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Es#ma#on	
  of	
  Primaries	
  by	
  Sparse	
  Inversion	
  (van	
  Groenes#jn	
  and	
  
Verschuur,	
  2009)

recorded data predicted data from primary IR

P = G(Q + RP)

Inversion	
  objec#ve:

EPSI Problem

f(G,Q) =
1

2
�P − G(Q + RP)�22
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In	
  #me	
  domain

recorded data predicted data from primary IR

Inversion	
  objec#ve:

p =M(g, q)

(lower-­‐case:	
  whole	
  dataset	
  in	
  =me	
  domain)

M(g,q) := F†
tBlockDiagω1···ωnf

[(q(ω)I−P)† ⊗ I]Ftg

f(g, q) =
1

2
�p−M(g, q)�22

EPSI Problem
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Lineariza#ons

EPSI Problem

Mq̃g = M(g, q̃) Mg̃q = M(q, g̃)

In	
  fact	
  it	
  is	
  bilinear:

Mq̃ =

�
∂M
∂g

�

q̃

Mg̃ =

�
∂M
∂q

�

g̃

p =M(g, q)
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Lineariza#ons

EPSI Problem

Associated	
  objec#ves:

Mq̃ =

�
∂M
∂g

�

q̃

Mg̃ =

�
∂M
∂q

�

g̃

p =M(g, q)

fq̃(g) =
1

2
�p−Mq̃g�22 fg̃(q) =

1

2
�p−Mg̃q�22
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Do:

EPSI Procedure

gk+1 = gk + α∇fqk(gk)

qk+1 = qk + β∇fgk+1(qk)

Alterna=ng	
  updates	
  (Gauss-­‐Seidel)	
  to	
  the	
  linearized	
  problem
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EPSI Procedure

Gradient	
  sparsity

S : pick largest ρ elements per trace

gk+1 = gk + αS(∇fqk(gk))

qk+1 = qk + β∇fgk+1(qk)

Do:
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Related	
  to	
  two	
  underlying	
  sub-­‐problems:

EPSI Procedure

min
g

�p−Mq̃g�2 s.t. nnz(g) ≤ ρ

min
q

�p−Mg̃q�2

ACempDng	
  to	
  approximate:

min
q

�p−Mg̃q�2

min
g

nnz(g) s.t. �p−Mq̃g�2 ≤ σ
(no#on	
  of	
  sparsest	
  solu#on)
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EPSI Procedure

Can	
  be	
  made	
  non-­‐combinatorial	
  (convex)	
  by:

min
q

�p−Mg̃q�2
(minimum	
  L1	
  solu#on	
  usually	
  the	
  sparsest	
  solu#on)

min
g

�g�1 s.t. �p−Mq̃g�2 ≤ σ
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Convex EPSI

qk+1 = qk + β∇fgk+1(qk)

Do:

SoE-­‐thresholding	
  solves	
  an	
  L1	
  minimiza=on	
  problem,	
  but	
  how	
  is	
  

determined?

φ

gk+1 = SoftThφ(gk + α∇fqk(gk))
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894 EWOUT VAN DEN BERG AND MICHAEL P. FRIEDLANDER

Projected gradient. Our application of the SPG algorithm to solve (LSτ ) follows
Birgin, Mart́ınez, and Raydan [5] closely for the minimization of general nonlinear
functions over arbitrary convex sets. The method they propose combines projected-
gradient search directions with the spectral step length that was introduced by Barzilai
and Borwein [1]. A nonmonotone line search is used to accept or reject steps. The
key ingredient of Birgin, Mart́ınez, and Raydan’s algorithm is the projection of the
gradient direction onto a convex set, which in our case is defined by the constraint
in (LSτ ). In their recent report, Figueiredo, Nowak, and Wright [27] describe the
remarkable efficiency of an SPG method specialized to (QPλ). Their approach builds
on the earlier report by Dai and Fletcher [18] on the efficiency of a specialized SPG
method for general bound-constrained quadratic programs (QPs).

2. The Pareto curve. The function φ defined by (1.1) yields the optimal value
of the constrained problem (LSτ ) for each value of the regularization parameter τ .
Its graph traces the optimal trade-off between the one-norm of the solution x and
the two-norm of the residual r, which defines the Pareto curve. Figure 2.1 shows the
graph of φ for a typical problem.

