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SLIM

Goals
Move from ‘correlation’ based processing to (robust) inversion

‣ multiple ‘correlations‘ & ‘convolutions’

‣ or applications of the Jacobian and it’s adjoint

Use randomized dimensionality reduction to remove 
prohibitive computational demands.

Use robust statistics in the misfit functionals

to allow for outliers.
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Special 
circumstances

We are typically ‘data rich’ rather than ‘data poor’ to the point

‣ that data is overwhelming our systems

‣ this is a becoming an impediment for wide-spread adaption 
of wave-equation based inversion

However, this ‘data deluge’ also gives us an unique possibility to 
come up with extremely fast algorithms that

‣ work on small subsets solving  “denoising” problems

‣ are based on large-system approximations (statistical physics)

Tuesday, 6 December, 11
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Dimensionality 
reduction

Seismic imaging & inversion:

‣ linear in the sources

‣ cost dominated by # PDE solves 

Exploit this property by working on much smaller 
randomized subsets (mini batches) of source experiments

Control errors by

‣ nonlinear transform-domain sparsity promotion a la CS

‣ averaging by growing the batch size a la SAA
Tuesday, 6 December, 11
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Disclaimer
Our problems are large for which it is extremely challenging to

‣ verify conditions that guarantee recovery

‣ converge to solutions in reasonable compute time

Our claims of actually solving optimization problems has to be 
taken with a grain of salt... But, not all is lost because there 
exists a whole body of heuristics. Today’s talk aims to

‣ connect perspectives (e.g. CS vs Stochastic optimization)

‣ gain understanding why we may be ‘lucky’
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Wave-equation
migration

Solution of a large ‘overdetermined’ system

Iterations of the solver requires 4 PDE solves for each source

‣ use linearity of the source to turn sequential sources 
into random simultaneous / selected sources

‣ use fewer sources

Study behavior as # of sources increases

minx
1

2K

K�

i=1

�bi �Aix�2
2,
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Randomized 
source superposition

W
�
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Stylized example
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Figure 1: True (a) and initial (b) squared-slowness models (s2/km2) and the true reflectivity.
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Figure 2: The full gradient is depicted in (a). The gradients for various K are depicted
in (b) K = 1, (c) K = 5 and (d) K = 10. For a relatively small batch-size the gradient
already shows the main features.
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Migration
Search direction for increasing batch size K:

full K’=1 K’=5
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Figure 1: True (a) and initial (b) squared-slowness models (s2/km2) and the true reflectivity.
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Figure 2: The full gradient is depicted in (a). The gradients for various K are depicted
in (b) K = 1, (c) K = 5 and (d) K = 10. For a relatively small batch-size the gradient
already shows the main features.
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Figure 2: The full gradient is depicted in (a). The gradients for various K are depicted
in (b) K = 1, (c) K = 5 and (d) K = 10. For a relatively small batch-size the gradient
already shows the main features.
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[Haber, Chung, and FJH, ’10; van Leeuwen, Aravkin, FJH, ’10] 
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Decay

error	  between	  full	  and	  sampled	  migraIon
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Figure 3: Error in gradient for as a function of the batch-size K. As expected, the error
goes down as 1/

√
K (dashed line).
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Figure 4: Behavior of misfit for various K. Shown are five different realizations and the
true misfit (dashed line) for (a) K = 1, (b) K = 5 and (c) K = 10. The misfit approximates
the true misfit pretty well for relatively small batch-sizes.
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Figure 5: Residual matrix A = STS, where S is the data residual corresponding to the
smooth model depicted in figure 1 (a) at 5Hz.
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Heuristics

Algorithm 1: Stochastic-average approximation with warm restarts
x0 �� 0;k �� 0 ; // initialize
while �x0 � ex�2 � � do

k �� k + 1; // increase counter
ex�� x0; // update warm start
W �� Draw(W); // draw new subsampler
x0 �� Solve(P(W); ex); // solve the subproblem

end

[Haber & FJH, ’10, van Leeuwen, ’11, FJH et. all. ’10-’11]
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Subproblems
least-squares migration

