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Compressive sensing
New rigorous theory and concrete implementation with

‣ sampling & compression combined

‣ recovery by exploiting structure 

‣  recovery guarantees

Major breakthrough in a wide range of fields

‣ signal/image processing

‣ MRI imaging

‣ scientific computing

[Candès et.al, Donoho, ’06]
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Premise
Signals in nature including seismic wavefields & sedimentary 
basins exhibit some sort of structure

‣ transform-domain sparsity

‣ low-rank property

If this is true, can we use this observation to use these 
properties during sampling and inversion?

Compressive sensing delivers on this by coming up with a 
rigorous theory and sampling criteria that guarantee recovery 
from severe subsamplings.
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Basics of compressive sensing
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Problem statement
Consider the following (severely) underdetermined system of linear 
equations with A a n X N matrix with n<<N

Is it possible to recover x0 accurately from b
• in case x0 has k non-zeros?

•  in case x0 is compressible, i.e., has few large entries and many small ones?

unknown

data
(measurements
/observations
/simulations)

x0

A

=

b
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Recovery
Naive first guess would be to recover via

with analytic solution:

will not find the k-sparse solution when n<<N.

minx ⇥x⇥⇥2 =
� ⇤

n

|xi|2
⇥1/2

⌃ ⇧⌅ ⌥
energy

subject to Ax = y⌃ ⇧⌅ ⌥
perfect reconstruction

x̃ = A⇥�AA⇥⇥�1y
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Recovery by strict sparsity promotion
Better choice would be to recover via

– if every n X n submatrix of A is nonsingular then this program recovers every k-
sparse vector exactly when k<n/2

– We only need n>2k measurements regardless of N.
– no analytic solution 
– numerically unstable
– NP-hard problem

minx ⇤x⇤�0 = #nonzeros{x}
⇤ ⇥� ⌅

strict sparsity

subject to Ax = y⇤ ⇥� ⌅
perfect reconstruction
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Recovery by relaxed sparsity promotion
Convexify via one-norm minimization

will recover k-sparse solutions with overwhelming probability from 

                                                                           measurements

– no analytic solution 
– stable
– computationally feasible
– extends to compressible signals

minx ⇥x⇥�1 =
�

n

|xi|
⌅ ⇤⇥ ⇧

”sparsity”

subject to Ax = y⌅ ⇤⇥ ⇧
perfect reconstruction

[Candès et al.‘06]
[Donoho‘06]

n � c k log(N/n)
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Example different recovery techniques
Setup example in Matlab and run comparison

% L2, L1 recovery comparison for sparse signals

A = randn(40,200);
x = sparsify(randn(200,1),7);   % 7 nonzero elements
plot(x)

y = A*x;
plot(y)

x_ell2 = lsqr(A,y);
plot(x_ell2)

x_ell1 = spgl1(A,y,0,1e-7,[]);
plot(x_ell1)
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Example different recovery techniques
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Example different recovery techniques
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Sparse recovery

x0

A

A := RFH=

Fourier coefficients
(sparse)

with

Fourier
transform

restriction
operator

signal

b
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Coarse sampling schemes

Fourier

transform

✓

✗

3-fold under-sampling

significant 
coefficients detected

ambiguity

few significant 
coefficients

Fourier

transform

Fourier

transform

[Hennenfent & Herrmann, ’08]
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NAIVE sparsity-promoting recovery

inverse
Fourier

transform

detection +
data-consistent

amplitude recovery

Fourier
transform

A
H

=

A

=
detection

Ar data-consistent amplitude 
recovery

A
†
r

=

x0

b
b

b
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“noise” interferences:

• due to AHA ≠ I (Gram matrix)

• defined by AHAx0-αx0 = AHb-αx0

Undersampling “noise”

less acquired data

3 detectable Fourier modes 2 detectable Fourier modes

1 out of 2 1 out of 4 1 out of 6 1 out of 8
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Mutual coherence
Compressive Sensing is all about controlling  the off-diagonals of 
the Gram matrix

