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Compressed sensing: A revolution in sampling theory

I During the last 7 years, we have been witnessing a revolution in sampling
theory.

I Main conclusion: sparse signals can be recovered from very few, “what
appears to be incomplete” measurements in a tractable way.

I Initiated by the works of Donoho, and of Candès and Tao (∼ 2004).

I Opened up a new field called compressed sensing or compressive
sampling: Very active area. To follow:

Compressive sensing resources at http://dsp.rice.edu/cs

Nuit-Blanche Blog at http://nuit-blanche.blogspot.com

I Relies heavily on the theory of sparse approximations – around for more
than two decades (transforms such as wavelets, curvelets, Gabor,...).

I Interesting and difficult mathematics and important applications such as
seismic signal processing, imaging, and inversion.

http://dsp.rice.edu/cs
http://nuit-blanche.blogspot.com


Sampling and Reconstruction: Big Picture

Inherently analog signals: Audio, images, seismic, etc.
Objective: Use digital technology to store and process analog signals – find
efficient digital representation of analog signals.

(Generalized) Sampling of Analog Signals

Sampling Quantization Reconstruction

Signal ƒ
(analog)

{ F(n)}

Recovered
signal ƒ ~

SIGNAL RECOVERY
Based on both 

acquisition method and
signal model

SIGNAL ACQUISITION
Scheme based on signal model
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Outline of the talk

I Sampling theory and compressed sensing – an overview

I The use of prior information in compressed sensing

I in the reconstruction stage: recovery via weighted `1 minimization

I in the sampling stage: adaptive compressed sensing



Sampling and Reconstruction

Objectives:

I Sampling scheme. Specify how to obtain finitely many measurements of
the signal f from which one can “recover” f . That is, the acquired
samples should contain sufficient information to recover/approximate f .

I Quantization. Specify how to digitize the sample values (crucial for A/D
conversion) in a way that is robustly implementable in analog hardware.

I Reconstruction scheme. Specify how to recover f from the samples.

Main Problems and Challenges

I Must model the signals of interest, e.g., bandlimited, sparse etc... Note
that without modeling, there is no hope of a “sampling theory”.

I Specify when we have exact recovery.

I When we don’t have exact recovery, tie the resolution of the approximation
to the sampling density (i.e., grid size, total number of samples etc.).

I Quantization has its own challenges, e.g., see work by Saab, OY et al.

I In any case, the schemes must be practicable.
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Classical Sampling Theorem

We all now the “classical sampling theorem” of Shannon, Nyquist, Whittaker,
Kotelnikov, Ogura, Borel, even Cauchy...

Signal model. The set of all bandlimited functions with bandlimit Ω – denote
this set by BΩ.

Sampling scheme. Collect values of f ∈ BΩ on a sufficiently dense uniform
grid, i.e., {f (nτ) : n = . . . ,−2,−1, 0, 1, 2, . . . }. Specifically, τ < 1

2Ω .

Reconstruction scheme. Exact reconstruction via

f (t) =
∑

n

f (nτ)φ(t − nτ), ∀t.

Here φ is an appropriate low-pass filter.

Practicability. If we slightly oversample, we can use a filter φ with fast decay,
so obtain local reconstruction. This way, we also get robustness w.r.t. noise.



Classical Sampling Theorem: The picture

A bandlimited f Fourier transform of f

−T 0 T −Ω −Ω

Need N ≈ 2Ω× 2T samples to reconstruct f on [−T ,T ].
Equivalently: Every bandlimited function f ∈ BΩ, restricted to [−T ,T ],
can be represented by a vector f ∈ RN which we obtain by collecting N
measurements.
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Compressive Sampling Theory

Above: Reduced a bandlimited function f to a vector f in RN .

Question: Can we reduce the dimensionality of the problem by
restricting the signal class further?

Another bandlimited f Fourier transform of f

−T 0 T −Ω−Ω

Do we still need N ≈ 4ΩT samples to reconstruct f ∈ RN?



