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• Data-driven methods

 Estimation of primaries by sparse inversion (EPSI)

• Curse of dimensionality

Disproportional growth in computational and

storage demands when moving to realistic 3-D field data

Motivation
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Reduction in computational and storage demands using : 

‣ Dimensionality reduction technique

‣ Adaptive low-rank approximation

Objective
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Success of EPSI Depends on

‣ Fast sparsifying transform

‣ Large scale solver - Promotes Sparsity (SPGL1)

‣ Fast evaluation of monochromatic data matrix and its 
adjoint (Most Expensive) 

Theory
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Monochromatic matrix notation

xs

t
xr

xs

xrw

xs

xr

Fourier transform shot records
Extract monochromatic

wk

wk

P(z0)

E.J van Dedem, 2002

Thursday, June 16, 2011



SLIM

Consider the following linear relationship

�Gi
�Ui ≈ �Vi, i = 1 · · ·nf , (1)

Sparsity-promoting wavefield inversion

�Ui , �Vi known discretized monochromatic wavefields
�Gi unknown wavefield
angular frequency ω = (i− 1)∆ω, i = 1 · · ·nf

∆ω the sampling rate in the Fourier domain
nf the number of frequencies
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Data Matrices

•  Square

• Rank deficient ( Finite Aperture )

•  Scaled by source wavelet

•  ill conditioned and challenging to invert because of 

instabilities related to small singular values.

�Ui, i = 1 · · ·nf

Sparsity-promoting wavefield inversion
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Countering the instabilities by Imposing an energy penalty on 
the solution through damped least-squares

�i a frequency-dependent regularization parameter that controls the data
misfit versus the energy penalty on �G

Sparsity-promoting wavefield inversion

��Gi ≈ �Vi
�U∗

i

�
�Ui

�U∗
i + �2i I

�−1
, i = 1 · · ·nf
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Sparsity-promoting wavefield inversion

Problems with the previous formulation 

‣ Minimizing the energy leads to  loss of high frequencies

‣ Source function leads to different energy levels at 
different frequencies (different    for each frequency)

‣ Minimizing energy does not exploit multi-dimensional 
structure exhibited by seismic wavefields

�
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Sparsity-promoting wavefield inversion

To address these challenges 
Cast the linear equation onto a form that allows us to solve the 
unknown wavefield with curvelet-domain sparsity promotion

vec (AXB) =
�
BT ⊗A

�
vec (X) , (1)

⊗ refers to the Kronecker product
vec is a linear operation that stacks the columns
of a matrix into a long concatenated vector
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Our linear equation now becomes : 

�
�U∗

i ⊗ I
�
vec

�
�Gi

�
≈ vec

�
�Vi

�
, i = 1 · · ·nf , (1)

I the identity matrix

Sparsity-promoting wavefield inversion
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After inclusion of the curvelet synthesis and temporal Fourier
transforms (Ft = (I ⊗ I ⊗Ft) with Ft the temporal Fourier transform)

Sparsity-promoting wavefield inversion

F∗
t





�
�U∗

1 ⊗ I
�

. . . �
�UT

nf
⊗ I

�



Ft




vec (G1)

...
vec (Gnt)



 ≈




vec

�
�V1

�

...
vec (Vnt)





Ug ≈ v
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The Previous Equation can be written as

(1)

(2)

(3)

(4)

(5)

Ax ≈ b (6)

with A := UC∗, where x is the discrete curvelet representation of g(t, xs, xr),
C the curvelet transform, and �v the discrete representation of v(t, xs, xr).

(1)

(2)

(3)

(4)

(5)

Ax ≈ b (6)

with A := UC∗, where x is the discrete curvelet representation of g(t, xs, xr),
C the curvelet transform, and �v the discrete representation of v(t, xs, xr).

Sparsity-promoting wavefield inversion
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In the case of estimation of primaries

EPSI

�Q = I �q(ω) the temporal Fourier transform of the source function (full rank)
�P the Fourier representation of the up-going wavefield (rank deficient)

U := F∗
t blockdiag

�
�Q1···nf − �P1···nf

�
Ft,
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To overcome rank deficiency, we regularize the inversion by 
exploiting sparsity by solving

EPSI

�
�x = argminx �x�1 subject to �Ax− b�2 ≤ σ

�g = S∗�x
(1)

σ : noise-dependent tolerance level.
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Solving optimization problems require multiple iterations 
which are challenging because :

• Data matrices are full & extremely large

• Data matrices is incomplete

• Solvers require multiple evaluations of

                and

Dimensionality Reduction Via SVD’s

AA∗ A∗A
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Replace the data matrix P with low-rank approximation

Dimensionality Reduction Via SVD’s

=
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Low Rank Approximation  (Randomized SVD)

• 2 Stages: 

1. Capturing the action of the data matrix P

2. Forming a SVD on the action of P

Dimensionality Reduction Via SVD’s
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• Stage 1 : Capturing the action of P

�Y = �P�W, (1)

�W ∈ Cns×(k+p) a complex-valued Gaussian random matrix with k+ p columns
and p a small oversampling factor (typically order 5− 10).