‣ solve with limited # of iterations of LSQR

‣ initialize solver with warm start

‣ solves damped least-squares problem

P�2(W
k;x0) : min

x

1
2K �

K��

j=1

�bk
j �Ak

j x�2
2
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Subproblems
sparsity-promoting migration

‣ solve LASSO problem for a given sparsity level using the 
spectral-gradient method (           )

‣ initialize solver with warm start

‣ solves sparsity-promoting subproblem

P�1(W
k;x0) min

x

1
2K �

K��

j=1

�bk
j �Ak

j x�2 subject to �x��1 � �k

SPG�1

[van den Berg & Friedlander, ’08]
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Randomized 
source superposition

W
�
b1, · · · ,bns

� �
b1, · · · ,bn�

s

�
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Least-squares 
migration
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Sparsifying migration
without renewals
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Sparsifying migration
with renewals
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Why does this work?
Geophysics perspective:

‣ richer wavenumber content of the randomized 
simultaneous sources

This is the premise of ‘phase encoding’.

Tuesday, 6 December, 11
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Image 
from one shot 

Sequential shot
image

Simultaneous shot  
image

Tuesday, 6 December, 11



SLIM

Sparsifying migration
without renewals

randomly selected sequential shots
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Sparsifying migration
with renewals

randomly selected sequential shots

Tuesday, 6 December, 11



SLIM

Sparsifying migration
with renewals

randomized simultaneous shots
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SLIM

Why does this work?
Geophysics perspective:

‣ richer wavenumber content of the randomized 
simultaneous sources

This is the premise of ‘phase encoding.

But this does not really explain why this also works for 
randomly selected impulsive shots...

Tuesday, 6 December, 11
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Why does this work?
Inversion perspective:

‣ sparsity promotion acts as a regularization

This is the premise of  Tikhonov regularization

Explains why inversion quality is improved but does not 
explain the increased decay of the model error...

Tuesday, 6 December, 11
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Why does this work?
From the optimizer’s perspective:

‣ aside from ideas from stochastic optimization cooling 
method are known to lead to fast algorithms

Combination of these two ideas may to be the way to go...

Tuesday, 6 December, 11
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Continuation
methods

Large-scale sparsity-promoting solvers limit the number of 
matrix-vector multiplies by 

‣ slowly allowing components to enter into the solution

‣ solving an intelligent series of LASSO subproblems for 
decreasing sparsity levels

‣ exploring properties of the Pareto trade-off curve

Tuesday, 6 December, 11
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Pareto curve
subproblems
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Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

Lasso problem
1

2

3

4

min
x

kA1x� b1k2 s.t kxk�1  �1

[van den Berg & Friedlander, ’08]

[Hennefent et. al., ’08]

[Lin & FJH, ’09-]
Tuesday, 6 December, 11
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Pareto curve
subproblems
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(c) Pareto curve and solution path

Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

Lasso problem
1

2

3

4

min
x

kA2x� b2k2 s.t kxk�1  �2
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Pareto curve
subproblems
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(c) Pareto curve and solution path

Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

Lasso problem
1

2

3

4

min
x

kA3x� b3k2 s.t kxk�1  �3
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Pareto curve
subproblems
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Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

Lasso problem
1

2

3

4

min
x

kA4x� b4k2 s.t kxk�1  �4
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Why does this work?
Mathematics perspective:

‣ randomization makes sparsity-promoting program 
computationally tractable

This is the premise of randomized dimensionality reduction.

But again ideas from CS alone do not really explain the 
improved image quality with renewals.

So what’s going on?