Compressive Sampling Theory

Rephrase the question. Suppose we have:

Signal model. f ∈ BΩ and f has a sparse Fourier transform.

Still need to sample at the Nyquist rate for a good (perfect) reconstruction?

New sampling scheme. Consider the following set of m < N samples at
(random) irregular points.

−T 0 T

Average sampling density is only 50% of Nyquist rate, i.e., m ≈ N/2.

Claim: We can recover f from these samples!

Recovery scheme. Find signal with matching samples that has the “sparsest”

Fourier transform.
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Compressive Sampling Theory

Here is the reconstruction obtained from the above samples (approx.
50% of Nyquist rate)

−T T −T T

I We get essentially perfect reconstruction!

I How did we reconstruct? Next...



Compressive Sampling Theory – general framework

I Signal f ∈ RN . We want to collect information on f (in the
example: f is the full signal.).

I Model the signal class: f admits a sparse representation w.r.t. a
known basis B: f = B∗x where x is sparse. (in the example: B is
the Fourier basis.)

I Specify a measurement scheme: Construct an m × N
measurement matrix M with m� N

fmeas = Mf = MB∗x

(in the example: fmeas is the vector of non-uniform samples and M
is the random restriction matrix in the example.)

I Reconstruction method: Solve the underdetermined sparse
recovery problem:

xapprox = “sparsest” z such that fmeas = MB∗z .



Compressive Sampling Theory: main questions

Sparse recovery problem:
xapprox = “sparsest” z such that fmeas = MB∗z .

Main questions:

1. How do we find the sparsifying basis B?

2. How do we construct the measurement matrix M?

3. How many measurements do we need to have xapprox = x?

4. How do we solve the sparse recovery problem?
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Compressive Sampling Theory - sparsity transforms

First address question 1: How do we find sparsity transforms?

I Note that this is dependent heavily on the class of signals of interest.

I In the above example, the sparsity transform was Fourier transform.

I Applied and computational harmonic analysis community has been
developing such transforms during the last three decades that are
tailored to important signal classes such as: audio, natural images,
seismic data and images.

I Rich area with interesting mathematics, directly applicable
constructive results such as wavelet transform, curvelet transform
etc.

I Next, we give examples of some important sparsity transforms.



Sparsity transform - natural images

Wavelet transform sparsifies natural images.

image a wavelet atom

wavelet transform sorted coefficients
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Sparsity transform - audio

Short-time Fourier (Gabor) transform sparsifies audio signals.

audio signal a Gabor atom

0

STFT transform sorted coefficients

t

ω

0 10 20

x 10
4

0

100

200



Sparsity transform - seismic

Curvelet transform sparsifies seismic data and images.

sampled Green’s function a curvelet atom
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Figure 2. 2D discrete curvelet transform. (a) Discrete frequency tiling. eUj,� has center slope α�. It smoothly localizes
the frequency near the shaded wedge. (b) One curvelet at scale j and orientation � in spatial domain. Notice that the
major axes of the curvelet in the frequency and space domains are orthogonal to each other.

It is clear that �Uj,� isolates frequencies near the wedge {(ω1,ω2) : 2j−1 ≤ ω1 ≤ 2j+1, −2−j/2 ≤ ω2/ω1 − α� ≤
2−j/2}.

With the localized frequency window �Uj,� available, the final step is to choose a spatial grid to translate the
curvelet at scale j and orientation �. In the continuous transform, the grid we use has its two axes aligned with
the major and minor axes of the frequency window. For the discrete transform, two approaches are possible: (1)
a slanted grid mostly aligned with the axes of the frequency window which leads to the USFFT-based curvelet
transform (for details, see Candès at al1); (2) a grid aligned with the input Cartesian grid which leads to the
wrapping-based curvelet transform. Here we follow the wrapping-based approach.

