To redraw or *not* to redraw: *recent* insights in *randomized* dimensionality reduction for *inversion*

Felix J. Herrmann

SLIM Seismic Laboratory for Imaging and Modeling the University of British Columbia

Pass on the message: recent insights in *randomized* dimensionality reduction for *inversion*

Felix J. Herrmann

SLIM Seismic Laboratory for Imaging and Modeling the University of British Columbia

Goals

Move from 'correlation' based processing to (robust) inversion

multiple 'correlations' & 'convolutions'

or applications of the Jacobian and it's adjoint

Use randomized dimensionality reduction to remove prohibitive computational demands.

Use robust statistics in the misfit functionals

to allow for outliers.

Special circumstances

We are typically 'data rich' rather than 'data poor' to the point

- that data is overwhelming our systems
- this is a becoming an impediment for wide-spread adaption of wave-equation based inversion

However, this 'data deluge' also gives us an unique possibility to come up with extremely fast algorithms that

- work on small subsets solving "denoising" problems
- are based on large-system approximations (statistical physics)

Dimensionality reduction

Seismic imaging & inversion:

- linear in the sources
- cost dominated by # PDE solves

Exploit this property by working on much smaller *randomized* subsets (mini batches) of *source* experiments

Control errors by

- nonlinear transform-domain sparsity promotion a la CS
- averaging by growing the batch size a la SAA

Disclaimer

Our problems are large for which it is extremely challenging to

- verify conditions that guarantee recovery
- converge to solutions in reasonable compute time

Our claims of actually solving optimization problems has to be taken with a grain of salt... But, not all is lost because there exists a whole body of heuristics. Today's talk aims to

- connect perspectives (e.g. CS vs Stochastic optimization)
- gain understanding why we may be 'lucky'

Wave-equation migration

Solution of a large 'overdetermined' system

$$\min_{\mathbf{X}} \frac{1}{2K} \sum_{i=1}^{K} \|\mathbf{b}_i - \mathbf{A}_i \mathbf{x}\|_2^2,$$

SLIM 🕂

Iterations of the solver requires 4 PDE solves for each source

- use linearity of the source to turn sequential sources into random simultaneous / selected sources
- use fewer sources

Study behavior as # of sources increases

SLIM 🦊

Randomized source superposition

$$\left[\mathbf{b}_{1},\cdots,\mathbf{b}_{n_{s}}
ight]$$

Source - Receiver Slice (Full Data)

Data * Random Gaussian Matrix

Stylized example

[Haber & FJH, '10, van Leeuwen, '11, FJH et. all. '10-'11]

Heuristics

Algorithm 1: Stochastic-average approximation with warm restarts

$$\begin{array}{l} \mathbf{x}_0 \longleftarrow \mathbf{0}; \mathbf{k} \longleftarrow \mathbf{0} \; ; \\ \mathbf{while} \; \| \mathbf{x}_0 - \widetilde{\mathbf{x}} \|_2 \geq \epsilon \; \mathbf{do} \\ | \; k \leftarrow k + 1; \\ \; \widetilde{\mathbf{x}} \leftarrow \mathbf{x}_0; \\ \; \mathbf{W} \leftarrow \mathrm{Draw}(\mathbf{W}); \\ \; \mathbf{x}_0 \leftarrow \mathrm{Solve}(\mathbb{P}(\mathbf{W}); \widetilde{\mathbf{x}}); \end{array}$$

// initialize

SLIM 🛃

// increase counter
 // update warm start
 // draw new subsampler
 // solve the subproblem

end

Subproblems least-squares migration

$$\mathbb{P}_{\boldsymbol{\ell_2}}(\mathbf{W}^{\boldsymbol{k}};\mathbf{x}_0): \quad \min_{\mathbf{x}} \frac{1}{2K'} \sum_{j=1}^{K'} \|\underline{\mathbf{b}}_j^{\boldsymbol{k}} - \mathbf{A}_j^{\boldsymbol{k}}\mathbf{x}\|_2^2$$

- solve with *limited* # of iterations of LSQR
- initialize solver with warm start
- solves damped least-squares problem

$$\begin{split} \textbf{Subproblems}\\ \textbf{sparsity-promoting migration}\\ \mathbb{P}_{\boldsymbol{\ell}_1}(\mathbf{W}^k; \mathbf{x}_0) \quad \min_{\mathbf{x}} \frac{1}{2K'} \sum_{j=1}^{K'} \|\underline{\mathbf{b}}_j^k - \mathbf{A}_j^k \mathbf{x}\|_2 \quad \text{subject to} \quad \|\mathbf{x}\|_{\boldsymbol{\ell}_1} \leq \tau^k \end{split}$$

- solve LASSO problem for a given sparsity level using the spectral-gradient method ($SPG\ell_1$)
- initialize solver with *warm* start
- solves sparsity-promoting subproblem

SLIM 🛃

SLIM 🦊

Randomized source superposition

$$\left[\mathbf{b}_{1},\cdots,\mathbf{b}_{n_{s}}
ight]$$

Source - Receiver Slice (Full Data)

Data * Random Gaussian Matrix

Least-squares migration

Sparsifying migration without renewals

Sparsifying migration with renewals

Why does this work?

Geophysics perspective:

richer wavenumber content of the randomized simultaneous sources

This is the premise of 'phase encoding'.

Image from one shot

Sequential shot image

SLIM 🔶

Lateral distance (m) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000

Simultaneous shot image

-0

Sparsifying migration without renewals

randomly selected sequential shots

Sparsifying migration with renewals

randomly selected sequential shots

Sparsifying migration with renewals

randomized simultaneous shots

Why does this work?

Geophysics perspective:

- richer wavenumber content of the randomized simultaneous sources
- This is the premise of 'phase encoding.
- But this does not really explain why this also works for randomly selected impulsive shots...