Accomplished by a combination of 

‣ randomization

‣ with spreading of sampling vectors in the sparsifying 
domain

- e.g. Fourier vs Dirac
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Sparse recovery
Solve optimization problem:

‣ convexification of the NP-hard zero-norm problem

‣ suite of different large-scale solvers available

‣ recovery quality depends on coherence & aspect ratio of A & 
sparsity of X

minx

detection����
�x�1 subject to

data-consistent amplitude recovery� �� �
b = Ax

[Candès et.al, Donoho, ’06]
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Example [signal length 1024, 50 non zeros]

measurements recovery recovery�1 �22.5 X k

5 X k

20 X k
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Observations
Compressive Sensing breaks coherent/periodic interferences

‣ randomization & incoherence

Sparsity-promoting recovery hinges on

‣ aspect ratio of A & sparsity of x

‣ mutual coherence of A

Compressive Sensing is a design problem seeking sampling & 
sparsifying transforms that act as random Gaussian matrices...
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Compressive acquisition
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Compressive acquisition
Challenge:

Acquisition costs are determined by Nyquist

Key idea: Randomize acquisition, subsample, and sparse recovery 

Intelligent reduction of acquisition costs via randomized

‣ jitter & coil acquisition
[Hennenfent & FJH, 08-‘; Moldoveanu ’10-] 

‣ amplitude/phase-encoded simultaneous ‘land’ acquisition
[Krohn et. al., 2006]

‣ ditter continuous ‘marine’ acquisition
[Beasley, ’98, Berkhout, ’08, Blacquiere, ’10;  Abma, ’10, Mansour & FJH, ’11]
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CS design principles

sparsifying transform

• typically localized in the time-space domain to handle the complexity 
of seismic data

advantageous coarse randomized sampling

• generates incoherent random undersampling “noise” in the sparsifying 
domain

sparsity-promoting solver

• requires few matrix-vector multiplications
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Fourier reconstruction

1 % of coefficients
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Wavelet reconstruction

1 % of coefficients
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Curvelet reconstruction

1 % of coefficients
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Curvelets
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Empirical 
performance analysis

Selection of the appropriate sparsifying transform

➡nonlinear approximation error

• recovery error

• oversampling ratio

SNR(�) = �20 log
⇥f � f�⇥
⇥f⇥ with � = k/P

SNR(�) = �20 log
⇥f � f̃ �⇥
⇥f⇥ with � = n/N

�/⇥ with ⇥ = inf{⇥̃ : SNR(�) � SNR(⇥̃)}
[FJH, ’10]
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Nonlinear approximation error

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

5

10

15

20

25

30

l

SN
R

 [d
b]

 

 
analysis wavelet
one−norm wavelet
analysis curvelet
one−norm curvelet
analysis waveatom
one−norm waveatom

common receiver gather recovery error

[FJH, ’10]
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CS design principles

sparsifying transform

• typically localized in the time-space domain to handle the complexity 
of seismic data

• curvelets

advantageous coarse randomized sampling

• generates incoherent random undersampling “noise” in the sparsifying 
domain

sparsity-promoting solver

• requires few matrix-vector multiplications

✓
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Different sampling schemes

with

Solve

A = RMSH

restriction
matrix

measurement
matrix

sparsity
matrix

x̃ = arg minx ||x||1 subject to y = Ax

R =
�
R� � I��

M =
�
I� � I��

or
�
G� � I��

S� = C�
2
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Individual shots

Tuesday, 6 December, 11



Simultaneous & incoherent sources
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Data

missing shots sim. shots
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Sparse recovery

recovery
missing shots

recovery
sim. shots
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Sparse recovery error

error
missing shots

error
sim. shots
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Empirical 
performance analysis

Selection of the appropriate sparsifying transform

• nonlinear approximation error

➡recovery error

• oversampling ratio

SNR(�) = �20 log
⇥f � f�⇥
⇥f⇥ with � = k/P

SNR(�) = �20 log
⇥f � f̃ �⇥
⇥f⇥ with � = n/N

�/⇥ with ⇥ = inf{⇥̃ : SNR(�) � SNR(⇥̃)}
[FJH, ’10]