Fix the scale j and angle �. Suppose L1,j,� and L2,j,� are a pair of positive integers which satisfy the following

conditions: (1) one cannot find two ω and ω� such that �Uj,�(ω) ≥ 0, �Uj,�(ω
�) ≥ 0, and ω1 − ω�

1 and ω2 − ω�
2 are

multiples of L1,j,� and L2,j,� respectively; and (2) L1,j,� · L2,j,� is minimal.

The discrete curvelet with index k at scale j and angle � is defined by means of its Fourier transform:

ϕ̂D
j,�,k(ω) = �Uj,�(ω) · exp[−2πi(k1ω1/L1,j,� + k2ω2/L2,j,�)]/

�
L1,j,� · L2,j,�.

for 0 ≤ k1 < L1,j,� and 0 ≤ k2 < L2,j,�. Geometrically, the computation of the coefficients ϕD
j,�,k for fixed j and �

is equivalent to wrapping the windowed frequency data �Uj,�(ω)f̂(ω) around a L1,j,� by L2,j,� rectangle centered
at the origin, and then applying the inverse FFT to the wrapped data. This justifies the word “wrapping”. Our
choice of L1,j,� and L2,j,� guarantees the data does not overlap with itself after the wrapping process.

Last scale j = je = log2(n/2). This final scale extracts the highest frequency content. For the purpose of
this paper, the basis functions used at this scale are like wavelets (for other choices, see Candès et al1). The
frequency window is

�Uje,0(ω) = �Wje
(ω).

The curvelets at this level are defined by

ϕ̂D
je,0,k(ω) = �Uje,0(ω) · exp[−2πi(k1ω1/L1,je

+ k2ω2/L2,je
)]/

�
L1,je

· L2,je
,

with L1,je = L2,je = n and 0 ≤ k1, k2 < n.
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0 6 12

x 10
4

0

10



Compressive Sampling Theory: main questions

Sparse recovery problem:
xapprox = “sparsest” z such that fmeas = MB∗z .

Main questions:

1. How do we find the sparsifying basis B?

2. How do we construct the measurement matrix M?

3. How many measurements do we need to have xapprox = x?

4. How do we solve the sparse recovery problem?



Reconstruction: sparse recovery problem

Want to reconstruct f from the measurements

b = Mf = MB∗
︸︷︷︸

A

x .

Some design goals:

1. Exact recovery for all sufficiently sparse signals. Want to
recover every k-sparse x from the measurements b = Ax with n as
small as possible (say we fix k , N).

2. Close to the best k-term approximation for compressible
signals. Want good estimates if x is not sparse but can be
well-approximated by a sparse signal.

3. Robustness to noise in either case above. Want good estimates
when the measurements are contaminated by noise, i.e., b̂ = Ax + e
where e is additive noise.

4. Computationally tractable recovery method.



CS – many surprises since 2004!

We can achieve all the goals above (main results by Donoho, and Candes,
Romberg, Tao) – just use a recovery algorithm based on `1 minimization:

∆1(b) := arg min ‖z‖1 subject to Az = b no noise case

∆ε
1(b̂) := arg min ‖z‖1 subject to ‖Az − b‖2 ≤ ε noisy case

In particular:

I If A ∈ Rn×N is a sufficiently “incoherent matrix” and k is sufficiently small

∆1(b) = x , i.e., exact recovery, for every k-sparse x.

I For such A, ∆1 provides a good approximation for arbitrary x ∈ RN :

‖x −∆1(b)‖ . σk(x)`1/
√
k, i.e., good recovery for compressible x .

I For such A, the recovery results above stay within noise level if the
measurements are contaminated by noise.

There are other algorithms for CS recovery—e.g., ∆p with 0 < p < 1, OMP,
CoSamp, . . .
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How to choose the measurement matrix

I There are precise conditions on A (in terms of its RIP constants)
that guarantee that the above results hold.

I For example, if A is a random matrix with iid Gaussian entries, then

m & k log(N/k)

will suffice. Num. of measurements scales only logarithmically
with the ambient dimension: grid size in our previous example.