The Newton-based root-finding procedure that we propose for locating specific
points on the Pareto curve—e.g., finding roots of (1.2)—relies on several important
properties of the function φ. As we show in this section, φ is a convex and differentiable
function of τ . The differentiability of φ is perhaps unintuitive, given that the one-
norm constraint in (LSτ ) is not differentiable. To deal with the nonsmoothness of
the one-norm constraint, we appeal to Lagrange duality theory. This approach yields
significant insight into the properties of the trade-off curve. We discuss the most
important properties below.

2.1. The dual subproblem. The dual of the Lasso problem (LSτ ) plays a
prominent role in understanding the Pareto curve. In order to derive the dual of
(LSτ ), we first recast (LSτ ) as the equivalent problem

(2.1) minimize
r,x

‖r‖2 subject to Ax + r = b, ‖x‖1 ≤ τ.
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Fig. 2.1. A typical Pareto curve (solid line) showing two iterations of Newton’s method. The
first iteration is available at no cost.
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minimize �x�1
subject to �Ax− b�2 ≤ σ
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Fig. 2.1. A typical Pareto curve (solid line) showing two iterations of Newton’s method. The
first iteration is available at no cost.
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Fig. 2.1. A typical Pareto curve (solid line) showing two iterations of Newton’s method. The
first iteration is available at no cost.
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Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

minimize �Ax− b�2
subject to �x�1 ≤ τ

solve	
  with	
  SPG
(spectral	
  projected	
  gradients)

Thursday, June 16, 2011



SLIM

SPG	
  start

trace number

tim
e 

(s
)

20 40 60 80 100 120 140

0

0.25

0.5

0.75

1

Thursday, June 16, 2011



SLIM

trace number

tim
e 

(s
)

20 40 60 80 100 120 140

0

0.25

0.5

0.75

1

SPG	
  at	
  Pareto	
  curve

Thursday, June 16, 2011



Pareto curve

Only	
  solve	
  least-­‐squares	
  matching	
  for	
  q	
  when	
  solu=on	
  reaches	
  Pareto	
  curve

minimize �x�1
subject to �Ax− b�2 ≤ σ
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Robust EPSI procedure

While

(Solve	
  with	
  SPGL1	
  un#l	
  Pareto	
  curve	
  reached)

gk+1 = argmin
g

�p−Mqkg�2 s.t. �g�1 ≤ τk

determine new τk from the Pareto curve

qk+1 = argmin
q

�p−Mgk+1q�2
(Solve	
  with	
  LSQR)

�p−M(gk,qk)�2 > σ
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REPSI in transform domain

Modify	
  just	
  the	
  problem	
  for	
  g:

min
q

�p−Mg̃q�2

min
g

�g�1 s.t. �p−Mq̃g�2 ≤ σ
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REPSI in transform domain

Modify	
  just	
  the	
  problem	
  for	
  g:

min
q

�p−Mg̃q�2

S : sparsifying representation for seismic signals

S† : synthesis operator for S

-­‐	
  Should	
  have	
  spa=ally	
  localized	
  support
-­‐	
  ex:	
  nd-­‐Wavelets,	
  Curvelets,	
  etc...

(basis	
  pursuit	
  +	
  denoise)
min
x

�x�1 s.t. �p−Mq̃S
†x�2 ≤ σ, g = S†x
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REPSI in transform domain

While

(Solve	
  with	
  SPGL1	
  un#l	
  Pareto	
  curve	
  reached)

determine new τk from the Pareto curve

qk+1 = argmin
q

�p−Mgk+1q�2
(Solve	
  with	
  LSQR)

xk+1 = argmin
x

�p−MqkS
†x�2 s.t. �x�1 ≤ τk

gk+1 = S†xk+1

�p−M(gk,qk)�2 > σ
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• L1-­‐convexification	
  better	
  behaved	
  than	
  sparse	
  