Tuesday, 6 December, 11
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Why does this work?
Physicist’s perspective:

We are dealing with extremely large systems that mix for

‣ large enough system sizes and long enough times

‣ large enough complexity in the velocity model

Linear systems start to behave like ‘Gaussian’ matrices

‣ show ‘phase-transitions’ for simple recovery algorithms

‣ approximations become better when systems get larger

Tuesday, 6 December, 11
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Back to the oldies

Compressive sensing was all about designing sampling 
matrices that create white Gaussian interferences.

First iteration of iterative soft thresholding corresponds to 
vanilla denoising.

But does the same hold for later (t>1) iterations of

with threshold given by nth largest coefficient of

xt+1 = �t

�
A�zt + xt

�

zt = b�Axt

A�zt + xt

[Daubechies et. al, ’04; Hennenfent et. al.,’08, Mallat, ’09, Donoho et. al, ’09]
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Setup

% Number of iterations of the algorithm
T = 10;
 
% Stopping criterion (tolerance for successfull decoding)
tol = 1e-4;
n = 200;
k = 2;
N = 100000;
 
A = (1/sqrt(n)) .* randn(n, N);
 
% Sparse signal (with uniform distribution of non-zeros)
x = [sign(rand(k,1) - 0.5); zeros(N-k,1)];
x = x(randperm(N));
 
% Generate Measurements
b = A*x;
xhat = reconstructAmp(A, b, T, tol,x,1);

[http://sourceforge.net/projects/gampmatlab/files/gampmatlab20111128.zip]

Tuesday, 6 December, 11
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Iteration 3
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Iteration 4
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SLIM

Problem
After first iteration the inteferences become ‘spiky’ 

‣ assumption spiky vs white Gaussian no longer holds

‣ renders soft thresholding less effective

Leads to slow convergence of the algorithm.

Is there a way out?
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Approximate 
message passing

Add a term to iterative soft thresholding, i.e.,

with

��(x) =

�
1 |x| > threshold
0 otherwise

[Donoho et. al, ’09; Montanari, ’10, Rangan, ’11]

x

t+1 = ⌘t
�
A
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z
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�
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t�1
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Approximate 
message passing

According to Montanari the AMP algorithm corresponds to

where for each iteration a new CS matrix and data are drawn.

Changes the story completely

‣ draw new random subsets (e.g. shots) for each iteration

‣ nonlinearity improves the performance compared to SA

xt+1 = �t

�
A�

t z
t + xt

�

zt = bt �Atxt

[Montanari, ’10]
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Iteration 1
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Iteration 2
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Iteration 3
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Iteration 4
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Residues
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Recovery
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Setup

% Number of iterations of the algorithm
T = 200;
 
% Stopping criterion (tolerance for successfull decoding)
tol = 1e-4;
n = 200;
k = 10;
N = 100000;
 
A = (1/sqrt(n)) .* randn(n, N);
 
% Sparse signal (with uniform distribution of non-zeros)
x = [sign(rand(k,1) - 0.5); zeros(N-k,1)];
x = x(randperm(N));
 
% Generate Measurements
b = A*x;
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Iteration 1
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Iteration 2
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Residues
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Recovery
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Observations
Approximate message passing: 

‣ is connected to the stochastic approximation because it draws 
a new matrix and data for each iteration

‣ differs from stochastic gradients because it relies on

- a nonlinearity in the form of tuned thresholding

- very particular (Gaussian) matrices and sparse vectors

Recent proofs that BP is solved in the large scale limit.

Renewals (or message) are responsible for a remarkable speed up.
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SLIM

Conclusions
Emergence of ‘batching ideas’ for large-scale problems for which

‣ people chip away with small randomized subproblems

‣ optimization problems exist with rigorous convergence 
proofs but for which convergence is rarely attained in practice

‣ fast AMP algorithms exist that turn iterative soft 
thresholding into iterative denoising, which in the large-
scale limit correspond to solving BP

For the second category, extreme size & complexity of our 
problems may actually work to our advantage...

Tuesday, 6 December, 11


