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Challenges & opportunities for
Compressive Sensing in seismic
acquisition

SLIM
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New rigorous theory and concrete implementation with
p sampling & compression combined
p recovery by exploiting structure
p recovery guarantees
Major breakthrough in a wide range of fields
p signal/image processing
p MRI imaging

p scientific computing
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Signals in nature including seismic wavefields & sedimentary
basins exhibit some sort of structure

p transform-domain sparsity
p low-rank property

If this is true, can we use this observation to use these
properties during sampling and inversion?

Compressive sensing delivers on this by coming up with a
rigorous theory and sampling criteria that guarantee recovery
from severe subsamplings.
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Basics of compressive sensing

Felix J. Herrmann. UBC-EOS Technical Report.
TR-2010-01. Randomized sampling and sparsity:
getting more information from fewer samples.
Geophysics 75, WB173 (2010); doi:10.1190/1.350614

Felix J.Herrmann, Michael P.Friedlander, Ozgur
Yilmaz. Fighting the curse of dimensionality:

compressive sensing in exploration seismologs :
2011. In revision for Signal Processing Magazin
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Problem statement

Consider the following (severely) underdetermined system of linear
equations with A a n X N matrix with n<<N

data
(measurements —— E _
/observations

/simulations) b A

PO CITTTTTTTTTITTTTITTTTT]

0

1

unknown

Is it possible to recover xo accurately from b
* in case X0 has k non-zeros?

* in case Xo is compressible, i.e., has few large entries and many small ones?
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Recovery

Naive first guess would be to recover via

X N——

min ||x||s, = (Z \xi|2)1/2 subject to Ax =y
. perfect reconstruction

energy
with analytic solution:
- —1
x=A"(AA") 'y

will not find the k-sparse solution when n<<N.
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Recovery by strict sparsity promotion

Better choice would be to recover via

min ||x||¢, = #nonzeros{x} subject to Ax =y

X N——
# °
perfect reconstruction

strict sparsity

— if every n X n submatrix of A is nonsingular then this program recovers every k-
sparse vector exactly when k<n/2

— We only need n>2k measurements regardless of N.
— no analytic solution

— numerically unstable

— NP-hard problem

Tuesday, 6 December, 11



Recovery by relaxed sparsity promotion

Convexify via one-norm minimization

min ||x||g, = Z ;| subject to Ax =Yy
N——

T .
perfect reconstruction

" sparsity”

will recover k-sparse solutions with overwhelming probability from

n > cklog(N/n) measurements

— no analytic solution
— stable
— computationally feasible

— extends to compressible signals

[Candes et al.“06]
[Donoho‘06]
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Example different recovery techniques

Setup example in Matlab and run comparison

o\©°

L2, L1 recovery comparison for sparse signals

A = randn(40,200);
X = sparsify(randn(200,1),7); % 7 nonzero elements
plot (x)

y = A¥X;
plot(y)

x ell2 = 1sqgr(A,y);
plot(x ell2)

x elll = spgll(A,y,0,1le-7,[1);
plot(x elll)
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Example different recovery techniques
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Example different recovery techniques
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Sparse recovery

restriction
operator

l

with A := RF”

T

Fourier
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Coarse sampling schemes

Fourier £”] anifi
ounier-: few significant
ﬁ E‘_ . .
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[Hennenfent & Herrmann, '08]
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NAIVE sparsity-promoting recovery
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Undersampling “noise”
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® due to A"A # 1 (Gram matrix)

® defined by AHAXo-0xo = A"b-0Xo

3 detectable Fourier modes

| out of 4

| out of 6

b MA
& ee

v

less acquired data

2 detectable Fourier modes

>

>

| out of 8

A oA\
J/ N7 N

>

8

5 6 7

Amplitude
4

3

0 1 2

Amplitude

o0

1.5

Amplitude
0.5

0

1

Tuesday, 6 December, 11




Combpressive Sensing is all about controlling the off-diagonals of
the Gram matrix

Accomplished by a combination of
p randomization

p with spreading of sampling vectors in the sparsifying
domain

- e.g. Fourier vs Dirac
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Solve optimization problem:

detection data-consistent amplitude recovery
: ' ‘ : 1 \
min ||x||1  subject to b=Ax

X

p convexification of the NP-hard zero-norm problem
p suite of different large-scale solvers available

p recovery quality depends on coherence & aspect ratio of A &
sparsity of X
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Example [signal length 1024, 50 non zeros]
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Compressive Sensing breaks coherent/periodic interferences
p randomization & incoherence

Sparsity-promoting recovery hinges on
p aspect ratio of A & sparsity of X
p mutual coherence of A

Compressive Sensing is a design problem seeking sampling &
sparsifying transforms that act as random Gaussian matrices...