I This is theoretically optimal (deep results in geometric functional
analysis).

I Other classes (Bernoulli, partial Fourier, ...) of random matrices will
do, too!



Choosing the measurement matrix — more remarks

I Gaussian and sub-Gaussian matrices are unitarily invariant, so the
dimension relation is independent of the sparsity basis. These are
universal measurement matrices:

M is Gaussian and B is unitary =⇒ A = MB∗ is Gaussian.

I Ideal for dimension reduction in simulations. Also, acquisition with
simultaneous sources.

I Difficult to implement depending on the physics—e.g., in the sampling
example. In such cases:

I sample in a domain that is incoherent with the sparsity domain: e.g.,

sparse in Fourier =⇒ sample in time

I Randomly sub-sample (possibly on a jittered grid), i.e., “apply” a
restriction matrix R.

The corresponding A = RM will be a “good” compressive sampling matrix.
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CS – incorporating prior info

Note that, like classical sampling, CS is a non-adaptive sampling
paradigm:

Sampling Quantization Reconstruction

Signal ƒ
(analog)

{ F(n)}

Recovered
signal ƒ ~

SIGNAL RECOVERY
Based on both 

acquisition method and
signal model

SIGNAL ACQUISITION
Scheme based on signal model

Obtain measurements with a
fixed CS matrix:

non-adaptive 

Reconstruct using 
1-norm minimization:

non-adaptive



CS – incorporating prior info

Remainder of the talk: We investigate methods of incorporating prior
information on the support of the specific signal of interest to our sampling and
reconstructions schemes.

1. Recovery using weighted `1 minimization.

I Sensing is non-adaptive: Collect the measurements b (or b̂ if there is
noise) using an arbitrary CS matrix. On the other hand:

I Recovery is adaptive: Use prior support info to come up with better
recovery methods.

2. Adaptive Compressed Sensing.

I Sampling scheme is adaptive and incorporates a “compressive
antialiasing” stage.

I Recovery is also adaptive (using weighted `1).
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Part I: CS – recovery via weighted `1

Setting: Suppose we have prior information on the support of x . In particular
we have a support estimate that is generally partial and possibly inaccurate.

Want: incorporate such information in the recovery algorithm to get better
results than those obtained via `1 minimization.

Why is this relevant?



Signals with Prior Information

I In many applications, it is possible to draw an estimate of the support of
the signal, for example:

I Natural images have large DCT coefficients that are localized in the
low frequency subbands.

I Video sequences are temporally correlated, resulting in a shared
subset of their support.

I Other signals such as seismic data, . . .
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Problem formulation

Suppose that x is a k-sparse signal with unknown support T0.

Given:

1. CS measurements of x (i.e., b = Ax , or b̂ = Ax + e with ‖e‖2 ≤ ε).

2. A partially accurate support estimate T̃ . Let’s quantify—two important
parameters:

ρ := #T̃
#T0

relative size of the estimated support

α := #T0∩T̃
#T̃

accuracy of the estimate

In general, we have 0 ≤ ρ ≤ N
k and 0 ≤ α ≤ min{1, 1

ρ}.

Goals:

I Incorporate T̃ into the recovery algorithm (to get better recovery),

I Obtain theoretical recovery guarantees depending on the size and accuracy
of T̃ (i.e., ρ and α).
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Given:

1. CS measurements of x (i.e., b = Ax , or b̂ = Ax + e with ‖e‖2 ≤ ε).

2. A partially accurate support estimate T̃ . Let’s quantify—two important
parameters:

ρ := #T̃
#T0

relative size of the estimated support

α := #T0∩T̃
#T̃

accuracy of the estimate

In general, we have 0 ≤ ρ ≤ N
k and 0 ≤ α ≤ min{1, 1

ρ}.
Goals:

I Incorporate T̃ into the recovery algorithm (to get better recovery),

I Obtain theoretical recovery guarantees depending on the size and accuracy
of T̃ (i.e., ρ and α).



