Extended Robust Formulations for Large Scale Inverse Problems

Aleksandr Y. Aravkin

Computer Science & Earth and Ocean Sciences University of British Columbia saravkin@eos.ubc.ca

SLIM Group at UBC

Tristan van Leeuwen Michael P. Friedlander Felix J. Herrmann

Total Research (Pau)

Henri Calandra Raphael Lancretot Anais Tamalet Fuchun Gao

SLIM Consortium, December 4, 2012

- Robust Methods for Inverse Problems
 - Modeling error using parametric densities
 - Theoretical advantages of non-convex penalties/heavy tailed densities
 - Student's t FWI formulation and results

Robust Methods for Inverse Problems

- Modeling error using parametric densities
- Theoretical advantages of non-convex penalties/heavy tailed densities
- Student's t FWI formulation and results

Variable projection method for nuisance parameters

- Theory and approach
- Application 1: Robust source estimation (calibration)
- Application 2: Self-tuning student's t formulation

Forward Problem

- The *forward problem* is to predict data given velocity parameters.
- When doing acoustic inversion in the frequency domain, to predict the data from one explosive source q, we solve

$$(\omega^2 \mathbf{m} + \nabla^2) \mathbf{u} = \mathbf{q} \; ,$$

and then restrict the solution to the surface with operator P, so that in the discrete setting, the forward model is

$$h(\mathbf{m}) = P \underbrace{(\omega^2 \mathbf{m} + \nabla^2)^{-1} \mathbf{q}}_{\mathbf{u}, \text{ computed on the fly}}$$
.

$$\mathbf{q}$$

$$\mathbf{q}$$

$$\mathbf{m} = 1/\text{soundspeed}^2$$
Seismic Laboratory for Integing and indefinition

Let z denote the observed data. We model the relationship between m and z using the forward model h and error model v:

 $\mathbf{z} = h(\mathbf{m}) + \mathbf{v} \ .$

Let z denote the observed data. We model the relationship between m and z using the forward model h and error model v:

 $\mathbf{z} = h(\mathbf{m}) + \mathbf{v} \ .$

We can estimate m by maximizing the likelihood of z given a parametric density for errors v. For example, v is i.i.d. Gaussian gives rise to

$$\exp\left(-\frac{1}{2\sigma^2}\|\mathbf{z}-h(\mathbf{m})\|^2\right) \quad \longleftrightarrow \quad \overline{\mathbf{m}} = \arg\min_{\mathbf{m}} \|\mathbf{z}-h(\mathbf{m})\|_2^2$$

Let z denote the observed data. We model the relationship between m and z using the forward model h and error model v:

 $\mathbf{z} = h(\mathbf{m}) + \mathbf{v} \ .$

We can estimate m by maximizing the likelihood of z given a parametric density for errors v. For example, v is i.i.d. Gaussian gives rise to

$$\exp\left(-\frac{1}{2\sigma^2}\|\mathbf{z}-h(\mathbf{m})\|^2\right) \quad \longleftrightarrow \quad \overline{\mathbf{m}} = \underset{\mathbf{m}}{\arg\min} \|\mathbf{z}-h(\mathbf{m})\|_2^2$$

In general, if v has negative log $g = -\log(p)$, the maximum likelihood problem is equivalent to

$$\min_{\mathbf{m}} f(\mathbf{m}) := g(\mathbf{z} - h(\mathbf{m})) \; .$$

Let z denote the observed data. We model the relationship between m and z using the forward model h and error model v:

 $\mathbf{z} = h(\mathbf{m}) + \mathbf{v} \ .$

We can estimate m by maximizing the likelihood of z given a parametric density for errors v. For example, v is i.i.d. Gaussian gives rise to

$$\exp\left(-\frac{1}{2\sigma^2}\|\mathbf{z}-h(\mathbf{m})\|^2\right) \quad \longleftrightarrow \quad \overline{\mathbf{m}} = \underset{\mathbf{m}}{\arg\min} \|\mathbf{z}-h(\mathbf{m})\|_2^2$$

In general, if v has negative log $g = -\log(p)$, the maximum likelihood problem is equivalent to

$$\min_{\mathbf{m}} f(\mathbf{m}) := g(\mathbf{z} - h(\mathbf{m})) \; .$$

For FWI, $h(\mathbf{m}) = PH^{-1}[\mathbf{m}]q$, where $H[\mathbf{m}] = (\omega^2 \mathbf{m} + \nabla^2)$.

