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Seismic Inverse Problems
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Forward Problem

The forward problem is to predict data given velocity parameters.
When doing acoustic inversion in the frequency domain, to predict the
data from one explosive source q, we solve

(�2m + �2)u = q ,

and then restrict the solution to the surface with operator P, so that in
the discrete setting, the forward model is

h(m) = P (�2m + �2)�1q⇤ ⇥� ⌅
u, computed on the fly

.

Seismic Laboratory for Imaging and Modeling

Forward problem: given m, predict data.
If m, the velocity on the grid, is known, then we can predict (frequency-
domain) data via Helmholz PDE: 

d = Pu

q

�
�2m+�2

⇥
u = q

!"#$%&'#())'*m =

q: known source

m: known velocity

    : frequency 

u: predicted wavefield (on 
entire grid)

P: restriction to surface 
(where data is observed)

d: Predicted data. 

�

Thursday, July 19, 2012
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Inverse problem

Let z denote the observed data. We model the relationship between m
and z using the forward model h and error model v:

z = h(m) + v .

We can estimate m by maximizing the likelihood of z given a
parametric density for errors v. For example, v is i.i.d. Gaussian gives
rise to

exp
�

� 1
2�2 ⌅z � h(m)⌅2

⇥
⇥⇤ m = arg min

m
⌅z � h(m)⌅2

2

In general, if v has negative log g = � log(p), the maximum likelihood
problem is equivalent to

min
m

f (m) := g(z � h(m)) .

For FWI, h(m) = PH �1[m]q, where H [m] = (⇥2m + ⇧2).

4 / 22
Tuesday, 4 December, 12



Inverse problem

Let z denote the observed data. We model the relationship between m
and z using the forward model h and error model v:

z = h(m) + v .

We can estimate m by maximizing the likelihood of z given a
parametric density for errors v. For example, v is i.i.d. Gaussian gives
rise to

exp
�

� 1
2�2 ⌅z � h(m)⌅2

⇥
⇥⇤ m = arg min

m
⌅z � h(m)⌅2

2

In general, if v has negative log g = � log(p), the maximum likelihood
problem is equivalent to

min
m

f (m) := g(z � h(m)) .

For FWI, h(m) = PH �1[m]q, where H [m] = (⇥2m + ⇧2).

4 / 22
Tuesday, 4 December, 12



Inverse problem

Let z denote the observed data. We model the relationship between m
and z using the forward model h and error model v:

z = h(m) + v .

We can estimate m by maximizing the likelihood of z given a
parametric density for errors v. For example, v is i.i.d. Gaussian gives
rise to

exp
�

� 1
2�2 ⌅z � h(m)⌅2

⇥
⇥⇤ m = arg min

m
⌅z � h(m)⌅2

2

In general, if v has negative log g = � log(p), the maximum likelihood
problem is equivalent to

min
m

f (m) := g(z � h(m)) .

For FWI, h(m) = PH �1[m]q, where H [m] = (⇥2m + ⇧2).

4 / 22
Tuesday, 4 December, 12



Inverse problem

Let z denote the observed data. We model the relationship between m
and z using the forward model h and error model v:

z = h(m) + v .

We can estimate m by maximizing the likelihood of z given a
parametric density for errors v. For example, v is i.i.d. Gaussian gives
rise to

exp
�

� 1
2�2 ⌅z � h(m)⌅2

⇥
⇥⇤ m = arg min

m
⌅z � h(m)⌅2

2

In general, if v has negative log g = � log(p), the maximum likelihood
problem is equivalent to

min
m

f (m) := g(z � h(m)) .

For FWI, h(m) = PH �1[m]q, where H [m] = (⇥2m + ⇧2).
4 / 22

Tuesday, 4 December, 12



Formulation summary

Given a forward model h(m), we can formulate an inverse problem
using model

z = h(m) + v .

The corresponding optimization problem is

min
m

f (m) = g(z � h(m)) ,

The gradient is the key computational unit, and for any di⌦erentiable
g, we can compute the gradient on the fly by solving PDEs.

We focus on robust and extended modeling formulations, which
correspond to choosing a good g and solving the resulting problem.
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Robust Methods Via Error Modeling
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Why robust methods?

Unexplained artifacts in the data are a major problem for current
inverse problem formulations. In exploration geophysics, data must be
cleaned and pre-processed before FWI is done.

Cleaning data is costly and time consuming — it can take years, while
solving the inverse problem itself is a matter of months. Moreover,
‘cleaning’ is not guaranteed to succeed, and you can lose information.

We main idea of robust methods is to obtain good results despite
unexplained artifacts or errors in the data.

6 / 22
Tuesday, 4 December, 12



Densities, and Penalties

We can design robust methods by changing the statistical model for v,
which gives a corresponding error penalty.

