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Curvelets and sparsity

Consider a signal f ∈ RN , f = SHx, where S is a curvelet transform
matrix and x is the synthesis coefficient vector.

We can approximate f by the signal f̄ using the k-largest coefficients of x.

For example: a 512× 128 shot gather

Largest 4598 (0.95%) of curvelet coefficients produce SNR = 10.68dB .
Largest 6511 (9.93%) of Fourier coefficients produce SNR = 10.11dB.
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Compressed sensing

Compressed Sensing is an acquisition paradigm for signals that admit
sparse or nearly sparse representations in some transform domain.

Given n� N linear and noisy measurements b = RMf + e.

Let A = RMSH , it is possible to approximate x from the measurements b
if

A obeys certain conditions: RIP, mutual coherence.
x is sufficiently sparse: depends on the recovery algorithm.
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CS example: simultaneous/randomized acquisition

Simultaneous acquisition is a perfect example of a compressed sensing
problem.

The objective is to recover the high-dimensional sequential shot record f
from the lower-dimensional “supershot” record b = RMf .

Formulate the acquisition process in terms of the sampling operator RM .

We want to construct the sampling operator RM such that:
1 A = RMSH satisfies the CS recovery conditions.
2 RM is physically realizable.

Recover the sequential shot record by finding f̃ = SH x̃, where

x̃ = arg min
x
‖x‖1 s.t. Ax = b.
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Simultaneous-source acquisition

Typically, we would like RM to be a matrix with i.i.d Gaussian random
entries.

In the marine impulsive airgun setting, only binary matrices with 0− 1
entries are possible.
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Simultaneous-source acquisition

Typically, we would like RM to be a matrix with i.i.d Gaussian random
entries.

With a 50% subsampling ratio, we can achieve a 10.5dB SNR using sparse
recovery.

Although this simultaneous-source scenario can be achieved physically, it
requires an airgun located at each source location, which can be costly if
not practically infeasible.
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Random time-dithering

Sort the random source positions so that we only dither in time (“jitter
blending”).

It turns out the resulting measurement matrix is almost as good as “ideal”
simultaneous-source acquisition (SNR = 8.06 dB).

Random time-shifting
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There are precise conditions on A that guarantee stable recovery.
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Measurement matrix conditions

There are precise conditions on A that guarantee stable recovery.

The restricted isometry property (RIP) of order k indicates whether every
group of k columns of A form a well conditioned submatrix.

Definition: Restricted Isometry Property (RIP) (Candés and Tao)

The RIP constant δk ∈ (0, 1) is defined as the smallest constant such that
∀x ∈ ΣNk

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22,
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Measurement matrix conditions

There are precise conditions on A that guarantee stable recovery.

The restricted isometry property (RIP) of order k indicates whether every
group of k columns of A form a well conditioned submatrix.

RIP is equivalent to saying that for any set T of size k, the symmetric
matrix AHT AT is positive definite with eigenvalues in [1− δk, 1 + δk].
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Measurement matrix conditions

There are precise conditions on A that guarantee stable recovery.

Stable recovery condition (Candés, Romberg, and Tao)

If A has RIP with constant δ(a+1)s <
a−1
a+1 for some a > 1, then the signal x can

be recovered using `1 minimization to produce an estimate x̃ with an error
bounded by

‖x− x̃‖2 ≤
C√
s
‖x− xs‖1.
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Why do curvelets work?

Monte Carlo estimation of the RIP constant δk of A = RMSH , for some
k = |T |

δk = sup
T∈{1,...P}

max{1− σmin(AT ), σmax(AT )− 1}

When S is the curvelet transform, we have stable recovery with respect to
the best s-term approximation of the signal, where s = k/8.
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Importance of randomization

Random time-dithering retains the randomness necessary for CS recovery,
albeit at a lower order than simultaneous-source acquisition.

To emphasize the importance of randomization, we include the case where
we simply decrease the intershot time delays.
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Measurement matrix conditions

The mutual coherence measures the orthogonality of all columns of A.

Definition: Mutual Coherence (Donoho and Elad; Bruckstein et al.)

The mutual coherence is equal to the largest inner product between between the
normalized columns of A

µ(A) = max
1≤i 6=j≤P

|aHi aj |
(‖ai‖2 · ‖aj‖2)

.
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Why does the random time-dithering operator work?

Mutual coherence of A = RMSH (curvelet), k < 1
2 (1 + 1

µ(A) )
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Steinhaus sequences

A Steinhaus random variable v is a unit norm complex random variable
uniformly distributed on the complex unit circle: v = eiθ, θ ∈ U(−π, π).

A Stainhaus sequence is a collection of independent Steinhaus random
variables.