Why does this work?

Inversion perspective:

sparsity promotion acts as a regularization

This is the premise of Tikhonov regularization

Explains why inversion quality is *improved* but does not explain the *increased* decay of the model error...

Why does this work?

From the optimizer's perspective:

aside from ideas from stochastic optimization cooling method are known to lead to fast algorithms

Combination of these two ideas may to be the way to go...

Continuation methods

Large-scale sparsity-promoting solvers limit the number of matrix-vector multiplies by

- slowly allowing components to enter into the solution
- solving an intelligent series of LASSO subproblems for decreasing sparsity levels
- exploring properties of the Pareto trade-off curve

SLIM 🛃

Why does this work?

Mathematics perspective:

- randomization makes sparsity-promoting program computationally tractable
- This is the premise of *randomized* dimensionality reduction.
- But again ideas from CS alone do not really explain the *improved* image *quality* with *renewals*.

So what's going on?

Why does this work?

Physicist's perspective:

We are dealing with extremely large systems that mix for

- Iarge enough system sizes and long enough times
- Iarge enough complexity in the velocity model

Linear systems start to behave like 'Gaussian' matrices

- show 'phase-transitions' for simple recovery algorithms
- approximations become better when systems get larger

[Daubechies et. al, '04; Hennenfent et. al.,'08, Mallat, '09, Donoho et. al, '09]

Back to the oldies

Compressive sensing was all about designing sampling matrices that create white Gaussian interferences.

First iteration of *iterative* soft thresholding corresponds to vanilla *denoising*.

But does the same hold for later (t>1) iterations of

$$\mathbf{x}^{t+1} = \eta_t \left(\mathbf{A}^* \mathbf{z}^t + \mathbf{x}^t \right)$$
$$\mathbf{z}^t = \mathbf{b} - \mathbf{A} \mathbf{x}^t$$

with threshold given by nth largest coefficient of $\mathbf{A}^* \mathbf{z}^t + \mathbf{x}^t$

[http://sourceforge.net/projects/gampmatlab/files/gampmatlab2011128.zip]


```
% Number of iterations of the algorithm
T = 10;
```

```
% Stopping criterion (tolerance for successfull decoding)
tol = 1e-4;
n = 200;
k = 2;
N = 100000;
A = (1/sqrt(n)) .* randn(n, N);
% Sparse signal (with uniform distribution of non-zeros)
x = [sign(rand(k,1) - 0.5); zeros(N-k,1)];
x = x(randperm(N));
% Generate Measurements
b = A*x;
xhat = reconstructAmp(A, b, T, tol,x,1);
```


Problem

After first iteration the inteferences become 'spiky'

- assumption spiky vs white Gaussian no longer holds
- renders soft thresholding less effective

Leads to slow convergence of the algorithm.

Is there a way out?

[Donoho et. al, '09; Montanari, '10, Rangan, '11]

Approximate message passing

Add a term to iterative soft thresholding, i.e.,

$$\mathbf{x}^{t+1} = \eta_t \left(\mathbf{A}^* \mathbf{z}^t + \mathbf{x}^t \right)$$
$$\mathbf{z}^t = \mathbf{b} - \mathbf{A} \mathbf{x}^t - \frac{1}{n} \mathbf{z}^{t-1} \sum \left(\eta' (\mathbf{A}^* \mathbf{z}^t + \mathbf{x}^t) \right)$$

SLIM 🛃

with

$$\eta'(x) = \begin{cases} 1 & |x| > \text{threshold} \\ 0 & \text{otherwise} \end{cases}$$

[Montanari, '10]

Approximate message passing

According to Montanari the AMP algorithm corresponds to

SLIM 🔶

$$\mathbf{x}^{t+1} = \eta_t \left(\mathbf{A}_t^* \mathbf{z}^t + \mathbf{x}^t \right)$$
$$\mathbf{z}^t = \mathbf{b}_t - \mathbf{A}_t \mathbf{x}^t$$

where for each iteration a new CS matrix and data are drawn.

Changes the story completely

- draw new random subsets (e.g. shots) for each iteration
- nonlinearity improves the performance compared to SA

SLIM 🦊

Iteration 2

Tuesday, 6 December, 11

SLIM 🦊

SLIM 🦊

SLIM 🦊

Residues

Data

Model

Recovery

Setup

```
% Number of iterations of the algorithm
T = 200;
```

```
% Stopping criterion (tolerance for successfull decoding)
tol = 1e-4;
n = 200;
k = 10;
N = 100000;
A = (1/sqrt(n)) .* randn(n, N);
% Sparse signal (with uniform distribution of non-zeros)
x = [sign(rand(k,1) - 0.5); zeros(N-k,1)];
x = x(randperm(N));
% Generate Measurements
b = A*x;
```

SLIM 🦊

Iteration 2

Tuesday, 6 December, 11

SLIM 🛃

Residues

Data

Model

SLIM 🛃

Recovery

Observations

Approximate message passing:

- is connected to the stochastic approximation because it draws a new matrix and data for each iteration
- differs from stochastic gradients because it relies on
 - a nonlinearity in the form of tuned thresholding
 - very particular (Gaussian) matrices and sparse vectors

Recent proofs that BP is solved in the large scale limit.

Renewals (or message) are responsible for a remarkable speed up.

Conclusions

Emergence of 'batching ideas' for large-scale problems for which

- people chip away with small randomized subproblems
- optimization problems exist with rigorous convergence proofs but for which convergence is rarely attained in practice
- fast AMP algorithms exist that turn iterative soft thresholding into iterative denoising, which in the largescale limit correspond to solving BP

For the second category, extreme size & complexity of our problems may actually work to our advantage...