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Full Waveform Inversion

e The Full Waveform Inversion (FWI) problem is to find solutions to the
Helmholtz PDE that match data from source experiments on the surface

e Problems are typically very large: billions of variables and terabytes of data.

o Typically formulated as a Nonlinear Least Squares (NLLS) problem:

min {f(m) := |D — F[m; Q]|; |

.= data
:= model parameters (speed or slowness squared)

multiple source experiments

MO E U
]

:= solution operator of Helmholtz eqn. with absorbing boundary
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Statistical Implications

e The NLLS formulation is equivalent to the following statistical model:

D = Fm;Q]+e€

e ~ N(0,TI)
e Equivalence follows from maximum likelihood estimate for model
parameters:
1 2
L(m) o exp <—§HD — F|m; Q]HF>

e Minimizing the negative log likelihood is exactly the FWI problem.

e Q:Sowhat?
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Practical Consequences

e Large deviations from the mean are VERY unlikely in the Gaussian model:

Gaussian
p(lz — p| >40) | 6.3 x 107°
p(lx —pu| >8c) | 1.3 x 107

e Observations more than 4 standard deviations away from the mean occur
less than .006 percent of the time.

e As we get further away, the likelihood shrinks astronomically.

e Low likelihood values correspond to HIGH penalties for outliers.
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‘Outliers’ in FWI?7?

e Mathematical model cannot distinguish ‘artifacts’ from ‘outliers’. Any
unexplained events in the residual will have a strong effect on the final
image.

o Examples:
1) Modeling Inelastic/Anisotropic data with Acoustic PDE
2) Ignoring Acquisition Models

[Brossier "10]

o Key point: models are improving all the time, but are never perfect. It is
worthwhile to have methods that still perform well when models are wrong.

e Q: How do we design such methods?
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Statistical Modeling

e We can tweak the assumptions on the NOISE in the model:

D = Flm;Q|+e
e ~ Heavy Tailed Distribution

e The parametric form of the distribution then determines the optimization
formulation:

min —log(L(m)) := —log (f (D — Fm; Q]))

m

e Q: Which distribution do we choose, and how do we solve the problem?
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A Simple Comparison

e We present a comparison with two other distributions:

Gaussian LA=1) | T(df =3)
p(lx —p| >40) | 6.3x107° | 1.8 x 1072 | 0.6 x 1072
p(lr —p| >80) | 1.3 x 1071 | 3.3 x107* | 8.1 x 10~

e The Laplace distribution corresponds to the L1 penalty on the misfit:
ID — Fm; Q||

e In the class of CONVEX negative log likelihoods, it has the heaviest tail (as
does the distribution corresponding to the Huber misfit).

e But the full problem is non-convex anyway, so let’s consider Student’s t!
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Densities, Penalilies, and
‘Gradien’rs
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Student’s t-Distribution

e Student’s t-density

—(s+1)
e — MH?\4—1> 2

S

P(s5))

. |
p(elp, M) = I'(%) det[rsM]1/2 (l—l_

o Student’s t-objective for Seismic case (negative log likelihood)

mnin or(m) = Z ” _2|_l

()

log (S + (D - PH[m]_lQ)?)

| V. F[m; Q)T (Flm: Q] — D),
e Student’s t-gradient qubT(m):z:S;r \ FS [T(IQ)L_ (1; [[Z%)? D) |

12 1
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Marmoussi Example

e We consider a subset of the Marmoussi model
o 151 shots, 301 receivers

e 9 pt. discretization of Helmholtz operator with absorbing boundary; 10 m.
spacing on grid

o Sample of Frequencies [5.0, 6.0, 11.5, 14.0, 15.5, 17.5, 23.5] Hz
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Conclusions

e Robust formulations allow good recovery even with
poor modeling

o ‘Mistakes’ are typically thought of as ‘outliers’ in the
data, but can also be events unexplained (or
ignored) by the modeling

e Since the FWI problem is non-convex, we can feel
free to exploit distributions with non-convex
negative log likelihoods

e Future direction: combining robust and sparse
recovery.
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