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Move from ‘correlation’ based processing to (robust) inversion
p multiple ‘correlations® & ‘convolutions’
p or applications of the Jacobian and it’s adjoint

Use randomized dimensionality reduction to remove
prohibitive computational demands.

Use robust statistics in the misfit functionals

to allow for outliers.
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We are typically ‘data rich’ rather than ‘data poor’ to the point
p that data is overwhelming our systems

p this is a becoming an impediment for wide-spread adaption
of wave-equation based inversion

However, this ‘data deluge’ also gives us an unique possibility to
come up with extremely fast algorithms that

p work on small subsets solving “denoising” problems

p are based on large-system approximations (statistical physics)
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Seismic imaging & inversion:
p linear in the sources
p cost dominated by # PDE solves

Exploit this property by working on much smaller
randomized subsets (mini batches) of source experiments

Control errors by
p nonlinear transform-domain sparsity promotion a la CS

) averaging by growing the batch size a la SAA
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Our problems are large for which it is extremely challenging to
p verify conditions that guarantee recovery
p converge to solutions in reasonable compute time

Our claims of actually solving optimization problems has to be
taken with a grain of salt... But, not all is lost because there
exists a whole body of heuristics. Today’s talk aims to

p connect perspectives (e.g. CS vs Stochastic optimization)

p gain understanding why we may be ‘lucky’
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Solution of a large ‘overdetermined’ system

K
1 )
m}éﬂ 9K ; Hbz‘ — AiXHZ?

Iterations of the solver requires 4 PDE solves for each source

p use linearity of the source to turn sequential sources
into random simultaneous / selected sources

p use fewer sources

Study behavior as # of sources increases
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Stylized example
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[Haber, Chung, and FJH,’|0; van Leeuwen, Aravkin, FJH, "1 0]
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Algorithm 1: Stochastic-average approximation with warm restarts

Xg «— Ok «— O ;

while ||x¢p — X||2 > € do
k+—k+1;

X — X0;

W «—— Draw(W);

xo «— Solve(P(W); X);
end

// initialize

// increase counter

// update warm start

// draw new subsampler
// solve the subproblem
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Subproblems

least-squares migration

K/
.1 k
P, (W*: xq) - min > |bj — Alx|3
j=1

p solve with limited # of iterations of LSQR
p initialize solver with warm start

p solves damped least-squares problem
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Subproblems

sparsity-promoting migration

P, (WF:xp) min

K/

1 .

2K Z HQI; — A§X||2 subject to ||x||s, < -k
j=1

p solve LASSO problem for a given sparsity level using the
spectral-gradient method (SPG/;)

p initialize solver with warm start

p solves sparsity-pbromoting subproblem

[van den Berg & Friedlander, ’08]
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Sparsifying migration
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Why does this work?

Geophysics perspective:

p richer wavenumber content of the randomized
simultaneous sources

This is the premise of ‘phase encoding’.
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Geophysics perspective:

p richer wavenumber content of the randomized
simultaneous sources

This is the premise of ‘phase encoding.

But this does not really explain why this also works for
randomly selected impulsive shots...
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Inversion perspective:
D sparsity promotion acts as a regularization
This is the premise of Tikhonov regularization

Explains why inversion quality is improved but does not
explain the increased decay of the model error...
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From the optimizer’s perspective:

p aside from ideas from stochastic optimization cooling
method are known to lead to fast algorithms

Combination of these two ideas may to be the way to go...
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Large-scale sparsity-promoting solvers limit the number of
matrix-vector multiplies by

p slowly allowing components to enter into the solution

p solving an intelligent series of LASSO subproblems for
decreasing sparsity levels

p exploring properties of the Pareto trade-off curve
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Mathematics perspective:

p randomization makes sparsity-promoting program
computationally tractable

This is the premise of randomized dimensionality reduction.

But again ideas from CS alone do not really explain the
improved image quality with renewals.

So what’s going on!
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Physicist’s perspective:
We are dealing with extremely large systems that mix for
p large enough system sizes and long enough times
p large enough complexity in the velocity model
Linear systems start to behave like ‘Gaussian’ matrices
p show ‘phase-transitions’ for simple recovery algorithms

p approximations become better when systems get larger
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Compressive sensing was all about designing sampling
matrices that create white Gaussian interferences.

First iteration of iterative soft thresholding corresponds to
vanilla denoising.

But does the same hold for later (t>1) iterations of
xttl = g, (A*Zt . Xt)
7zt =b — Ax!

with threshold given by n™ largest coefficient of A*z" + x'
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[http://sourceforge.net/projects/gampmatlab/files/gampmatlab201 | | 128.zip]

Setup

% Number of iterations of the algorithm
= 10;

H

% Stopping criterion (tolerance for successfull decoding)
tol = le-4;

n = 200;

k = 2;

N = 100000;

A = (1/sgrt(n)) .* randn(n, N);

% Sparse signal (with uniform distribution of non-zeros)
X = [sign(rand(k,1l) - 0.5); zeros(N-k,1)];

X = X(randperm(N));

o©

Generate Measurements
b = A*x;
xhat = reconstructAmp(A, b, T, tol,x,1);
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http://sourceforge.net/projects/gampmatlab/files/gampmatlab20111128.zip
http://sourceforge.net/projects/gampmatlab/files/gampmatlab20111128.zip
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After first iteration the inteferences become ‘spiky’

p assumption spiky vs white Gaussian no longer holds

p renders soft thresholding less effective

Leads to slow convergence of the algorithm.

Is there a way out?
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[Donoho et. al,’09; Montanari,’ 10, Rangan,’| |]

Approximate

message passing

Add a term to iterative soft thresholding, i.e.,

Xt—|—1 = 1, (A*Zt 4 Xt)
Zt — b — AXt - lzt—l Z (ﬁ,(A*Zt i Xt))

n

with

1 x| > threshold
0 otherwise
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According to Montanari the AMP algorithm corresponds to
x!*t1 = g, (A;kzt 1 Xt)
zt = b, — A, x°
where for each iteration a new CS matrix and data are drawn.
Changes the story completely
p draw new random subsets (e.g. shots) for each iteration

p nonlinearity improves the performance compared to SA
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Setup

% Number of iterations of the algorithm
= 200;

H

% Stopping criterion (tolerance for successfull decoding)
tol = le-4;

n = 200;

k = 10;

N = 100000;

A = (1/sgrt(n)) .* randn(n, N);

% Sparse signal (with uniform distribution of non-zeros)
X = [sign(rand(k,1l) - 0.5); zeros(N-k,1)];

X = X(randperm(N));

Generate Measurements
= A*X;

O oo
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Approximate message passing:

p is connected to the stochastic approximation because it draws
a new matrix and data for each iteration

p differs from stochastic gradients because it relies on
- a nonlinearity in the form of tuned thresholding
- very particular (Gaussian) matrices and sparse vectors
Recent proofs that BP is solved in the large scale limit.

Renewals (or message) are responsible for a remarkable speed up.
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Emergence of ‘batching ideas’ for large-scale problems for which
p people chip away with small randomized subproblems

) optimization problems exist with rigorous convergence
proofs but for which convergence is rarely attained in practice

p fast AMP algorithms exist that turn iterative soft
thresholding into iterative denoising, which in the large-
scale limit correspond to solving BP

For the second category, extreme size & complexity of our
problems may actually work to our advantage...
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