Tuesday, 6 December, 11



THE UNIVERSITY OF BRITISH COLUMBIA | VANCOUVER

Compressive acquisition

Felix J. Herrmann. UBC-EOS Technical Report.
TR-2010-01. Randomized sampling and sparsity:
getting more information from fewer samples.
Geophysics 75, WB173 (2010); doi:10.1190/1.350614

Felix J.Herrmann, Michael P.Friedlander, Ozgur
Yilmaz. Fighting the curse of dimensionality:

compressive sensing in exploration seismologgs —
2011. In revision for Signal Processing Magazin (s
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Challenge:

Acquisition costs are determined by Nyquist

Key idea: Randomize acquisition, subsample, and sparse recovery
Intelligent reduction of acquisition costs via randomized

» jitter & coil acquisition
» amplitude/phase-encoded simultaneous ‘land’ acquisition

» ditter continuous ‘marine’ acquisition
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[} sparsifying transform

@ typically localized in the time-space domain to handle the complexity
of seismic data

[(] advantageous coarse randomized sampling

® Jgenerates incoherent random undersampling “noise” in the sparsifying
domain

[} sparsity-promoting solver

@ requires few matrix-vector multiplications
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Fourier reconstruction
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1 % of coefficients

Seismic Laboratory for Imaging and Modeling
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Wavelet reconstruction
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Seismic Laboratory for Imaging and Modeling
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Curvelet reconstruction
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Seismic Laboratory for Imaging and Modeling
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[Demanet et. al.,"06]

Curvelets
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Detect the wavefronts

Offset (m)
-2000 0 2000

Significant Curvelet

curvelet coefficient coefficient~0

Seismic Laboratory for Imaging and Modeling
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Empirical
performance analysis

Selection of the appropriate sparsifying transform

= nonlinear approximation error

f—f
SNR(p) = —20log H HprH with p=k/P
® recovery error
f—f
SNR(d) = —201log | ] sl with 6 =n/N

® oversampling ratio

6/p with p=inf{p: SNR(J) < SNR(p)}

[FJH, 10]
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Nonlinear approximation error
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[V] sparsifying transform

@ typically localized in the time-space domain to handle the complexity
of seismic data

® curvelets

[(] advantageous coarse randomized sampling

® Jgenerates incoherent random undersampling “noise” in the sparsifying
domain

[} sparsity-promoting solver

@ requires few matrix-vector multiplications
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Different sampling schemes

A = RMS"

v T
restriction measurement sparsity
matrix matrix matrix

with
R = (R"aI)
M = (I"®I') oo (G"aI)
S* = Ci

Solve

X = arg myi:n |x||1 subject to y = Ax
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Individual shots
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Simultaneous & incoherent sources
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Data
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Sparse recovery
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Sparse recovery error
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Empirical
performance analysis

Selection of the appropriate sparsifying transform

® nonlinear approximation error

f—1f
SNR(p) = —201log H HprH with p=k/P
) recovery error
f—f
SNR(8) = —20log | ||f||5H with & =n/N

® oversampling ratio

6/p with p=inf{p: SNR(J) < SNR(p)}

[FJH, 10]
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Multiple experiments

simultaneous wavelet
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[V] sparsifying transform

e typically localized in the time-space domain to handle the complexity of seismic
data

® curvelets

[] advantageous coarse randomized sampling

® generates incoherent random undersampling “noise” in the sparsifying domain
® does not create coherent interferences in simultaneous acquisition

® does not create large gaps for measurement in the physical domain

[} sparsity-promoting solver

@ requires few matrix-vector multiplications
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“When a traveler reaches a fork in the road,
the |-norm tells him to take either one way
or the other, but the |; -norm instructs him to

head off into the bushes.”

John F. Claerbout and Francis Muir, 1973

Tuesday, 6 December, 11



Approaches

® quadratic programming [many references!]

1
QP : m}gn§\\y—Ax\|g >\HX|\1

® basis pursuit denoise [Chen et al.’95]

BP,: min|x|; s.t. |[y—Ax|2<0o
X

® LASSO [Tibshirani’96]

1
LS, : min§HY—AxH% st x| <7
X
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Pareto curve

minimize  ||x|
subject to  ||Az — b2 < o

Look at the solution space and the line of optimal solutions (Pareto curve)

/ ........... e = //

one—norm of solution

(van den Berg, Friedlander, 2008)
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Pareto curve

minimize  ||x|
subject to ||[Ax —b|l2 < o

Look at the solution space and the line of optimal solutions (Pareto curve)
257
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one—norm of solution
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[van den Berg & Friedlander, ’08]
[Hennenfent, FJH, et. al,‘08]

Pareto curve

minimize  ||x|
subject to ||[Ax —b|l2 < o

Look at the solution space and the line of optimal solutions (Pareto curve)
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[V] sparsifying transform

e typically localized in the time-space domain to handle the complexity of seismic
data

® curvelets

[] advantageous coarse randomized sampling

® generates incoherent random undersampling “noise” in the sparsifying domain
® does not create coherent interferences in simultaneous acquisition

® does not create large gaps for measurement in the physical domain

L/ sparsity-promoting solver

@ requires few matrix-vector multiplications
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CS offers a framework to design the next-generation of
seismic acquisition technology.

Difficult to derive engineering principles because sampling
matrices are prohibitively large.

Scale up to 3D data is a challenge

p seek higher dimensional transforms that exploit low
rankness

p seek optimization techniques that exploit this property

Tuesday, 6 December, 11



CS relies on a careful calibration

p affects of round-off errors can not be offset by
increasing sampling rates [Saab & Yilmaz]

p errors in the sampling matrix are detrimental for
recovery by sparsity promotion

Looking into

p classification of errors in relation to matrix type

p robust norms
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