Proposed Algorithm – weighted `1 minimization

Given a set of (noisy) measurements b̂, define

∆ε
1,w(b̂) := arg min

x
‖x‖1,w subject to ‖Ax − b̂‖2 ≤ ε

where

wi =

{
1, i ∈ T̃ c ,

ω, i ∈ T̃ ,
for some 0 ≤ ω ≤ 1.

Above ‖x‖1,w :=
∑

i wi |xi |, and ‖e‖2
2 ≤ ε.
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Improved sufficient conditions for weighted `1

We prove the following theorem in the case of weighted `1:

Theorem [FMSY]

Suppose for some a > max{1, (1− α)ρ}, δak + aγδ(a+1)k < aγ − 1. Then

‖∆ε
1,w(b̂)− x‖2 ≤ C ′0ε+ C ′1k

−1/2(ω‖xT c
o
‖1 + (1− ω)‖xT̃ c∩T c

0
‖1)

where γ =
(
ω + (1− ω)

√
1 + ρ− 2αρ

)−2

.

Remarks.

1. Above, 0 ≤ ω ≤ 1 is a fixed weight. If we set ω = 1, our theorem reduces
to the robust recovery theorem of CRT.

2. Recall 0 ≤ α ≤ 1 describes the accuracy of T̃ and ρ describes its size.

3. The sufficient conditions above are weaker than those for `1

minimization iff α > 0.5. (Same holds for the constants.)

4. Earlier work on the case ω = 0: e.g., Borries, Vaswani and Lu; Jacques.
Our results, to our knowledge, provide weakest sufficient cond. and
smallest constants.



Numerical Experiments – sparse signals

I SNR averaged over 20 experiments for k-sparse signals x with k = 40, and
N = 500.
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N = 500.

I The noisy measurement vector case:

80 100 120 140 160 180 200
0

5

10

15

20

25

α =0.7

number of measurements n

S
N

R

 

 

80 100 120 140 160 180 200
0

5

10

15

20

25

α =0.3

number of measurements n

S
N

R

 

 

ω = 0

ω = 1 ω = 0

ω = 1



Numerical Experiments – sparse signals

I SNR averaged over 20 experiments for k-sparse signals x with k = 40, and
N = 500.

I The noisy measurement vector case:

80 100 120 140 160 180 200
0

5

10

15

20

25

α =0.7

number of measurements n

S
N

R

 

 

ω = 0

ω = 0.3

ω = 0.5

ω = 0.7

ω = 1

80 100 120 140 160 180 200
0

5

10

15

20

25

α =0.3

number of measurements n

S
N

R

 

 

ω = 0

ω = 0.3

ω = 0.5

ω = 0.7

ω = 1



Numerical Experiments – compressible signals

I SNR averaged over 10 experiments for signals x whose coefficients decay
like j−p where j ∈ {1, ...N} and p = 1.5. We take n = 100 and N = 500.
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Perspective: how to choose ω

I Numerical experiments suggest: Intermediate values of the weight
ω ≈ 0.5 are more robust to model mismatch and result in the highest SNR
even when α < 0.5.

I If we optimize the error bound constants:

α > 0.5 =⇒ ω = 0, α < 0.5 =⇒ ω = 1.

I This does not take into account the other terms in the error bound:

‖x∗ − x‖2 ≤ C ′0(ω)ε+ C ′1(ω)k−1/2
(
ω‖xT c

0
‖1 + (1− ω)‖xT̃ c∩T c

0
‖1

)
.

I As ω goes to zero,

I the constant C ′1(ω) increases
I the term ω‖xT c

0
‖1 + (1− ω)‖xT̃ c∩T c

0
‖1 decreases

I There may exist 0 < ω < 1 that minimizes their product (depending on the
signal class as well as properties of the measurement matrix A).
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Application: Compressed sensing of seismic lines

I Full seismic line with 128 shots, 128 receivers, and 256 time samples.