Given a forward model $h(\mathbf{m})$, we can formulate an inverse problem using model

 $\mathbf{z} = h(\mathbf{m}) + \boldsymbol{v} \; .$

The corresponding optimization problem is

$$\min_{\mathbf{m}} f(\mathbf{m}) = g(\mathbf{z} - h(\mathbf{m})) ,$$

- The gradient is the key computational unit, and for any differentiable g, we can compute the gradient on the fly by solving PDEs.
- We focus on robust and extended modeling formulations, which correspond to choosing a good g and solving the resulting problem.

Robust Methods Via Error Modeling

- Unexplained artifacts in the data are a major problem for current inverse problem formulations. In exploration geophysics, data must be cleaned and pre-processed before FWI is done.
- Cleaning data is costly and time consuming it can take *years*, while solving the inverse problem itself is a matter of months. Moreover, 'cleaning' is not guaranteed to succeed, and you can lose information.

We main idea of robust methods is to obtain good results despite unexplained artifacts or errors in the data. We can design robust methods by changing the statistical model for v, which gives a corresponding error penalty.

Advantages of Heavy-Tailed Densities

- A convex penalty corresponds to a log-concave density, while a non-convex penalty corresponds to a heavy-tailed density.
- The class of log-concave densities is fundamentally limited from a modeling point of view.

Theorem: A.A., Friedlander, van Leeuwen, Herrmann, Math Prog. 2012

Let **p** be a scalar density proportional to $\exp(-g(y))$, with g convex. Then we have

$$P(|y| > t + \Delta t \text{ given } |y| > t) \le C \exp(-\alpha \Delta t)$$
.

- Heavy-tailed models are *less conservative* with regard to outlier distributions.
 - **Student's t**, Pareto, Cauchy are all heavy-tailed.
 - For Cauchy, $P(|y| > 2d | |y| > d) \approx 0.5$ for large d!

Total Results: 4% bad data, LS vs. Student's t

4Hz, LS, 4% bad data

6 Hz, LS, 4% bad data

4Hz, St: $\nu = 100$, 4% bad data 6 Hz, St: $\nu = 100$, 4% bad data

Total Results: St 30% bad data vs. LS good data

4Hz, LS, good data

6 Hz, LS, good data

4Hz, St: $\nu = 1$, 30% bad data 6 Hz, St: $\nu = 1$, 30% bad data

Nuisance Parameter Estimation

- Many inverse problems contain *nuisance parameters* which, while not of primary interest, impact our ability to invert for primary parameters.
- Motivating applications:
 - Variance parameters, especially when data comes from several data sets (different shot experiments, different frequencies)
 - Automatic calibration, e.g. source estimation in seismic inverse problems.
 - Meta-parameter estimation, e.g. Student's t degrees of freedom.
- For a large class of problems (including all motivating applications) we can *jointly* optimize extended formulations in *both* primary and nuisance parameters.
- In many cases, this can be easily implemented within existing architectures that currently ignore nuisance parameters.

Formulations for Motivating Applications

If data comes from K sources with Gaussian errors, we can formulate the following (joint) inverse problem: (Anais's talk)

$$\min_{\mathbf{m},\sigma^2} \sum_{i=1}^{K} N_i \log(2\pi\sigma_i^2) + \frac{1}{\sigma_i^2} \|\mathbf{z}_i - h(\mathbf{m})_i\|^2$$

Source estimation means solving for *unknown amplitude parameters*:

$$\min_{\mathbf{m},\alpha} \sum_{i=1}^{M} g(\mathbf{z}_i - \alpha_i h(\mathbf{m})_i) \; .$$

Student's t d.f. parameters may be estimated by minimizing the true negative log likelihood:

$$\min_{\mathbf{m},\sigma^{2},\nu} - n\log\left(\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)\sqrt{\pi\nu\sigma^{2}}}\right) + \frac{\nu+1}{2}\sum_{i=1}^{n}\log\left(1 + \frac{\mathbf{r}_{i}^{2}}{\sigma^{2}\nu}\right)$$

All of the motivating formulations take the form

 $\min_{\mathbf{m},\theta} g(\mathbf{m},\theta) \; .$

In all of the applications, it is easy to compute

$$\overline{\theta}(\mathbf{m}) = \underset{\theta}{\arg\min} g(\mathbf{m}, \theta) \;.$$

These facts motivate the definition of a *reduced* objective

$$\tilde{g}(\mathbf{m}) = g(\mathbf{m}, \overline{\theta}(\mathbf{m}))$$
.