Least squares: min
m

⇤z � h(m)⇤2
2 =

⇤
(zi � h(m)i)2

L1 or Huber: min
m

⇤z � h(m)⇤1 =
⇤

|zi � h(m)i |

Student’s t: min
m

⇤
log

�
� + (zi � h(m)i)2⇥
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Advantages of Heavy-Tailed Densities

A convex penalty corresponds to a log-concave density, while a
non-convex penalty corresponds to a heavy-tailed density.

The class of log-concave densities is fundamentally limited from a
modeling point of view.

Theorem: A.A., Friedlander, van Leeuwen, Herrmann, Math Prog. 2012

Let p be a scalar density proportional to exp(�g(y)), with g convex.
Then we have

P (|y| > t + �t given |y| > t) ⇥ C exp(���t) .

Heavy-tailed models are less conservative with regard to outlier
distributions.

Student’s t, Pareto, Cauchy are all heavy-tailed.
For Cauchy, P

�
|y| > 2d

⇤⇤|y| > d
⇥

¥ 0.5 for large d!
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Total Results: 4% bad data, LS vs. Student’s t
4Hz, LS, 4% bad data 6 Hz, LS, 4% bad data
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Total Results: St 30% bad data vs. LS good data
4Hz, LS, good data 6 Hz, LS, good data
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Nuisance Parameter Estimation
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Nuisance parameters in inverse problems

Many inverse problems contain nuisance parameters which, while not
of primary interest, impact our ability to invert for primary parameters.

Motivating applications:

Variance parameters, especially when data comes from several data sets
(di erent shot experiments, di erent frequencies)
Automatic calibration, e.g. source estimation in seismic inverse
problems.
Meta-parameter estimation, e.g. Student’s t degrees of freedom.

For a large class of problems (including all motivating applications) we
can jointly optimize extended formulations in both primary and
nuisance parameters.

In many cases, this can be easily implemented within existing
architectures that currently ignore nuisance parameters.
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Formulations for Motivating Applications

If data comes from K sources with Gaussian errors, we can formulate
the following (joint) inverse problem: (Anais’s talk)

min
m,⇤2

K⌥

i=1
Ni log(2⇤⌅2

i ) + 1
⌅2

i
⇥zi � h(m)i⇥2

Source estimation means solving for unknown amplitude parameters:

min
m,�

M⌥

i=1
g(zi � �ih(m)i) .

Student’s t d.f. parameters may be estimated by minimizing the true
negative log likelihood:

min
m,⇤2,⇥

�n log
⇧

⇥
�

⇥+1
2

⇥

⇥
�

⇥
2
⇥ ⇤

⇤⇥⌅2

⌃
+ ⇥ + 1

2

n⌥

i=1
log

⇤
1 + r2

i
⌅2⇥

⌅
.
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General Function Class

All of the motivating formulations take the form

min
m,�

g(m, �) .

In all of the applications, it is easy to compute

�(m) = arg min
�

g(m, �) .

These facts motivate the definition of a reduced objective

g̃(m) = g(m, �(m)) .

For special types of NLLS problems, this technique is known as
variable projection (Golub & Pereyra ’73, ’03, Osborne ’07).
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Projection Approach

Define g̃(m) = g(m, �(m)), with �̄(m) = arg min� g(m, �).
Theorem: Bell & Burke, ’08.

Let m � U and �̄ � V be such that ⌅�g(m, �̄) = 0 and ⌅2
�g(m, �̄) is

positive definite. Then g̃(m) is twice continuously di⇣erentiable, with

⌅mg̃(m) = ⌅mg(m, �̄(m)) (1)
⌅2

mg̃(m) = ⌅2
mg(m, �̄(m)) + ⌅2

m,�g(m, �̄(m))⌅m�̄(m) . (2)

We can now design first and second order methods to optimize g̃.
First order: recompute �̄(m) whenever m is updated, and then use
�̄(m) (as values!) wherever � appears in ⌅mg(m, �). From (1), we
have the true gradient of g̃.
Second order: Use a truncated version of (2), again with �̄(m) as
values, but this time with your favorite solver, e.g. Gauss-Newton, LM.

A.A. & van Leeuwen, Estimating Nuisance Parameters in Inverse Problems,
Inverse Problems, October 2012.
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Application I: Robust source estimation

Consider f (m, �) =
�

i gi(zi � �ih(m)i).

When gi = ⇤ · ⇤2, then �̄i = h(m)€
i zi

⇥h(m)i⇥2 .

For general gi , we can very quickly solve for �̄ using Newton’s method.