Do the curvelet coefficients of seismic shot gathers form instances of
Steinhaus sequences?

14 / 28



Sparsity and randomized acquisition Support redundancy Extensions

Steinhaus sequences

A Steinhaus random variable v is a unit norm complex random variable
uniformly distributed on the complex unit circle: v = eiθ, θ ∈ U(−π, π).

A Stainhaus sequence is a collection of independent Steinhaus random
variables.

Do the curvelet coefficients of seismic shot gathers form instances of
Steinhaus sequences?

14 / 28



Sparsity and randomized acquisition Support redundancy Extensions

Steinhaus sequences

A Steinhaus random variable v is a unit norm complex random variable
uniformly distributed on the complex unit circle: v = eiθ, θ ∈ U(−π, π).
A Stainhaus sequence is a collection of independent Steinhaus random
variables.
Do the curvelet coefficients of seismic shot gathers form instances of
Steinhaus sequences? Distribution of sgn(x) = eiθ, where x = reiθ .
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Why may this be useful?

An old result by Fuchs(2004) and Tropp(2005) states that if

|〈A†Taj , sgn(xT )〉| < 1

then `1 minimization is guarantees to recovery a signal x supported on T .
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Why may this be useful?

Tropp (2007) then showed that random signals x that are supported on a
set T and whose sgn(x) form Steinhaus sequences, satisfy the condition

|〈A†Taj , sgn(xT )〉| < 1

with probability 1− 2ρ, when:

A has coherence µ
σmin(AT ) > 1/

√
2

8µ2k ≤ log(N/ρ)

This condition guarantees recovery and is less strict than the coherence
condition for general signals.

We have yet to find sampling operators RM that combined with a curvelet
transform S produce an A = RMSH that satisfies this condition.
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Redundancy in seismic data

Seismic data are highly redundant.

Examples from seismic lines:

the support of curvelet coefficient of time slices
the support of curvelet coefficients of offset slices

How do we take advantage of this redundancy to reduce the acquisition
cost?
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Random subsampling of seismic lines

Randomize the locations of receivers and shots in the survey design b = Ax.

Translates to random subsampling of a high resolution receiver and shot
grid.

Results in missing data along entire time axis.
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Random subsampling of seismic lines

Randomize the locations of receivers and shots in the survey design b = Ax.

Translates to random subsampling of a high resolution receiver and shot
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Random subsampling of seismic lines

Randomize the locations of receivers and shots in the survey design b = Ax.

Translates to random subsampling of a high resolution receiver and shot
grid.

Results in missing data along entire time axis.
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Recovery from random subsampling

Lessons from the morning talks:

When sparsity and random subsampling are combined

Use `1 minimization to recover the signal.

min
x∈RN

‖x‖1 subject to b = Ax
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Recovery from random subsampling

Lessons from the morning talks:

When additional support information is available (e.g. set T̃ )

Use weighted `1 minimization to recover the signal.

min
x
‖x‖1,wsubject to b = Ax with wi =

{
1, i ∈ T̃ c,

ω, i ∈ T̃ .

where 0 ≤ ω ≤ 1 and ‖x‖1,w :=
∑

i wi|xi|.

19 / 28



Sparsity and randomized acquisition Support redundancy Extensions

Recovery from random subsampling

Lessons from the morning talks:

When additional support information is available (e.g. set T̃ )

Use weighted `1 minimization to recover the signal.

min
x
‖x‖1,wsubject to b = Ax with wi =

{
1, i ∈ T̃ c,

ω, i ∈ T̃ .

where 0 ≤ ω ≤ 1 and ‖x‖1,w :=
∑

i wi|xi|.

 

 

 

 

 

 
  

�� 

� � ∩ �� � � ∩ ��
�

 

��
�

 

��  

0 ≤ ω ≤ 1 1 1 

w : 

 

x : 

 

19 / 28



Sparsity and randomized acquisition Support redundancy Extensions

Practical considerations

How do we find the set T̃?

Solve the standard `1 problem for the zero-offset slice.
Find the support of the recovered coefficients that contribute 90% of the
curvelet coefficient energy.

Use T̃ to assign weights ω ≈ 0.3 when recovering the adjacent offets.

Use the support of the recovered adjacent offsets to find new sets T̃ .
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Recovery using weighted `1

Offset slices recovered using standard `1 vs weighted `1 minimization.

Average of 2.13dB improvement in shot gather SNR.

Original zero offset slice

midpoint

tim
e

20 40 60 80 100 120

50

100

150

200

250

Subsampled zero offset slice

midpoint

tim
e

20 40 60 80 100 120

50

100

150

200

250

21 / 28



Sparsity and randomized acquisition Support redundancy Extensions

Recovery using weighted `1

Offset slices recovered using standard `1 vs weighted `1 minimization.