I Due to budgetary requirements or device malfunctioning, receivers
and shots are randomly sampled (e.g., time slice 100), keeping only
% 50 of the data.

I Results in missing data along entire time axis (eg: common shot
gather # 60)
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Application: Compressed sensing of seismic lines

I Full seismic line with 128 shots, 128 receivers, and 256 time samples.

I Due to budgetary requirements or device malfunctioning, receivers
and shots are randomly sampled (e.g., time slice 100), keeping only
% 50 of the data.

I Results in missing data along entire time axis (eg: common shot
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Recovery in offset domain

I Seismic line data is correlated in the midpoint offset domain.

I Map the subsampling mask to act on offset slices.

I Recover the zero offset using standard `1 minimization (same quality
for wL1 and L1).

I Use the support of the zero offset slice to weight the recovery of
other offset slices (eg: +2 offset).
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Performance of weighted `1 vs standard `1

I Map the data back to the source receiver domain (eg: shot gather
60).

I Signal to noise ratio (SNR) of all 128 shot gathers.

Weighted L
1

receiver number

ti
m

e

20 40 60 80 100 120

50

100

150

200

250

Standard L
1

receiver number

ti
m

e

20 40 60 80 100 120

50

100

150

200

250



Performance of weighted `1 vs standard `1

I Map the data back to the source receiver domain (eg: shot gather
60).

I Signal to noise ratio (SNR) of all 128 shot gathers.
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Part I: Summary, conclusions, and further problems

I Weighted `1 minimization can recover less sparse signals than standard `1

when enough prior information is available.

I We showed that the recovery is stable and robust.

I We also showed that if at least 50% of the support estimate is accurate,
then the recovery is guaranteed with weaker RIP conditions and
smaller error bounds.

I Our algorithm improves compressive recovery of video sequences.

I Some questions:

I How/when can we find the support estimate T̃?
I Can we draw a more accurate T̃ after solving the weighted `1

minimization problem?
I How would an iterative weighted `1 algorithm with fixed weights

perform compared to IRL1 of Boyd and Candès?
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Part II: Adaptive CS

Disclaimer. This is very recent work and the results we will present are
preliminary.
Main Problem. “Compressive aliasing”... To explain, recall the classical
sampling theory setup:

Ideal signal model: Bandlimited with known bandwidth, say
maximum frequency ω1.

Sampling scheme: Sample with frequency ωs ≥ 2ω1

In practice: Signals may have higher bandwidth ωmax >
ωs
2 ;

moreover there may be off-band noise.

Problem: This would cause aliasing as well as noise in the sampled
& reconstructed signal.

Remedy: Use a front-end low-pass filter and force the signal to
obey the ideal signal model. Resulting approximation is the best
approximation with bandwidth ωs/2.
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Compressive aliasing

Parallel to our discussion above:

I Ideal signal model in CS: k-sparse signals in RN (k ∼ bandwidth)

I Sampling scheme: Hit the signal by an appropriate m × N
measurement matrix (m ∼ sampling density, is suited to recover all
k-sparse signals)

I In practice: Signals are not k-sparse, but they are “compressible”,
i.e., coefficients decay (and are possibly noisy).

I Recovery: via `1, weighted `1, etc... These are suited to recover
k-sparse signals exactly.

I Good news: CS robust recovery theorems guarantee that the
approximation is “almost” as good as the best we could hope for.

I Problem: If the coefficient decay is not fast enough, large
coefficients can still get significantly distorted : compressive aliasing.

I Goal: Find an antialiasing method when there is prior support
information (as in Part I).
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CS – sparse-filtering

Moral: If we knew the support of the sparse signal, we could
sparsify it (analogous to low-pass filtering in classical sampling) and
force it to obey the signal model ideal for CS.

Problem: If we knew the support, we don’t need CS!

Compromise: What if we have a partial and possibly inaccurate
support estimate?



Adaptive CS setup

Let f be a signal that is compressible with respect to a transform B, i.e.,

f = B∗x , x decays fast.

