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Challenges and opportunities in
sparse wavefield inversion

SLIM
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Many successful seismic algorithms are data-driven

® Surface-related Multiple Elimination (SRME)

® Estimation of Primaries by Sparse Inversion (EPSI)

® |nterferometric deconvolution

Require

® dense matrix vector multiplies

® full (azimuth) sampling

® memory and matvec make scaling to 3-D very challenging

® certainly in the light of push for more & more data
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Use redundant information residing in multiple reflections.

Exploit data-space transform-domain sparsity & low rank to
p stabilize wavefield inversion
p reduce system sizes & mitigate cross-talk

Exploit adaptive model-space transform-domain sparsity to
p compute convolutions/correlations via wave simulators

p reduce system sizes & mitigate cross-talk
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“Typical” approach: damped least-squares
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Data matrix
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® |nversion is carried out per frequency slice
® \\Vater level leads to loss in resolution
® (Can suffer from instabilities ...
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Two-norm inversion:

p tends to smooth when regularizing the null space

p ineffective when dealing with cross talk induced by
randomized sourcing (e.g., simultaneous)

One-norm sparsity-promoting inversion:

p leverages curvelet-domain sparsity of data

p highly effective for removal of source crosstalk

p preserves frequency content
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|. Simultaneous sourcing in combination with renewals
* reduces # of shots & leverages sparsity-promoting solvers
2. Wave-equation based possibly in combination with 1.

* leverages sparse wave simulators to carry our multi-D
convolutions implicitly

3. Low-rank approximations

e exploit multi-D structure of seismic wavefields
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Randomized source encoding

compressive sensing
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Work with simultaneous sources, i.e.,

VW = GUW with W € C™*™ pnl < n,

p reduces system size but needs full acquisition for U
p could benefit from redrawing simultaneous shots

p G is’'dense’ & redundant in sparsifying domain

p still high matvec and storage costs
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[Guitton, ’02; Berkhout, ’05; Whitmore ’10; Ning et.al,,’10-; Verschuur ’| |]

Approach i

Wave-equation based:
GU = F[m, U]
with
Flm, Q] = RH '[m/R"Q
yielding

AN

F[m,1]U = F[m, U]

Wave simulator does heavy lifting for the multi-D convolutions!
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After linearization for EPSI we have
P ~ ﬁ‘[m, Q — P}dm
and simultaneous sourcing
PW ~ VF|m, (Q — P)W|ém
Highly efficient formulation that
» reduces # of PDE solves

» is conducive to image-domain sparsity-promotion
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Migration from marine
'simultaneous’ data

inversion from EPSI inverted Green’s function
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Migration from marine
'simultaneous’ data

inversion from total data
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Migration from complete
data with source-encoding

inversion from fotal data, 10 super-shots
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Migration from complete
data with source-encoding

inversion from tfofal data, 2 super-shots, no renewal
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Migration from complete
data with source-encoding

inversion from fotal data, 2 super-shots, renewal
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Combination of EPSI or interferometric deconvolution
with imaging via areal sources allows us to
p exploit image-domain sparsity & information from multiples
p do multi-D convolutions/correlations with wave solver
Costs and reliance on full sampling can be brought down by

p simultaneous sourcing, random time dithering, or a
combination thereof

p but adaptive method requires velocity information
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With ‘black-box’ access to matvecs
(SRME multiple prediction including on-the-fly interpolation)

p use randomized SVDs allow us to do a low-rank
approximation to factorize

P ~LR'
p reduces memory imprint and matvec costs
p allows us to conduct velocity analysis

D but requires full’ data
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Adapt recent matrix-completion techniques with maxnorms

Allows us to estimate low-rank approximations from
incomplete directly data by solving

miIIlliIfIilize b — A(LR")||5 + u|LR*||.

p nuclear norm is approximated by maxnorm

p opens possibility to scale to 3D

D challenge is to find appropriate low-rank ‘domain’
(e.g., midpoint/offset)
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‘Multiples facilitate recovery from severe undersamplings.

Large data volumes impede data-space recovery and require
exploration of other types of structure.

Image-domain wave simulators can carry the weight of ‘data-
driven’ approaches

p and really shine with simultaneous sources & renewals
p but require velocity-model information

Q: relationship free surface BC & EPSI-like techniques?
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