For special types of NLLS problems, this technique is known as variable projection (Golub & Pereyra '73, '03, Osborne '07).

Projection Approach

Define
$$\tilde{g}(\mathbf{m}) = g(\mathbf{m}, \overline{\theta}(\mathbf{m}))$$
, with $\overline{\theta}(\mathbf{m}) = \arg\min_{\theta} g(\mathbf{m}, \theta)$.

Theorem: Bell & Burke, '08.

Let $\overline{\mathbf{m}} \in \mathcal{U}$ and $\overline{\theta} \in \mathcal{V}$ be such that $\nabla_{\theta} g(\overline{\mathbf{m}}, \overline{\theta}) = 0$ and $\nabla_{\theta}^2 g(\overline{\mathbf{m}}, \overline{\theta})$ is positive definite. Then $\tilde{g}(\mathbf{m})$ is twice continuously differentiable, with

$$\nabla_{\mathbf{m}} \tilde{g}(\overline{\mathbf{m}}) = \nabla_{\mathbf{m}} g(\overline{\mathbf{m}}, \overline{\theta}(\overline{\mathbf{m}}))$$
(1)

$$\nabla_{\mathbf{m}}^2 \tilde{g}(\overline{\mathbf{m}}) = \nabla_{\mathbf{m}}^2 g(\overline{\mathbf{m}}, \overline{\theta}(\overline{\mathbf{m}})) + \nabla_{\mathbf{m},\theta}^2 g(\overline{\mathbf{m}}, \overline{\theta}(\overline{\mathbf{m}})) \nabla_{\mathbf{m}} \overline{\theta}(\overline{\mathbf{m}}) .$$
(2)

- We can now design first and second order methods to optimize \tilde{g} .
- First order: recompute $\overline{\theta}(\mathbf{m})$ whenever \mathbf{m} is updated, and then use $\overline{\theta}(\mathbf{m})$ (as values!) wherever θ appears in $\nabla_{\mathbf{m}}g(\mathbf{m},\theta)$. From (1), we have the true gradient of \tilde{g} .
- Second order: Use a truncated version of (2), again with $\overline{\theta}(\mathbf{m})$ as values, but this time with your favorite solver, e.g. Gauss-Newton, LM.

A.A. & van Leeuwen, *Estimating Nuisance Parameters in Inverse Problems*, Inverse Problems, October 2012.

• Consider
$$f(\mathbf{m}, \alpha) = \sum_{i} g_i (\mathbf{z}_i - \alpha_i h(\mathbf{m})_i)$$
.

• When
$$g_i = \| \cdot \|^2$$
, then $\bar{\alpha}_i = \frac{h(\mathbf{m})_i^\top \mathbf{z}_i}{\|h(\mathbf{m})_i\|^2}$.

For general g_i , we can very quickly solve for $\bar{\alpha}$ using Newton's method.

Then, reduced objective is

$$\tilde{f}(\mathbf{m}) = \sum_{i} g_i(\mathbf{z}_i - \bar{\alpha}_i(\mathbf{m})h(\mathbf{m})_i),$$

with

$$\nabla \tilde{f}(\mathbf{m}) = \sum_{i} \nabla h(\mathbf{m})_{i}^{\top} \nabla g_{i} (\mathbf{z}_{i} - \bar{\alpha}_{i}(\mathbf{m})h(\mathbf{m})_{i}) .$$

Figure 1 Data with outliers in the form of bad traces.

Figure 2 Estimated source wavelet using Least-Squares (top), Hybrid (middle) and Students t (bottom) approaches.

Application I: Robust FWI with Robust Source estimation

FWI Results

Take the *full log likelihood*:

$$g(\mathbf{m}, \sigma^2, \nu) = -n \log \left(\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)\sqrt{\pi\nu\sigma^2}} \right) + \frac{\nu+1}{2} \sum_{i=1}^n \log \left(1 + \frac{\mathbf{r}(\mathbf{m})_i^2}{\sigma^2\nu} \right)$$

■ Take the *full log likelihood*:

$$g(\mathbf{m}, \sigma^2, \nu) = -n \log \left(\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)\sqrt{\pi\nu\sigma^2}} \right) + \frac{\nu+1}{2} \sum_{i=1}^n \log \left(1 + \frac{\mathbf{r}(\mathbf{m})_i^2}{\sigma^2\nu} \right)$$