Suppose we knew Tk = supp(xk) – indices of largest k coefficients of x .

“sparse-filter” f : fsp = B∗W 2 Bf︸︷︷︸
x

.

Here W is a diagonal matrix such that Wjj =

{
1 if j ∈ Tk

0 if j /∈ Tk

The corresponding CS scheme—with CS matrix A—would be:
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Let f be a signal that is compressible with respect to a transform B, i.e.,

f = B∗x , x decays fast.

Suppose we knew Tk = supp(xk) – indices of largest k coefficients of x .

“sparse-filter” f : fsp = B∗W 2 Bf︸︷︷︸
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Here W is a diagonal matrix such that Wjj =
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1 if j ∈ Tk

0 if j /∈ Tk

The corresponding CS scheme—with CS matrix A—would be:

AB∗W 2Bf︸ ︷︷ ︸
fsp

= y ← measurements of ”sparse-filtered” f

and we can recover xk (thus fk = B∗xk) by solving

min ‖z‖1 subject to AB∗z = y .



Adaptive CS setup

Let f be a signal that is compressible with respect to a transform B, i.e.,

f = B∗x , x decays fast.

Suppose we knew Tk = supp(xk) – indices of largest k coefficients of x .

“sparse-filter” f : fsp = B∗W 2 Bf︸︷︷︸
x

.

Here W is a diagonal matrix such that Wjj =

{
1 if j ∈ Tk

0 if j /∈ Tk

The corresponding CS scheme—with CS matrix A—would be:

AB∗W 2B︸ ︷︷ ︸
meas. matrix

f = y ← measurements of ”sparse-filtered” f

and we can recover xk (thus fk = B∗xk) by solving

min ‖z‖1 subject to AB∗z = y .



Adaptive CS setup

Let f be a signal that is compressible with respect to a transform B, i.e.,

f = B∗x , x decays fast.

Suppose we knew Tk = supp(xk) – indices of largest k coefficients of x .

“sparse-filter” f : fsp = B∗W 2 Bf︸︷︷︸
x

.

Here W is a diagonal matrix such that Wjj =

{
1 if j ∈ Tk

0 if j /∈ Tk

The corresponding CS scheme—with CS matrix A—would be:

AB∗W 2Bf︸ ︷︷ ︸
xk

= y ← measurements of “sparse-filtered” f

and we can recover xk (thus fk = B∗xk) by solving

min ‖z‖1 subject to AB∗z = y .



Adaptive CS – more realistic approach

Same setup as in the previous slide: f = B∗x , x compressible
However, instead of Tk , we have a partial and inaccurate estimate T̃k .

Proposed Method.

I Let W be a diagonal weighting matrix such that

Wjj =

{
1 if j ∈ T̃k

ω if j /∈ T̃k

where 0 < ω < 1 (some intermediate value for robustness).

I Adaptive sampling: Collect the (noisy) samples

AB∗W 2Bf + e = y .

I (Adaptive) Reconstruction via
I `1 minimization: min ‖z‖1 subject to ‖AB∗z − y‖ ≤ ε, or
I weighted `1: min ‖z‖1 subject to ‖AB∗Wz − y‖ ≤ ε.



Example with synthetic signals

Signals with coefficients decaying like j−0.7; N = 500, m = 50.
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Example with video frame sequences
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Example: adaptive CS of seismic lines

Same experiment as before – %50 of source/receiver pairs are missing.
Below, we show offset=+2...
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Example: adaptive CS of seismic lines

Same experiment as before – %50 of source/receiver pairs are missing.
Below, we show shot gather 60...
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Concluding remarks

I CS provides a powerful sampling theory for the acquisition of signals
that admit a sparse or compressible representation in some
transform domain.

I CS is a non-adaptive sampling paradigm.

I If prior information is available, it can be effectively used in both the
sampling stage and the reconstruction stage.

I We are currently working on fine-tuning the adaptive CS approach
and using it both for seismic acquisition and in computations.
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