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Quick Summary

• Problem: Large Scale Seismic Data 
Interpolation

• Approach: Matrix completion on a 2-D 
representation of survey data

• Contribution: A scalable extendible algorithm

• Outcome: A simple folding of the tensor 
yields a matrix that can be successfully 
completed
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Seismic Data 
Interpolation Problem

• Data is poorly sampled along a subset 
of modes

• Different from classical interpolation 
due to the nature of data
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Challenges

• Seismic data is characterized by three main 
properties

• Incomplete

• Large volume

• High dimensional

• Space efficient and fast interpolation is 
necessary for feasible analysis
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Problem Setting

• 5-D data. Modes are time, source (x,y) 
coordinates, receiver (x,y) coordinates.

• Fourier transform is taken in time 
domain

• A certain frequency slice is selected 
from the Fourier transform

• Resulting data: a 4-D incomplete tensor.
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Our Approach

• We apply matrix completion methods to 
the seismic data interpolation problem. 

• Matrix completion 

• solid theoretical results on necessary conditions 
for exact completion

• Jellyfish: a state-of-the-art algorithm for large 
scale problems
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(src x, src y)=(10,12)

Fixing source coordinates, we obtain a specific shot

Encoding the survey data as a matrix
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Encoding the survey data as a matrix

Src x=10

Src y=12

Src x=11

Src x=12

Src y=13 Src y=14
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How does sampling on the grid look like?
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Abstract Setup: Matrix Completion

Mij known for black cells

Mij unknown for white cellsM =

• How do you fill in the missing data?

• Ill posed unless we assume a structure:

• Low rank!
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Rank
• Corresponding problem:

NP-Complete!

• Convex relaxation: approximate rank by nuclear 
norm:

kXk⇤ =
X

i

�i(X)
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• 2x2 matrices
• Plotted in 3d

	
  rank 1
	
  x2 + z2 + 2y2 = 1

What is the benefit of nuclear norm?
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• 2x2 matrices
• Plotted in 3d

	
  rank 1
	
  x2 + z2 + 2y2 = 1

Convex hull:

What is the benefit of nuclear norm?

kXk⇤ =
X

i

�i(X)
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• 2x2 matrices
• Plotted in 3d

kXk⇤ =
X

i

�i(X)

What is the benefit of nuclear norm?

Matrices matching our observations
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• 2x2 matrices
• Plotted in 3d

Fazel 2002. 
Recht, Fazel, and Parillo 2007

Candes and Recht 2009
Rank Minimization/Matrix Completion

kXk⇤ =
X

i

�i(X)

What is the benefit of nuclear norm?

Matrices matching our observations
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Jellyfish

M L
R*

k x r r x nk x n

=

• SGD for Matrix Factorizations.
Ben Recht and Christopher Ré

•Nuclear norm minimization can be written as a 
semidefinite program.
• Does not scale to large datasets!

• Idea: approximate

kn entries r(k+n) entries
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Jellyfish

• Step 2: Take a gradient step:


Lu

Rv

�
 


(1� �µu)Lu � �eRv

(1� �µv)Rv � �eLu

�

minimize(L,R)

X

(u,v)2E

�
(LuRT

v �Muv)2 + µukLuk2
F + µvkRvk2

F

 
• Based on explicit factorization:

e = (LuRT
v �Muv)

•Update steps:
• Step 1: Pick (u,v) and compute residual: 

• Possible to scale to GB sized matrices by proper sampling
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Algorithm

• Matricize data on (src x, rcv x) x (src y, rcv 
y) grid 

• Storage in sparse matrix form

• Factorize matrix with Jellyfish

• Multiply rows in L and R to obtain elements 
in the tensor
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Experimental Setup

• Data set is a 54x54x101x101 tensor.

• Out of 54x54 shots, 200 are observed.

• 197 shots were used in training

• Remaining 3 used for parameter selection
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Experiments
Fix source coordinates:

Shot data
Fix receiver coordinates:

Receiver gathers

• We evaluate our method using Signal-to-Noise ratio

• Hierarchical Tucker Decomposition results are also 
presented for comparison
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Reconstruction of available shot data
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Reconstruction of unseen shot data in the test set
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Reconstruction of unseen shot data in the test set
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Extrapolation of unseen shot data
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Extrapolation of unseen shot data
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Extrapolation for fixed receiver coordinates
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Extrapolation for fixed receiver coordinates
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Effects of varying rank parameter on reconstructing 
available shot data
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Effects of varying rank parameter on reconstructing 
shot data from test set
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Effects of varying rank parameter on extrapolation of 
unavailable shot data
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Experiments

• ~2M observations, ~30M elements in the 
completed tensor

• Factorization: ~30 seconds on 40 cores

• Parameter validation: 144 runs in 51 
minutes
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Experiments

• Recap of our results:

• Low rank representation which can 
capture the inherent structure of seismic 
data

• Especially evident in the receiver gather 
results

• Efficient algorithm which can scale to 
gigabytes on workstations
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Conclusion

• Seismic data can be mapped to a low rank 
matrix structure

• Practical benefits:

• Large scale interpolation

• Theoretical benefits

• A better understanding of properties of sampling

• Bounds on the number of necessary observations 
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Future Work

• Integrate the spatially continuous structure of 
survey in low-rank matrix completion

• Find other rank lowering transforms of seismic 
data to lower measurement demands in surveys

• Explicitly use low-rank structure in waveform 
inversion

• Related work: scaling the matrix factorization to 
TB sized data sets
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Thank you for your attention!
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