Then, reduced objective is

f̃ (m) =
⇥

i
gi(zi � �̄i(m)h(m)i),

with
⌅f̃ (m) =

⇥

i
⌅h(m)�

i ⌅gi(zi � �̄i(m)h(m)i) .
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Application I: Robust FWI with Robust Source estimation

Source Estimation
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Figure 1 Data with outliers in the form of bad
traces.
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Figure 2 Estimated source wavelet using
Least-Squares (top), Hybrid (middle) and Stu-
dents t (bottom) approaches.

least-squares, Hybrid and Student’s t approaches, which required 5 or 6 Newton iterations to converge.
The results are shown in figure 2. Both the Hybrid and Student’s t recover well in this case, while the
least-squares reconstruction is quite useless, especially at low frequencies. Note that for each source, a
whole vector of data is used to estimate a single complex value; the least-squares estimate in this case
is analogous to finding the mean of a set of data, which is not robust to outliers. In contrast, both the
Student’s t and Hybrid approach return estimates analogous to the median of a large set of data. In this
context, similar performance would be expected from Huber and �1; however, we would not be able to
apply a Newton method, since these penalties are not twice differentiable.

Robust FWI example

To illustrate why robust source estimation is important for robust FWI we perform the following three
experiments on synthetic data with outliers: i) least-squares FWI with least-squares source estimation
(LS-LS); ii) robust FWI with the Students t penalty and least-squares source estimation (ST-LS) and
iii) robust FWI with the Students t penalty with corresponding source estimation (ST-ST). We use a
frequency-domain modeling operator based on a 9-point discretization of the Helmholtz equation (Jo,
1996). The data are generated for a subset of the Marmousi for 61 equispaced sources, 301 equispaced
receivers and 12 frequencies between 3 and 25 Hz. We use an L-BFGS method to fit the model, and
source estimation is implemented as described above. The initial model we used was a smoothed version
of the original model. To create noise, we replace 20% of the samples in the data with Gaussian noise. A
LS-LS reconstruction on data without noise, as well as the reconstructions on data with noise are shown
in figure 3. The ST-ST reconstruction is nearly identical to the LS-LS reconstruction without noise,
thus demonstrating the ability of this approach to deal with noise. The LS-LS reconstruction with noise
is completely meaningless. Although the ST-LS shows some of the underlying structure, this clearly
demonstrates the need to use robust source estimation in conjunction with a robust penalty.

Conclusions

We surveyed several robust formulations of FWI that use penalty functions that are less sensitive to
outliers in the data, including the Huber, hybrid and Students t penalty. In practice, one usually estimates
the source wavelet as part of the inversion process. We extended the usual least-squares approach to
source estimation to a class of robust formulations with twice-differentiable misfit functions. For every
evaluation of the misfit, we solve a scalar optimization problem for each source and frequency to obtain
the source weights. This can be done with a Newton method, and our experience is that we need only a

74th EAGE Conference & Exhibition incorporating SPE EUROPEC 2012
Copenhagen, Denmark, 4-7 June 2012
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Application I: Robust FWI with Robust Source estimation
FWI Results
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Figure 3 Reconstructions (difference between initial and final models) for different scenario’s.

few iterations. Therefore, the computational cost incurred is negligible compared to the cost of forward
modeling of the wavefield. We demonstrate robust source estimation on a real shot gather and show the
uplift of robust source estimation in conjunction with robust FWI.
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Application II: Self-tuning Student’s t

Take the full log likelihood:

g(m, ⌅2, ⇥) = �n log
⌥

⇤
�

⇥+1
2
⇥

⇤
�

⇥
2
⇥⇤

⇤⇥⌅2

�
+ ⇥ + 1

2

n✏

i=1
log
⇧

1 + r(m)2
i

⌅2⇥

⌃

Using change of variables: � = ⇥+1
2 , ⇧ = ⌅2⇥, we find

(⇧, �) = arg min
⇤,�

�n log
⌥

⇤ (�)
⇤
�
� � 1

2
⇥
�

+n
2 log(⇧)+�

n✏

i=1
log
⇧

1 + ri(x)2

⇧

⌃
.

Taking the derivative with respect to ⇧, we find

0 = n
2⇧

� �
n✏

i=1

r2
i

⇧ + r2
i

=⇥ � = n
2
�n

i=1
r2

i
⇤+r2

i

Plugging back in, we optimize the scalar problem

min
⇤

�n log

⌦

�
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n
 ⇤

2
�n
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r2

i
⇤+r2

i
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� 1
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↵

�+n
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⌅
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⇤+r2

i
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Application II: Self-tuning Student’s t

Take the full log likelihood:

g(m, ⌅2, ⇥) = �n log
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Using change of variables: � = ⇥+1
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Plugging back in, we optimize the scalar problem
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Application II: Results for traveltime tomography

We set up a traveltime tomography experiment: starting from constant
background, we want to invert for a velocity perturbation.

Linear forward model: h(m) = Am. Data: z = �T , arrival times.

True perturbation outliers in the data
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Application II: Results for traveltime tomography
LS results true and predicted data
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ST results, �, ⇥2 from initial residual true and predicted data
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Application II: Results for traveltime tomography
True perturbation outliers in the data
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ST results, �, ⇥2 estimated true and predicted data
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Thank you!
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