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Compressive imaging
Challenge:

Least-squares migration requires multiple passes & PDE solves

Key idea:

‣ combine Compressive Sensing & ‘Phase encoding’

‣ turn “overdetermined” imaging problem into 
underdetermined problem with randomized supershots

‣ use curvelet-based sparse recovery to remove crosstalk

[Li & FJH et. al.  ’10-]
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SLIM

Overdetermined
system 
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Underdetermined 
system

= ⇥

[van den Berg & Friedlander, ’08]
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Compressible signals
What if the signal is not sparse?

= ⇥

L1 recovery

x = arg min
x

�x��1 subject to �b�Ax�2 � �
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Sparsifying domains

x = S� arg min
�x

��x��1 subject to �b�AS��x�2 � �

physical domain Sparse domain

wavelet, curvelet, shearlet, wave atom...

50 100 150 200 250 300 350 400 450 500

−0.1

0

0.1

0.2

0.3

0.4

100 200 300 400 500 600 700 800 900 1000

−1

−0.5

0

0.5

1

50 100 150 200 250 300 350 400 450 500

−0.1

0

0.1

0.2

0.3

0.4

L1 recovery

sparse 

transform

Tuesday, 6 December, 11



SLIM

Dimensionality-
reduced imaging

Imaging 
operator=

Imaging operator=
?
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Linearized inversion
Least-squares migration:

� �m = arg min
�m

1
2
��d��F [m0;Q]�m�22

�d = Multi-source multi-frequency data residue

�F [m0;Q] = Linearized Born-scattering operator

m0 = Background velocity model

Q = Sources

� ˜m = image

[Nemeth et. al. ’99]

Tuesday, 6 December, 11



SLIM

Linearized inversion
Least-squares migration:

� �m = arg min
�m

1
2
��d��F [m0;Q]�m�22

[Nemeth et. al. ’99]

‣ overdetermined system, (                      ,              )

‣ multiple passes trough all data

xAb

nf � ns � nr nx � nz
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Dimensionality 
reduction

Collection of K simultaneous-source experiments with batch 
size

Q

K � nf � ns

[Herrmann et. al.  ’08-’10]

adapted from Herrmann et. al. ,09
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Single-shot image
one shot

Sequential shot
image

Simultaneous shot  
image
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Phase encoding
Least-squares migration:

� �m = arg min
�m

1
2
��d��F [m0;Q]�m�22

�d = �dW (Simultaneous-source data residue)
Q = QW (Simultaneous sources)
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Sparse recovery
Least-squares migration with sparsity promotion

�x = Sparse curvelet-coe�cient vector
S� = Curvelet synthesis

[Wang & Sacchi, ’07]

min�x
1
2��x��1 subject to ��d��F [m0;Q]S��x�2 � �

� �m = S��x

Tuesday, 6 December, 11
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Migration results

Time-harmonic Helmholtz:

• 409 X 1401 with mesh size of 5m

• 9 point stencil [C. Jo et. al., ’96]

• absorbing boundary condition with damping layer with 
thickness proportional to wavelength

• solve wavefields on the fly with direct solver

Tuesday, 6 December, 11
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Migration results
Split-spread surface-free ‘land’ acquisition:

• 350 sources with sampling interval 20m

• 701 receivers with sampling interval 10m

• maximal offset 7km (3.5 X depth of model)

• Ricker wavelet with central frequency of 30Hz

• recording time for each shot is 3.6s

Tuesday, 6 December, 11
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Migration results
Migration:

• 10 random frequencies
(20Hz-50Hz)

• 17 simultaneous shots (versus 350 sequential shots)

• LASSO problems determined by SPGL1

[Herrmann & Xi, 2011]
Tuesday, 6 December, 11
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Migration results

true perturbation
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Migration results

true perturbation
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Migration results
overdetermined

imaged perturbation with L2

71 sequential shots # of PDEs: 56800

Tuesday, 6 December, 11
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Migration results
underdetermined

imaged perturbation with L1

with 17 simultaneous shots # of PDEs: 34000
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Migration results

imaged perturbation with L2

with 17 simultaneous shots # of PDEs: 34000
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Migration results
underdetermined

imaged perturbation with L1

with 17 sequential shots # of PDEs: 34000
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Observations

•    regularization works better than     for 
underdetermined systems

• Since     relies on the sparsity, it is more efficient in 
removing Gaussian type noise

• Migration artifact can be reduced by using simultaneous 
shots instead of sequential shots

• By turning overdetermined system into underdetermined 
system, we can save on demans for computational 
resources

�1 �2

�1
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Is this all we can do?
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Continuation
Large-scale sparsity-promoting solvers limit the number of 
matrix-vector multiplies by 

‣ solving an intelligent series of LASSO subproblems for 
decreasing sparsity levels

‣ exploring properties of the Pareto trade-off curve

‣ slowly allowing components to enter into the solution

Tuesday, 6 December, 11



Picking Lasso parameter
with warm starts

Root finding

�b�Ax�2
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Projected gradient. Our application of the SPG algorithm to solve (LSτ ) follows
Birgin, Mart́ınez, and Raydan [5] closely for the minimization of general nonlinear
functions over arbitrary convex sets. The method they propose combines projected-
gradient search directions with the spectral step length that was introduced by Barzilai
and Borwein [1]. A nonmonotone line search is used to accept or reject steps. The
key ingredient of Birgin, Mart́ınez, and Raydan’s algorithm is the projection of the
gradient direction onto a convex set, which in our case is defined by the constraint
in (LSτ ). In their recent report, Figueiredo, Nowak, and Wright [27] describe the
remarkable efficiency of an SPG method specialized to (QPλ). Their approach builds
on the earlier report by Dai and Fletcher [18] on the efficiency of a specialized SPG
method for general bound-constrained quadratic programs (QPs).

