

Only dither: efficient marine acquisition "without" simultaneous sourcing

Haneet Wason

Joint work with Hassan Mansour, and Tim T. Y. Lin

Only dither

CONVENTIONAL SEQUENTIAL ACQUISITION

RANDOM TIME-DITHERING

Only dither

Conventional recovery

SNR = 3.92 dB

Sparsity-promoting recovery

SNR = 8.06 dB

Motivation

Motivation

- Opportunity to rethink marine acquisition
- Concentrate on efficient acquisition "without" simultaneous sourcing
- Marine acquisition with ocean-bottom nodes

Outline

- Compressed sensing (CS) overview
 - design
 - recovery
- Design of efficient marine acquisition
- Experimental results of sparsity-promoting processing

Problem statement

Solve an underdetermined system of linear equations:

data (measurements /observations)
$$\mathbf{b} \in \mathbb{C}^n \qquad \mathbf{b} \qquad \mathbf{A} \qquad \mathbf{A} \in \mathbb{C}^{n \times P}$$

$$\mathbf{x_0} \longleftarrow \text{unknown} \qquad \mathbf{x_0} \in \mathbb{C}^P$$

Compressed sensing

- acquisition paradigm for sparse signals
- in some transform domain

Compressed sensing

- acquisition paradigm for sparse signals
- in some transform domain

SIMULTANEOUS ACQUISITION

 $\mathbf{d} = \mathbf{d}$ Simultaneous \mathbf{d} $\mathbf{d} \approx \mathbf{S^H} \mathbf{\tilde{x}}$

Coarse sampling schemes

few significant coefficients

3-fold under-sampling

significant coefficients detected

X

ambiguity

[Hennenfent & Herrmann, '08]

Mutual coherence

- measures the orthogonality of all columns of A
- equal to the maximum off-diagonal element of the Gram matrix

Restricted isometry property (RIP)

- lacktriangleright indicates whether every group of k columns of ${f A}$ are nearly orthogonal
- restricted isometry constant $0 < \delta_k < 1$ for which

$$(1 - \delta_k) \|\mathbf{x}\|_2^2 \le \|\mathbf{A}\mathbf{x}\|_2^2 \le (1 + \delta_k) \|\mathbf{x}\|_2^2$$

Sparse recovery

Solve the convex optimization problem (one-norm minimization):

$$ilde{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_1$$
 subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$ data-consistent amplitude recovery

Sparsity-promoting solver: $\mathbf{SPG}\ell_1$

[van den Berg and Friedlander, '08]

Recover single-source prestack data volume: $\tilde{\mathbf{d}} = \mathbf{S^H}\tilde{\mathbf{x}}$

Outline

- Compressed sensing (CS) overview
 - design
 - recovery
- Design of efficient marine acquisition
- Experimental results of sparsity-promoting processing

"Ideal" simultaneous acquisition matrix

For a seismic line with N_s sources, N_r receivers, and N_t time samples, the sampling matrix is

[Mansour et.al., '11]

Conventional sequential acquisition

Sampling schemes

Sequential vs. simultaneous sources

CONVENTIONAL SEQUENTIAL ACQUISITION

Conventional survey time: $t = N_s \times N_t$

"IDEAL" SIMULTANEOUS ACQUISITION

Theoretical survey time:

$$t = n_{st} \ll n_s \times N_t$$

"Ideal" simultaneous acquisition

"Ideal" simultaneous acquisition

Random time-dithering

Random time-dithering

Random time-dithering

Periodic time-dithering

Periodic time-dithering

Periodic time-dithering

Outline

- Compressed sensing (CS) overview
 - design
 - recovery
- Design of efficient marine acquisition
- Experimental results of sparsity-promoting processing

Experimental setup

- ▶ Three sampling schemes:
 - Simultaneous acquisition
 - Random time-dithering
 - Periodic time-dithering
- Fully sampled sequential data (a seismic line from the Gulf of Suez) with $N_s=128$ sources, $N_r=128$ receivers, and $N_t=512$ time samples
- Subsampling ratio, $\gamma = 0.5$
- Recover prestack data from simultaneous data
 - ℓ_1 minimization
 - sparsifying transform: 3-D curvelet
- ▶ All sources see the same receivers
 - marine acquisition with ocean-bottom nodes