gradients	
  and	
  has	
  few	
  free	
  parameters

• Follows	
  the	
  Pareto	
  curve	
  into	
  a	
  series	
  of	
  
projected	
  gradient	
  problems

• Easily	
  incorporates	
  seeking	
  the	
  solution	
  in	
  a	
  
transform	
  domain	
  that	
  promotes	
  continuity

• Transform	
  domain	
  REPSI	
  acts	
  as	
  an	
  effective	
  
reflection	
  physics-­‐based	
  denoising

• Promising	
  applications	
  to	
  decon

summary
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Towards a new approach for primary estimation 
G.J.A. van Groenestijn* and D.J. Verschuur (Delft University of Technology)  
!
Summary 
In the surface-related multiple elimination (SRME) process 
the subtraction stage plays an important role. Typically, in 
this stage the primaries are assumed to have minimum 
energy (L2 norm). This norm is robust in the presence of 
noise, but can produce suboptimum results when primaries 
and multiples interfere. Replacing the L2 norm by a 
Cauchy (sparseness) has opposite characteristics: it works 
well when primaries and multiples overlap, but noise in the 
data will deteriorate its results. A downside of the current 
prediction and subtraction methodology is that noise in the 
input will always end up in the estimated primaries. A new 
primary estimation methodology is proposed in which the 
primary data are considered unknowns that are estimated 
together with the source signature. In this way, noise will 
not leak into the final primary estimate, such that it can be 
subjected to a sparseness norm. The sparseness norm and 
the fact that the method explains all the data, and not only 
the multiples, allows the method to separate primaries and 
multiples. The new approach is demonstrated on 1D (plane 
waves) and 2D data.  
 
Introduction 
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Fig.1 a-d: plane wave data (upper trace), true primaries (second trace), primaries estimated with an L2 norm (third trace), primaries estimated 
with Cauchy norm (bottom trace). e-h: The minimization sum as function of a for an L2 norm (dotted line) and a Cauchy norm (solid line), 
belonging to the data in a-d. All sums are normalized to have the value 1 at their minimum. In b and d the second primary event is completely 
overlapped by the first order multiple of the first primary event. In c and d noise has been added to the input of a and b. All data examples have 
been modeled with s=2, such that a=-0.5 corresponds to the true primaries. 
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Chapter 6: EPSI and near offset reconstruction: marine data applications 6 – 3

a) b) c) d) e) f)

Fig. 6.1 A schematic illustration of the relations between primaries and multiples. a) A shot gather

taken from a dataset with one single reflector. b) The primary event in the shot gather is

the consequence of fi ring the source. c) The up-going data will reflect at the surface and

generate the multiples. The same multiples are obtained when in each receiver location a

secondary source is present, which is fi red at the time the primary event reaches the receiver.

These secondary sources of the primary event are depicted as stars. d) The multiples are the

result of adding all the delayed primaries. e) The same shot gather as in (a). The shaded

area indicates the offset gap in the data. f) The fi rst order multiple is built from delayed

primaries caused by secondary sources. The secondary source inside the missing data gap

has not been measured but its consequences have an effect outside the gap.

that the near offsets are not measured and, thus, need to be interpolated before the multiple

prediction process is applied. This means that wrongly interpolated near offsets will pro-

duce errors in the predicted multiples and, therefore, limit the quality of the primary output.

van Groenestijn and Verschuur (2009b) demonstrates that EPSI can use the multiples to re-

construct the missing near offsets. Therefore, EPSI performs well on estimating primaries on

shallow water data. An other data-driven reconstruction method is the pseudo primary method

(Shan and Guitton, 2004) where a multidimensional auto correlation of the data is used to fill

the near offset gap. Curry and Shan (2008) improved the pseudo primary method by extending

it with prediction error filters. However, this improvement does not exclude cross correlation

artefacts from the missing near offsets completely.

After reviewing the EPSI method, we will discuss the role of the residual when we apply

EPSI to a moderately deep water marine dataset. Next, we will review the modified EPSI

method that is able to reconstruct missing near offset data simultaneously with estimating the

primaries. This algorithm is applied to a shallow water marine dataset. The result is compared

with iterative SRME applied to the same dataset with interpolated near offsets.

6.2 The primary-multiple model and iterative SRME

In the detail-hiding operator notation for 2D data (Berkhout, 1982) a bold quantity represents

a pre-stack data volume for one frequency; columns represent monochromatic shot records

(van	
  Groenes#jn	
  and	
  Verschuur	
  08)
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