2. The Pareto curve. The function φ defined by (1.1) yields the optimal value
of the constrained problem (LSτ ) for each value of the regularization parameter τ .
Its graph traces the optimal trade-off between the one-norm of the solution x and
the two-norm of the residual r, which defines the Pareto curve. Figure 2.1 shows the
graph of φ for a typical problem.

The Newton-based root-finding procedure that we propose for locating specific
points on the Pareto curve—e.g., finding roots of (1.2)—relies on several important
properties of the function φ. As we show in this section, φ is a convex and differentiable
function of τ . The differentiability of φ is perhaps unintuitive, given that the one-
norm constraint in (LSτ ) is not differentiable. To deal with the nonsmoothness of
the one-norm constraint, we appeal to Lagrange duality theory. This approach yields
significant insight into the properties of the trade-off curve. We discuss the most
important properties below.

2.1. The dual subproblem. The dual of the Lasso problem (LSτ ) plays a
prominent role in understanding the Pareto curve. In order to derive the dual of
(LSτ ), we first recast (LSτ ) as the equivalent problem

(2.1) minimize
r,x

‖r‖2 subject to Ax + r = b, ‖x‖1 ≤ τ.
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Fig. 2.1. A typical Pareto curve (solid line) showing two iterations of Newton’s method. The
first iteration is available at no cost.

�

�kfeasible area

basis pursuit denoise: min �x�1 s.t �b�Ax�2 � �
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Pareto curve
subproblems
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(c) Pareto curve and solution path

Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

Lasso problem
1

2

3

4

min
x
�Ax� b�2 s.t �x��1 � �2
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SLIM

Sparsity recovery
This is a BPDN problem:

BPDN problem is a series of LASSO subproblems:

[Wang & Sacchi, ’07]

min�x
1
2��x��1 subject to ��d��F [m0;Q]S��x�2 � �

� �m = S��x

min�x
1
2��d��F [m0;Q]S��x�2 � � subject to ��x��1 � �k

Tuesday, 6 December, 11
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Renewals & warm 
starts

For each subproblem:

• redraw a new set of randomized source experiments

• use           as warm start for next subproblem

min�x
1
2��d

k ��F [m0;Qk]S��x�2 � � subject to ��x��1 � �k

�xk�1

Tuesday, 6 December, 11
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Pareto curve
subproblems
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(c) Pareto curve and solution path

Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

Lasso problem
1

2

3

4

min
x

kA1x� b1k2 s.t kxk�1  �1

[van den Berg & Friedlander, ’08]

[Hennefent et. al., ’08]

[Lin & FJH, ’09-]
Tuesday, 6 December, 11
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Pareto curve
subproblems
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(c) Pareto curve and solution path

Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

Lasso problem
1

2

3

4

min
x

kA2x� b2k2 s.t kxk�1  �2
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Pareto curve
subproblems
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(c) Pareto curve and solution path

Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

Lasso problem
1

2

3

4

min
x

kA3x� b3k2 s.t kxk�1  �3
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subproblems
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Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

Lasso problem
1

2

3

4

min
x

kA4x� b4k2 s.t kxk�1  �4
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Pareto curves
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Continuation
methods & renewals

Underlying assumption is that Pareto curves are similar 

‣ for large enough batch sizes

In that case the warm starts are effective

Renewals remove biases

Tuesday, 6 December, 11
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Migration results
Migration:

• 10 random frequencies
(20Hz-50Hz)

• 17 simultaneous shots (versus 350 sequential shots)

• LASSO problems determined by SPGL1

[Herrmann & Xi, 2011]
Tuesday, 6 December, 11
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Migration results

true perturbation
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Migration results

L1 imaged perturbation without renewals 

with 17 simultaneous shots
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Migration results

L1 imaged perturbation with renewals

with 17 simultaneous shots
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Migration results

imaged perturbation with L2 without renewals

with 17 simultaneous shots
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Migration results

imaged perturbation with L2 with renewals

with 17 simultaneous shots
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Migration results

L1 imaged perturbation without renewals

with same # of randomly selected sequential shots
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Migration results

L1 imaged perturbation with renewals

with same # of randomly selected sequential shots
Tuesday, 6 December, 11



SLIM

Migration results

imaged perturbation with renewals

with 17 simultaneous shots
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Conclusions
Computational cost can be reduced significantly by using 
randomized dimensionality reduction

Underdetermined system can be solved by sparsity promotion 
in a sparsifying (e.g curvelet) domain

Within the same computational cost, simultaneous shots 
produce less migration artifacts

Source cross-talk bias can be removed by renewals & warm 
starts.

Imaged reflectors in GN updates are compressible in the 
curvelet domain

Tuesday, 6 December, 11



SLIM

Acknowledgments
We would like to thank Charles Jones from BG for providing us 
with the BG Compass model. This work was in part financially 
supported by the Natural Sciences and Engineering Research 
Council of Canada Discovery Grant (22R81254) and the 
Collaborative Research and Development Grant DNOISE II 
(375142-08). 

This research was carried out as part of the SINBAD II project 
with support from the following organizations: BG Group, BP, 
BGP, Chevron, ConocoPhillips, Petrobras, PGS, Total SA, and 
WesternGeco.

Tuesday, 6 December, 11



SLIM

Thank you
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