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Motivation

® Data-driven methods

Estimation of primaries by sparse inversion (EPSI)
® Curse of dimensionality

Disproportional growth in computational and

storage demands when moving to realistic 3-D field data
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Objective

Reduction in computational and storage demands using :
p Dimensionality reduction technique

p Adaptive low-rank approximation
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Theory

Success of EPSI Depends on
p Fast sparsifying transform
p Large scale solver - Promotes Sparsity (SPGLI)

p Fast evaluation of monochromatic data matrix and its
adjoint (Most Expensive)
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E.] van Dedem, 2002
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Sparsity-promoting wavefield inversion

Consider the following linear relationship

S

(A}iﬁimVi,izl---nf

AN

IAJZ- : {/'Z known discretized monochromatic wavefields
G, unknown wavefield

angular frequency w = (i — 1)Aw, 1 =1---ny

Aw the sampling rate in the Fourier domain

n¢ the number of frequencies
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Sparsity-promoting wavefield inversion

Data Matrices Uj,i=1---ny
® Square
® Rank deficient ( Finite Aperture )
® Scaled by source wavelet

® ill conditioned and challenging to invert because of

instabilities related to small singular values.
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Sparsity-promoting wavefield inversion

Countering the instabilities by Imposing an energy penalty on
the solution through damped least-squares

~

S

G,

X

(2

~ o~ ~ o~ —1

¢; a frequency-dependent regularization parameter that controls the data
misfit versus the energy penalty on G
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Sparsity-promoting wavefield inversion

Problems with the previous formulation
p Minimizing the energy leads to loss of high frequencies

p Source function leads to different energy levels at
different frequencies (different € for each frequency)

p Minimizing energy does not exploit multi-dimensional
structure exhibited by seismic wavefields

Thursday, June 16, 2011



Sparsity-promoting wavefield inversion

To address these challenges

Cast the linear equation onto a form that allows us to solve the
unknown wavefield with curvelet-domain sparsity promotion

vec (AXB) = (B" ® A) vec (X)

® reters to the Kronecker product
vec 1s a linear operation that stacks the columns
of a matrix into a long concatenated vector
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Sparsity-promoting wavefield inversion

Our linear equation now becomes :
(ﬁj ®I) vec ((A}z)  vec (\A/'Z) ,1=1---ny

I the identity matrix
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Sparsity-promoting wavefield inversion

After inclusion of the curvelet synthesis and temporal Fourier
transforms (F; = (I ® I ® F;) with F; the temporal Fourier transform)

_(GT ® I) ) vec (G1) | vec ({71)_

(ﬂ‘T | )_ Ve (Gnt) vec (Vnt )
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Sparsity-promoting wavefield inversion

The Previous Equation can be written as

Ax~Db

with A := UC", where x is the discrete curvelet representation of g(t¢, x4, x,)
C the curvelet transform, and Vv the discrete representation of v(t, x, x,).
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EPSI

In the case of estimation of primaries

U i= F; blockdiag | Q1. = P1s, | Fy,

Q = Iq(w) the temporal Fourier transform of the source function (full rank)
P the Fourier representation of the up-going wavefield (rank deficient)
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EPSI

To overcome rank deficiency, we regularize the inversion by
exploiting sparsity by solving

X = arg min, ||X||; subject to ||Ax — Dbl <o

g — S*X

o : noise-dependent tolerance level.
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Dimensionality Reduction Via SVD's

Solving optimization problems require multiple iterations
which are challenging because :

® Data matrices are full & extremely large
® Data matrices is incomplete
® Solvers require multiple evaluations of

AA*and A*A
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Replace the data matrix P with low-rank approximation
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Dimensionality Reduction Via SVD's

Low Rank Approximation (Randomized SVD)
® ) Stages:
1. Capturing the action of the data matrix P

2. Forming a SVD on the action of P
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Dimensionality Reduction Via SVD's

® Stage | : Capturing the action of P

Y =PW

W ¢ Crex(k4p) 5 complex-valued Gaussian random matrix with k£ + p columns
and p a small oversampling factor (typically order 5 — 10).
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Dimensionality Reduction Via SVD's

® Stage | : Capturing the action of P
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Dimensionality Reduction Via SVD's

e Stage 2 : Compute an approximate SVD of P

1. Form a low-rank factorization P ~ QOB with B = Q*IAD obtained by a
QR-factorization of Y.

2. Compute the SVD of the small matrix B = UsSVv*.
3. Compute U = ij.
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Dimensionality Reduction Via SVD's

Low k-rank (with k& < min(ngs,n,)) approximation of the action
of the data matrix

S

P~ USV”®

UecCm** SeC™ and Ve Cm™"
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Dimensionality Reduction Via SVD's

Advantages

e Faster PP* and P*P multiplications
O f)*f) ~ VS2V*

e Significantly reduced memory imprint
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Putting Things Together

Inorder to combine EPSI and the low rank approximation

® Balance between

p Accuracy
p Memory reduction

p Matrix multiplication speed up
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Putting Things Together

® Spectral/Operator Norm || - ||s
» Maximum Eigen - Value
® Numerical Rank depends on frequency

® Amplitude spectrum of seismic wavelet varies with
frequency

p Adaptive rank selection
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Singular spectra of the data matrix P x 10*
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Estimated ranks distribution using 1/5 the rank budget
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PERFORMANCE

Up front cost of Low-Rank Approximation
p Classical methods
O(n, X ng X K)
p Randomized methods

O(n, x ng x log K)
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PERFORMANCE

Subsample 172 1/5 1/8 1/12
ratio 0

recovery error (dB) / spectral norms (x 103)

88(44) 20(121) 16(144) 13 (152)

Speed up (%) 2 5 8 12
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Svynthetic Data
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Synthetic Data (Approximated)
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EPSI :Primary
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EPSI : Primary (Approximated)
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EPSI : Impulse Response
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EPSI : Impulse Response (Approximated)
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Real Data
960

0 1000 2000 O 1000 2000
Receiver position (m) Shot position (m)

Ns=178
Nr= 178
Nt = 1024

0.512

Thursday, June 16, 2011



Real Data (Approxmqfed)
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EPSI : I;gimqry (Approxmqted)
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EPSglecz) Impulse Response
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EPSI : Impgmg(l)se Response (Approximated)
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Conclusion

® Data driven methods - e.g. EPSI - suffers from the ‘curse
of dimensionality’

® We utilize insights from random matrix theory to
approximate action of the data matrix

® Reductions in multiplication and storage costs
® Up-Front cost is cheap
® Can be implemented in parallel

® |[nstance of compressive Sensing
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Future Work

® Application of low rank approximation on 3D data

® Parallel implementation of the randomized approximation
techniques

® Extending EPSI to work with 3D data
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