Average of 2.13dB improvement in shot gather SNR.

Weighted L
1

midpoint

ti
m

e

20 40 60 80 100 120

50

100

150

200

250

Standard L
1

midpoint

ti
m

e

20 40 60 80 100 120

50

100

150

200

250

21 / 28



Sparsity and randomized acquisition Support redundancy Extensions

Recovery using weighted `1

Offset slices recovered using standard `1 vs weighted `1 minimization.

Average of 2.13dB improvement in shot gather SNR.

Weighted L
1

midpoint

ti
m

e

20 40 60 80 100 120

50

100

150

200

250

Standard L
1

midpoint

ti
m

e

20 40 60 80 100 120

50

100

150

200

250

21 / 28



Sparsity and randomized acquisition Support redundancy Extensions

Recovery using weighted `1

Offset slices recovered using standard `1 vs weighted `1 minimization.

Average of 2.13dB improvement in shot gather SNR.

Weighted L
1

midpoint

ti
m

e

20 40 60 80 100 120

50

100

150

200

250

Standard L
1

midpoint

ti
m

e

20 40 60 80 100 120

50

100

150

200

250

21 / 28



Sparsity and randomized acquisition Support redundancy Extensions

Recovery using weighted `1

Offset slices recovered using standard `1 vs weighted `1 minimization.

Average of 2.13dB improvement in shot gather SNR.

Weighted L
1

midpoint

ti
m

e

20 40 60 80 100 120

50

100

150

200

250

Standard L
1

midpoint

ti
m

e

20 40 60 80 100 120

50

100

150

200

250

21 / 28



Sparsity and randomized acquisition Support redundancy Extensions

Recovery using weighted `1

Offset slices recovered using standard `1 vs weighted `1 minimization.

Average of 2.13dB improvement in shot gather SNR.
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Part 1: Sparsity and randomized acquisition

Part 2: Redundancy in curvelet support information

Part 3: Applications in FWI, 3D acquisition and time-lapse imaging
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Where else can we use weighted `1?

So far we have addressed the 2D inpainting problem.

Other areas that can benefit from redundant support information:

Weighted recovery across adjacent azimuths.
Weighted recovery across frequency slices.

How does iterative weighted `1 affect seismic recovery?
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Least-squares migration with sparsity promotion

Xiang Li will talk about the least-squares migration problem:

δm̃ = arg min
δm

1

2
‖δd−∇F [m0, Q]δm‖22

Huge overdetermined system, solve over smaller batches iteratively with
warm-starting.

δm: model update

δd: multi-source multi-frequency data residue

m0: background velocity model

Q: sources

∇F [m0, Q]: linearized Born-scattering operator
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Least-squares migration with sparsity promotion

Xiang Li will talk about the least-squares migration problem:

δm̃ = arg min
δm

1

2
‖δd−∇F [m0, Q]δm‖22

Huge overdetermined system, solve over smaller batches iteratively with
warm-starting.

Least-squares migration with weighted sparsity promotion:

δx̃k+1 = arg min
δx

1

2
‖Wkδx‖1 subject to ‖δd̃−∇F [m0, Q̃]S∗δx‖22 ≤ σ

Wk : diagonal weighting matrix using the support of δx̃k
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3D marine acquisition

Recover an initial simultaneous/randomized marine seismic line.

Use the support of the initial seismic line to recover adjacent lines.
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Time-lapse imaging

Use the support of the past survey to emphasize/de-emphasize the past
artifacts from the new survey.
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Conclusion

We saw that curvelets sparsify seismic data more effectively.

The curvelet transform combined with not-so-random sampling operators
maintain good compressed sensing qualities.

The redundancy that exists in seismic data is preserved in subsets of the
support of curvelet coefficients.

We will investigate how to include redundant support information in other
recovery algorithms.
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Thank you

Questions?

We would like to thank the authors of CurveLab (curvelet.org), a toolbox implementing the Fast Discrete

Curvelet Transform, Madagascar (rsf.sf.net), a package for reproducible computational experiments, SPG‘1

(cs.ubc.ca/labs/scl/spgl1), SPOT (http: //www.cs.ubc.ca/labs/scl/spot/), a suite of linear operators and

problems for testing algorithms for sparse signal reconstruction, and pSPOT, SLIMs parallel extension of

SPOT. The Gulf of Suez dataset was generously provided by Eric Verschuur. This work was in part

financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant

(22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research

was carried out as part of the SINBAD II project with support from the following organizations: BG Group,

BGP, BP, Chevron, ConocoPhillips, Petrobras, PGS, Total SA, WesternGeco (Schlumberger)
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