇥ = v1(⇤). By assumption,
argminP1,2(⇤) ⌃= ⌥. Let x⇥ ⇧ argminP1,2(⇤), so that ⇧1(x⇥) = ⌅⇥ and ⇧2(x⇥) = ⇤.
In particular, x⇥ is feasible for P2,1(⌅⇥). Let x̂ be any other feasible point for P2,1(⌅⇥)
so that ⇧1(x̂) � ⌅⇥ = v1(⇤) = ⇧1(x⇥). If ⇧1(x̂) < ⌅⇥ = v1(⇤), then ⇧2(x̂) > ⇤
since otherwise we contradict the definition of v1(⇤). If ⇧1(x̂) = ⌅⇥, then we claim
that ⇧2(x̂) ⇥ ⇤. Indeed, if ⇧2(x̂) < ⇤, then x̂ ⇧ argminP1,2(⇤) but ⇧2(x̂) < ⇤,
which contradicts the fact that ⇤ ⇧ S1,2. Hence, every feasible point for P2,1(⌅⇥)
has ⇧2(x̂) ⇥ ⇤ with equality only if ⇧1(x̂) = ⌅⇥. But x⇥ is feasible for P2,1(⌅⇥) with
⇧2(x⇥) = ⇤. Therefore, x⇥ ⇧ argminP2,1(⌅⇥) ⌅ { x ⇧ X | ⇧1(x) = ⌅⇥ }. Consequently,
v2(v1(⇤)) = ⇤ and

⌥ ⌃= argminP1,2(⇤) ⌅ argminP2,1(⌅⇥) ⌅ { x ⇧ X | ⇧1(x) = ⌅⇥ } . (8.1)

We now show that argminP2,1(⌅⇥) ⌅ argminP1,2(⇤). Let x̂ ⇧ argminP2,1(⌅⇥).
In particular, x̂ is feasible for P2,1(⌅⇥), so, by what we have already shown, ⇧2(x̂) ⇥ ⇤
with equality only if ⇧1(x̂) = ⌅⇥. But, by our choice of x̂, ⇧2(x̂) = v2(v1(⇤)) = ⇤, so
⇧1(x̂) = ⌅⇥, i.e., x̂ ⇧ argminP1,2(⇤).

It remains to establish the final statement of the theorem. By (8.1), we already
have that

�
v1(⇤)

⇤⇤ ⇤ ⇧ S1,2

⇥
⌅ S2,1, so we need only establish the reverse inclusion.

True signal True errors

LS soln. LS residuals

Huber soln. Huber residuals

Student soln. Student residuals

In each case, ⇤ := ⇥(b � Ax̄) = ⇥(�̄).
Huber does better than LS, and Student’s t does better than Huber in
this example.
New SPG⌅1 works just fine when you pass it the Student’s t penalty.

A.Y. Aravkin, J.V. Burke, M.P. Friedlander, Variational Properties of Value
Functions, submitted to Siam J. Opt. 11/2012.
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Sparse Robust Seismic Imaging (10% outlier error)
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SPARSE IMAGING WITH SOURCE
ESTIMATION
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Formulation

Consider the seismic imaging problem with unknown source weights:

min
x,�

⇤x⇤1 s.t.
�

i
⇤di � �iFiC Tx⇤2

2 ⇥ ⇥2

where
x is the vector of Curvelet coe cients to recover
�i are unknown source weights
C is the Curvelet transform
d is frequency-domain data

We solve this problem by using a variable projection based forward model
in extended SPG⇤1.
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Formulation

�
⌥⇧

⌥⇤

min
x,–

⇧x⇧1

s.t.
�

i

⇧di � �iFiC T x⇧2
2 ⇥ ⇥2

⇥
⌥⌃

⌥⌅
⇤⌅

�
⇧

⇤

min
x,–

�

i

⇧di � �iFiC T x⇧2
2

s.t. ⇧x⇧1 ⇥ ⇤

⇥
⌃

⌅

The problem on the right can be solved by variable projection, where
we compute

�̄i(x) = arg min
�i

⇥di � �iFiC Tx⇥2
2.

The gradient is then easily computed using values of �̄, and the SPG
method can be used to solve the objective on the right.

