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Challenge:
Least-squares migration requires multiple passes & PDE solves
Key idea:

p combine Compressive Sensing & ‘Phase encoding’

p turn “overdetermined’ imaging problem into
underdetermined problem with randomized supershots

p use curvelet-based sparse recovery to remove crosstalk
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Underdetermined

system =l
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Compressible signals -
What if the signal is not sparse!

LI recovery

x = argmin ||x|[;, subject to ||b — Ax|s <o
X
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wavelet, curvelet, shearlet, wave atom...

sparse |
7 transform T'
physical domain Sparse domain
r = S" argmin ||0x||;, subject to ||b— @XHQ <o
0xX

LI recovery + -
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Dimensionality -
reduced imaging
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[Nemeth et. al. "99]

Linearized inversion

Least-squares migration:

_ 1
dm = arg min §H5d — VF[myg; Q|oml|3

dm
0d = Multi-source multi-frequency data residue
VF|mgy; Q] = Linearized Born-scattering operator
my = DBackground velocity model
Q = Sources

om = image
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[Nemeth et. al. "99]

Linearized inversion

Least-squares migration:

_ 1
dm = arg min §H5d — VF[myg; Q|oml|3
om
b A X

p overdetermined system, ( 7of X g X Ny, Ny X N, )

p multiple passes trough all data
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[Herrmann et.al. ’08-"10]

Dimensionality

reduction

adapted from Herrmann et. al.,09

1

Collection of K simultaneous-source experiments with batch
size K < ny X ng

— QW
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Phase encoding

Least-squares migration:

N 1
0m — arg min §H5Q — VF[my; Q]dml|5
om o

0dW (Simultaneous-source data residue)

od
Q

= QW (Simultaneous sources)
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[Wang & Sacchi,’07]

Sparse recovery

Least-squares migration with sparsity promotion

mingsy 3 [|0x||s, subject to ||0d — VF[my; Q]S*ox|2 < o

om = S*ox

0x = OSparse curvelet-coefficient vector

S®™ = Curvelet synthesis
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Time-harmonic Helmholtz;
® 409 X 1401 with mesh size of bm
® 9 point stencil

® absorbing boundary condition with damping layer with
thickness proportional to wavelength

® solve wavefields on the fly with direct solver
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Split-spread surface-free ‘land’ acquisition:

350 sources with sampling interval 20m

701 receivers with sampling interval 10m
maximal offset 7km (3.5 X depth of model)
Ricker wavelet with central frequency of 30Hz

recording time for each shot is 3.6s
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Migration results

Migration:

® |0 random frequencies
(20Hz-50Hz)

® |7 simultaneous shots (versus 350 sequential shots)

® | ASSO problems determined by SPGLI

[Herrmann & Xi, 2011]
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Migration results

true perturbation
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Migration results

true perturbation
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Migration results
overdetermined

imaged perturbation with L2
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Migration results

underdetermined
imaged perturbation with LI
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Migration results |

imaged perturbation with L2
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Migration results
underdetermined

imaged perturbation with LI

0 5C|)O

Lateral distance (m)
1OIOO 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

Depth (m)
1000 500

1500

2000

7 rore - - " v, AT
—._ i o e i T WWMW*WM""" s
e

S e —— e ,.,____‘.r,,.,..

B

— SRS ——

with |7 sequential shots # of PDEs: 34000

Tuesday, 6 December, 11



® /1regularization works better than ¢2 for
underdetermined systems

® Since /1 relies on the sparsity, it is more efficient in
removing Gaussian type noise

® Migration artifact can be reduced by using simultaneous
shots instead of sequential shots

® By turning overdetermined system into underdetermined
system, we can save on demans for computational
resources
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Is this all we can do?
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Large-scale sparsity-promoting solvers limit the number of
matrix-vector multiplies by

p solving an intelligent series of LASSO subproblems for
decreasing sparsity levels

p exploring properties of the Pareto trade-off curve

p slowly allowing components to enter into the solution
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Picking Lasso parameter

with warm starts
ooadf] \\\\\\\

Root finding

20—
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basis pursuit denoise: = min ||x||; s.t
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Pareto curve

subproblems
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[Wang & Sacchi,’07]

Sparsity recovery

This is a BPDN problem:
mingy 3 [|0x|ls, subject to ||0d — VF[myg; Q]S*ox|2 < o

om = S*ox
BPDN problem is a series of LASSO subproblems:

minsy =||0d — VF[myg; Q|S*0x|j2 < o subject to |dx|,, < 7F
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Renewals & warm

starts

For each subproblem:

mingsy +[|0d" — VF[mo; Q"|S*6x|2 < o subject to ||6x||s, < 7F

® redraw a new set of randomized source experiments

k—1

® use 0X"~ " as warm start for next subproblem
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Pareto curve

subproblems
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[Hennefent et. al., ’08]

[Lin & FJH, 09-]
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Pareto curve
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Pareto curves

two—norm of residual
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Continuation

methods & renewals

Underlying assumption is that Pareto curves are similar

p for large enough batch sizes
In that case the warm starts are effective

Renewals remove biases
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Migration results

Migration:

® |0 random frequencies
(20Hz-50Hz)

® |7 simultaneous shots (versus 350 sequential shots)

® | ASSO problems determined by SPGLI

[Herrmann & Xi, 2011]
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Migration results

true perturbation
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Migration results

LI imaged perturbation with renewals
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Migration results

imaged perturbation with L2 with renewals
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Migration results

LI imaged perturbation without renewals
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Migration results

LI imaged perturbation with renewals
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Migration results

imaged perturbation with renewals
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Computational cost can be reduced significantly by using
randomized dimensionality reduction

Underdetermined system can be solved by sparsity promotion
in a sparsifying (e.g curvelet) domain

Within the same computational cost, simultaneous shots
produce less migration artifacts

"

Source cross-talk bias can be removed by renewals & warm
starts.

Imaged reflectors in GN updates are compressible in the
curvelet domain
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Thank you
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