Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Probing the extended image volume Tristan van Leeuwen and Felix Herrmann

Velocity analysis in complex areas:

- •wave-equation image volumes
- automated focusing optimization (DSO)

Both computation and storage of these image volumes is expensive

SI IM

Can we work with the image volume implicitly?

Overview

- Extended modelling
- Wave-equation MVA
- Probing the image volume
- Multiscale MVA
- Examples
- Conclusions

Extended modelling

• Physical Helmholtz equation:

 $\left[\omega^2 \mathsf{diag}(\mathbf{m}) + \nabla^2\right] \mathbf{u} = \mathbf{q}$

• Extension

$$\left[\omega^2 M + \nabla^2\right] \mathbf{u} = \mathbf{q}$$

Non-stationary convolution, allows for action-at-a-distance

Extended modelling

Correct model should be able to explain the data without violating physics:

minimize off-diagonal energy in M and fit the data

Extended modelling

$$\min_{M} ||W \odot M||_{F}^{2} \quad \text{s.t.} \quad \sum_{\omega} ||F[M]Q - D||_{F}^{2} \leq \sigma$$

$$Q = [\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_N]$$
$$D = [\mathbf{d}_1, \mathbf{d}_2, \dots, \mathbf{d}_N]$$
$$F[M] = PH[M]^{-1}$$
$$w_{ij} \propto r_{ij}$$

sources monochromatic data matrix modelling operator penalty term

Wave-equation MVA Linearization: M = diag(m) + E

$$\min_{\mathbf{m},E} ||W \odot E||_F^2 \quad \text{s.t.} \quad \sum_{\omega} ||DF[\mathbf{m}]E + F[\mathbf{m}]Q - D||_F^2 \le \sigma$$

$$DF[\mathbf{m}, Q]E = PH[\mathbf{m}]^{-1}(\omega^2 EU)$$
$$U = H[\mathbf{m}]^{-1}Q$$

extended born modelling: allows non-local interaction between background wavefield and reflectivity

Wave-equation MVA

Approximate elimination of constraint leads to `conventional' MVA formulation:

 $\min_{\mathbf{m}} ||W \odot E[\mathbf{m}]||_F^2$

$$E[\mathbf{m}] = \sum_{\omega} \omega^2 V U^*$$

$$V = H[\mathbf{m}]^{-*}P^*(D - F[\mathbf{m}]Q)$$

Wave-equation MVA $E = \sum \omega^2 U V^* \qquad e_{i,j} = \sum \sum \omega^2 u_{i,s} v_{j,s}$ ω \boldsymbol{S} ω sources gridpoints

SLIM 🛃

Wave-equation MVA

Probing the image volume

- VERY expensive to form complete image volume
- Cheap to calculate action on vector

 $\mathbf{y} = E\mathbf{x} = VU^*\mathbf{x}$

- **1. source wavefield** $U = H[\mathbf{m}]^{-1}Q$
- **2. data residual** $R = P^*(PU D)$
- **3.** adjoint source weights $\mathbf{w} = U^* \mathbf{x}$
- **4. Solve for one r.h.s.** $y = H[m]^{-*}(Rw)$

Probing the image volume

Interferometric interpretation: $\mathbf{x} = \delta_{ij}$

X_R

 $R\mathbf{w}$

Greens function Source redatuming

Xn

y Receiver redatuming

Probing the image volume

sparsely subsample the image

$$\min_{\mathbf{m}} \sum_{i \in \mathcal{I}} ||W_i \odot E[\mathbf{m}] \delta_i||_2^2$$

- can we randomly combine the subsurface sources?
- also allows for target-oriented approach

Multiscale MVA

- Instead of penalizing offdiagonal energy, we reward near-diagonal energy/ σ)²]
- When σ ↓ 0 we measure only energy on the diagonal, i.e. stackpower which is equivalent to FWI!

Multiscale MVA

- Start with very sparse sampling and large width
- Gradually move to finer sampling and smaller widths
- Finally, compute only diagonal of extended image and move to FWI

Examples

SLIM 🛃

61 sources, 301 receivers, [3:0.5:25] Hz

Examples

all sequential sources

Examples

1 simultaneous source

$$E = \sum_{\omega} \omega^2 UW (VW)^*$$

high

SLIM 🛃

Examples

5 simultaneous sources $E = \sum \omega^2 UW(VW)^*$

1.1

high

Examples

10 simultaneous sources $E = \sum \omega^2 UW(VW)^*$

Examples focussing power for small, medium and large scale

sequential sources

10 simultaneous sources

Conclusions

- We can efficiently probe the extended image volume
- No need to estimate local dip because of using subsurface offset in all directions
- Use sim. source ideas for both surface and subsurface sources
- Multiscale focusing criterion