�
⌥⇧

⌥⇤

min
x

⇧x⇧1

s.t.
�

i

⇧di � �i(x)FiC T x⇧2
2 ⇥ ⇥2

⇥
⌥⌃

⌥⌅
⇤⌅

�
⇧

⇤

min
x

�

i

⇧di � �i(x)FiC T x⇧2
2

s.t. ⇧x⇧1 ⇥ ⇤

⇥
⌃

⌅
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Results

Horizontal distance (m)

D
ep

th
 (m

)

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

Image with correct wavelet

Horizontal distance (m)

D
ep

th
 (m

)

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

Image with wrong wavelet

Horizontal distance (m)

D
ep

th
 (m

)

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

Image with estimated wavelet

0 200 400 600 8000

10

20

30

40

50

60

70

L1 norm of the solution vector

L2
 n

or
m

 o
f d

at
a 

m
is

fit

Convergence history

12 / 20
Wednesday, 5 December, 12



Results: Wavelet
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True wavelet amplitude and phase shown with dotted lines
Wrong guess shown in red
Estimation results from variable projection shown in blue.

A.Y. Aravkin, T. van Leeuwen, N. Tu, Sparse Seismic Imaging Using Vari-
able Projection, submitted to ICASSP 11/2012.
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ROBUST LOW RANK ESTIMATION
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Matrix Completion

Consider the matrix completion problem

min
X

⌃X⌃� s.t. � (A(X) � b) ⇥ ⇥.

We can assume that � is di erentiable.

Dual norm to ⌃X⌃� is the spectral norm (maximal eigenvalue),
relatively easy to compute.

The main problem is projection onto {X : ⌃X⌃� ⇥ ⇤}, since this
requires SVD.
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Matrix Factorization Idea (Recht et al.)
Let X = LRT . Then

We have the useful inequality

⇧X⇧� = ⇧LRT⇧� ⇥ 1
2⇧L⇧2

F + 1
2⇧R⇧2

F

Projection on the factors is easy, and
1
2⇧L⇧2

F + 1
2⇧R⇧2

F ⇥ ⇤ =⇤ ⇧LRT⇧� ⇥ ⇤.

We can formulate LASSO-type matrix completion formulations

min
L,R

⇥(b � A(LRT ))

s.t. 1
2⇧L⇧2

F + 1
2⇧R⇧2

F ⇥ ⇤

as well as penalized formulations

min
L,R

⇥(b � A(LRT )) + �

�1
2⇧L⇧2

F + 1
2⇧R⇧2

F

⇥

15 / 20
Wednesday, 5 December, 12



Matrix Factorization in SPG¸1

We can also incorporate the idea into the extended SPG⌅1 framework:

�
min

X
⌃X⌃ú

s.t. �(b � A(X)) ⇥ ⇥

⇥
⇤⌅

⇤
⌥

⇧

min
L,R

�(b � A(LRT ))

s.t. 1
2⌃L⌃2

F + 1
2⌃R⌃2

F ⇥ ⇤

⌅
�

⌃

We solve problem on the right with projected gradient — SVDs not
required. Note that the forward model is nonlinear in L, R.

For Newton root finding, we form X = LRT and then forget the factors.
The derivative of the value function is given by

vÕ(⇥) = �⇤Aú⌅�(b � A(L̄R̄T )⇤2,

and requires finding the largest singular value of a matrix.
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Robust Matrix Completion

We consider a joint recovery and denoising experiment, where 50% of
the data are missing, and 10% of data is very noisy.
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We solve the following problem:

min
L,R

⌅LRT⌅� s.t. �(b � A(LRT )) ⇥ ⇥

where � is the Student’s t penalty. We use rank 5 for low frequency, and
rank 30 for high frequency.
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Robust Matrix Completion: Results
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Summary and conclusions

In this talk we have presented the following applications:
Robust BPDN (sparse imaging with outliers)

Regularization: �x�1
Penalty: robust �
Forward model: linear

Sparse imaging with source estimation
Regularization: �x�1
Penalty: LS (but can be robust!!)
Forward model: nonlinear; uses variable projection

Robust matrix completion
Regularization: �X�ú
Penalty: student’s t (pick your own!)
Forward model: nonlinear because of matrix factors

Future work:
Impact in EPSI formulation (Tim Lin & Ning Tu)
Sparse dictionary learning (with Hassan and Tristan)
Sparse FWI (?)
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Thank you!
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