Curvelets

Detect the wavefronts

Original data - sequential acquisition (common-shot gather)

"Ideal" simultaneous acquisition Sparsity-promoting recovery: 10.5 dB

Conventional recovery

2-D median filtering in midpoint-offset domain

Random time-dithering Conventional recovery: 3.92 dB

Random time-dithering Sparsity-promoting recovery: 8.06 dB

Periodic time-dithering Sparsity-promoting recovery: 4.80 dB

SNR (dB)

SUBSAMPLING RATIO	SIMULTANEOUS	RANDOM TIME-SHIFTING	CONSTANT TIME-SHIFTING
0.75	13.0	11.2	6.93
0.50	10.5	8.06	4.80
0.33	8.31	5.33	7.32
0.25	6.55	4.35	2.85
0.10	2.82	1.14	1.60

Conclusions

Simultaneous acquisition is a linear subsampling system

Critical for reconstruction quality:

- design of sampling schemes (i.e., acquisition scenarios)
- appropriate sparsifying transform
- sparsity-promoting solver

Only dither: efficient marine acquisition "without" simultaneous sourcing

Future plans

- Extensions to marine acquisition with coil shooting
- Randomized sampling with ocean-bottom nodes
- Use different transforms for sparsity-promoting processing

References

van den Berg, E., and Friedlander, M.P., 2008, Probing the Pareto frontier for basis pursuit solutions, SIAM Journal on Scientific Computing, 31, 890-912.

Bruckstein, A. M., D. L. Donoho, and M. Elad, 2009, From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images: *SIAM Review, 51, 34-81*.

Candès, E., J. Romberg, and T. Tao, 2006, Stable signal recovery from incomplete and inaccurate measurements: Comm. Pure Appl. Math., 59, 1207–1223.

Candès, E. J., and L. Demanet, 2005, The curvelet representation of wave propagators is optimally sparse: Comm. Pure Appl. Math, 58, 1472–1528.

Candès, E. J., L. Demanet, D. L. Donoho, and L. Ying, 2006a, Fast discrete curvelet transforms: *Multiscale Modeling and Simulation*, 5, 861–899.

Donoho, D. L., 2006, Compressed sensing: *IEEE Trans. Inform. Theory, 52, 1289–1306*.

Donoho, P., R. Ergas, and R. Polzer, 1999, Development of seismic data compression methods for reliable, low-noise performance: *SEG International Exposition and 69th Annual Meeting, 1903–1906*.

References

Herrmann, F. J., P. P. Moghaddam, and C. C. Stolk, 2008, Sparsity- and continuity-promoting seismic imaging with curvelet frames: *Journal of Applied and Computational Harmonic Analysis*, 24, 150–173. (doi:10.1016/j.acha.2007.06.007).

Herrmann, F. J., U. Boeniger, and D. J. Verschuur, 2007, Non-linear primary-multiple separation with directional curvelet frames: *Geophysical Journal International, 170, 781*–799.

Herrmann, F. J., Y. A. Erlangga, and T. Lin, 2009, Compressive simultaneous full-waveform simulation: *Geophysics*, 74, A35.

Mallat, S. G., 2009, A Wavelet Tour of Signal Processing: the Sparse Way: *Academic Press*.

Mansour, H., Haneet Wason, Tim T. Y. Lin, and Felix J. Herrmann, 2011, Simultaneous-source marine acquisition with compressive sampling matrices, *Technical Report, University of British Columbia.*

Romberg, J., 2009, Compressive sensing by random convolution: *SIAM Journal on Imaging Sciences, 2, 1098–1128*.

Smith, H. F., 1998, A Hardy space for Fourier integral operators: *J. Geom. Anal., 8, 629–653*.

Acknowledgements

E. J. Candès, L.demanet, D. L. Donoho, and L. Ying for CurveLab(<u>www.curvelet.org</u>)

E. van den Berg and M. Friedlander for SPGl1 (www.cs.ubc.ca/labs/scl/spgl1)

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BP, Chevron, ConocoPhillips, Petrobras, BGP, PGS, Total SA, and WesternGeco.

Thank you!

slim.eos.ubc.ca