• Using change of variables: $\eta = \frac{\nu+1}{2}$, $\varrho = \sigma^2 \nu$, we find

$$(\overline{\varrho},\overline{\eta}) = \operatorname*{arg\,min}_{\varrho,\eta} - n \log\left(\frac{\Gamma\left(\eta\right)}{\Gamma\left(\eta - \frac{1}{2}\right)}\right) + \frac{n}{2}\log(\varrho) + \eta \sum_{i=1}^{n}\log\left(1 + \frac{r_i(x)^2}{\varrho}\right)$$

■ Take the *full log likelihood*:

$$g(\mathbf{m}, \sigma^2, \nu) = -n \log \left(\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)\sqrt{\pi\nu\sigma^2}} \right) + \frac{\nu+1}{2} \sum_{i=1}^n \log \left(1 + \frac{\mathbf{r}(\mathbf{m})_i^2}{\sigma^2\nu} \right)$$

• Using change of variables: $\eta = \frac{\nu+1}{2}$, $\varrho = \sigma^2 \nu$, we find

$$(\overline{\varrho},\overline{\eta}) = \operatorname*{arg\,min}_{\varrho,\eta} - n \log\left(\frac{\Gamma\left(\eta\right)}{\Gamma\left(\eta - \frac{1}{2}\right)}\right) + \frac{n}{2}\log(\varrho) + \eta \sum_{i=1}^{n}\log\left(1 + \frac{r_i(x)^2}{\varrho}\right)$$

Taking the derivative with respect to ρ , we find

$$0 = \frac{n}{2\varrho} - \eta \sum_{i=1}^{n} \frac{r_i^2}{\varrho + r_i^2} \implies \eta = \frac{n}{2\sum_{i=1}^{n} \frac{r_i^2}{\varrho + r_i^2}}$$

■ Take the *full log likelihood*:

$$g(\mathbf{m}, \sigma^2, \nu) = -n \log \left(\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)\sqrt{\pi\nu\sigma^2}} \right) + \frac{\nu+1}{2} \sum_{i=1}^n \log \left(1 + \frac{\mathbf{r}(\mathbf{m})_i^2}{\sigma^2\nu} \right)$$

• Using change of variables: $\eta = \frac{\nu+1}{2}$, $\varrho = \sigma^2 \nu$, we find

$$(\overline{\varrho},\overline{\eta}) = \operatorname*{arg\,min}_{\varrho,\eta} - n \log\left(\frac{\Gamma\left(\eta\right)}{\Gamma\left(\eta - \frac{1}{2}\right)}\right) + \frac{n}{2}\log(\varrho) + \eta \sum_{i=1}^{n}\log\left(1 + \frac{r_i(x)^2}{\varrho}\right)$$

Taking the derivative with respect to ρ , we find

$$0 = \frac{n}{2\varrho} - \eta \sum_{i=1}^{n} \frac{r_i^2}{\varrho + r_i^2} \implies \eta = \frac{n}{2\sum_{i=1}^{n} \frac{r_i^2}{\varrho + r_i^2}}$$

Plugging back in, we optimize the scalar problem

$$\min_{\varrho} -n\log\left(\frac{\Gamma\left[n\left/\left(2\sum_{i=1}^{n}\frac{r_{i}^{2}}{\varrho+r_{i}^{2}}\right)\right]}{\Gamma\left[n\left/\left(2\sum_{i=1}^{n}\frac{r_{i}^{2}}{\varrho+r_{i}^{2}}\right)-\frac{1}{2}\right]}\right) + \frac{n}{2}\log(\varrho) + \frac{n\sum_{i=1}^{n}\log\left(1+\frac{r_{i}^{2}}{\varrho}\right)}{2\sum_{i=1}^{n}\frac{r_{i}^{2}}{\varrho+r_{i}^{2}}}$$

Application II: Results for traveltime tomography

- We set up a traveltime tomography experiment: starting from constant background, we want to invert for a velocity perturbation.
- Linear forward model: $h(\mathbf{m}) = A\mathbf{m}$. Data: $\mathbf{z} = \Delta T$, arrival times.

Application II: Results for traveltime tomography

ST results, ν, σ^2 from initial residual

true and predicted data

true and predicted data

Application II: Results for traveltime tomography

-100

1

0.6

0.8

outliers in the data

true and predicted data

Tuesday, 4 December, 12

1

0

0.2

0.4

x [km]

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, BP, Chevron, ConocoPhillips, Petrobras, PGS, Total SA, and WesternGeco.