Dimensionality Reduction Via SVD’s
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• Stage 1 : Capturing the action of P

Dimensionality Reduction Via SVD’s

P �Y = �P�W�W
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• Stage 2 : Compute an approximate SVD of P

1. Form a low-rank factorization �P ≈ QB with B = Q∗�P obtained by a
QR-factorization of �Y.

2. Compute the SVD of the small matrix B = �USV∗.

3. Compute U = Q�U.

Dimensionality Reduction Via SVD’s
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Low k-rank (with k � min(ns, nr)) approximation of the action
of the data matrix

�P ≈ USV∗ (1)

U ∈ Cns×k, S ∈ Ck×k, and V ∈ Cns×k

Low k-rank (with k � min(ns, nr)) approximation of the action
of the data matrix

�P ≈ USV∗ (1)

U ∈ Cns×k, S ∈ Ck×k, and V ∈ Cns×k

Low k-rank (with k � min(ns, nr)) approximation of the action
of the data matrix

�P ≈ USV∗ (1)

U ∈ Cns×k, S ∈ Ck×k, and V ∈ Cns×k

Dimensionality Reduction Via SVD’s
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Advantages

• Faster          and         multiplications 

•  

• Significantly reduced memory imprint

�P∗�P ≈ VS2V∗

�P∗�P�P�P∗

Dimensionality Reduction Via SVD’s
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Inorder to combine EPSI and the low rank approximation 

•  Balance between

‣  Accuracy 

‣  Memory reduction

‣  Matrix multiplication speed up

Putting Things Together
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• Spectral/Operator Norm

‣ Maximum Eigen - Value

• Numerical Rank depends on frequency

• Amplitude spectrum of seismic wavelet varies with 
frequency

‣  Adaptive rank selection

� · �S

Putting Things Together
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Singular spectra of the data matrix P

Frequency Index
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Up front cost of Low-Rank Approximation 

‣ Classical methods

‣ Randomized methods

PERFORMANCE

O(nr × ns × logK)

O(nr × ns ×K)
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PERFORMANCE
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Synthetic Data

Ns = 128 
Nr = 128
Nt = 512

Ns = 128 
Nr = 128
Nt = 512
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Rank Budget =1/5
SNR = 17 dB
Ns = 128 
Nr = 128
Nt = 512

Synthetic Data (Approximated) 
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EPSI :Primary 
Ns = 128 
Nr = 128
Nt = 512
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EPSI : Primary (Approximated)

Rank Budget =1/5
SNR = 28 dB
Ns = 128 
Nr = 128
Nt = 512
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EPSI : Impulse Response

Ns = 128 
Nr = 128
Nt = 512
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Rank Budget =1/5
SNR  =23 dB
Ns = 128 
Nr = 128
Nt = 512

EPSI : Impulse Response (Approximated)
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Real Data

Ns = 178 
Nr = 178
Nt = 1024
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Real Data (Approximated)
Rank budget =1/4
SNR = 13 dB
Ns = 178 
Nr = 178
Nt = 1024
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EPSI : Primary
Ns = 178 
Nr = 178
Nt = 1024
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EPSI : Primary (Approximated)
Rank budget =1/4
SNR = 21 dB
Ns = 178 
Nr = 178
Nt = 1024
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EPSI : Impulse Response
Ns = 178 
Nr = 178
Nt = 1024
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EPSI : Impulse Response (Approximated)
Rank budget =1/4
SNR = 13 dB
Ns = 178 
Nr = 178
Nt = 1024
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• Data driven methods - e.g. EPSI -  suffers from the ‘curse 
of dimensionality’

• We utilize insights from random matrix theory to 
approximate action of the data matrix

• Reductions in multiplication and storage costs

• Up-Front cost is cheap

• Can be implemented in parallel 

• Instance of compressive Sensing

Conclusion
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• Application of low rank approximation on 3D data

• Parallel implementation of the randomized approximation 
techniques

• Extending EPSI to work with 3D data

Future Work
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