Tuesday, 6 December, 11



SLIM
Multiple experiments
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CS design principles

sparsifying transform

• typically localized in the time-space domain to handle the complexity of seismic 
data

• curvelets

advantageous coarse randomized sampling

• generates incoherent random undersampling “noise” in the sparsifying domain

• does not create coherent interferences in simultaneous acquisition

• does not create large gaps for measurement in the physical domain

sparsity-promoting solver

• requires few matrix-vector multiplications

✓

✓
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Reality check

“When a traveler reaches a fork in the road, 
the 11-norm tells him to take either one way 
or the other, but the l2 -norm instructs him to 
head off into the bushes.”

John F. Claerbout and Francis Muir, 1973 

Tuesday, 6 December, 11



Seismic Laboratory for Imaging and Modeling

l quadratic programming [many references!]

l basis pursuit denoise [Chen et al.’95]

l LASSO [Tibshirani’96]

Approaches

BP� : min
x
⇤x⇤1 s.t. ⇤y �Ax⇤2 ⇥ �

QP� : min
x

1
2
⇥y �Ax⇥2

2 + �⇥x⇥1

LS� : min
x

1
2
⇤y �Ax⇤2

2 s.t. ⇤x⇤1 ⇥ �
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Projected gradient. Our application of the SPG algorithm to solve (LSτ ) follows
Birgin, Mart́ınez, and Raydan [5] closely for the minimization of general nonlinear
functions over arbitrary convex sets. The method they propose combines projected-
gradient search directions with the spectral step length that was introduced by Barzilai
and Borwein [1]. A nonmonotone line search is used to accept or reject steps. The
key ingredient of Birgin, Mart́ınez, and Raydan’s algorithm is the projection of the
gradient direction onto a convex set, which in our case is defined by the constraint
in (LSτ ). In their recent report, Figueiredo, Nowak, and Wright [27] describe the
remarkable efficiency of an SPG method specialized to (QPλ). Their approach builds
on the earlier report by Dai and Fletcher [18] on the efficiency of a specialized SPG
method for general bound-constrained quadratic programs (QPs).

2. The Pareto curve. The function φ defined by (1.1) yields the optimal value
of the constrained problem (LSτ ) for each value of the regularization parameter τ .
Its graph traces the optimal trade-off between the one-norm of the solution x and
the two-norm of the residual r, which defines the Pareto curve. Figure 2.1 shows the
graph of φ for a typical problem.

The Newton-based root-finding procedure that we propose for locating specific
points on the Pareto curve—e.g., finding roots of (1.2)—relies on several important
properties of the function φ. As we show in this section, φ is a convex and differentiable
function of τ . The differentiability of φ is perhaps unintuitive, given that the one-
norm constraint in (LSτ ) is not differentiable. To deal with the nonsmoothness of
the one-norm constraint, we appeal to Lagrange duality theory. This approach yields
significant insight into the properties of the trade-off curve. We discuss the most
important properties below.

2.1. The dual subproblem. The dual of the Lasso problem (LSτ ) plays a
prominent role in understanding the Pareto curve. In order to derive the dual of
(LSτ ), we first recast (LSτ ) as the equivalent problem

(2.1) minimize
r,x

‖r‖2 subject to Ax + r = b, ‖x‖1 ≤ τ.
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Fig. 2.1. A typical Pareto curve (solid line) showing two iterations of Newton’s method. The
first iteration is available at no cost.

Feasible

Pareto curve

Pareto curve

(van	  den	  Berg,	  Friedlander,	  2008)

Look	  at	  the	  solu:on	  space	  and	  the	  line	  of	  op:mal	  solu:ons	  (Pareto	  curve)

minimize kxk1
subject to kAx� bk2  �
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Deriva:ve	  given	  by

Pareto curve

Look	  at	  the	  solu:on	  space	  and	  the	  line	  of	  op:mal	  solu:ons	  (Pareto	  curve)

minimize kxk1
subject to kAx� bk2  �

kAHrk1
krk2
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Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

minimize kAx� bk2
subject to kxk1  ⌧

solve	  with	  SPG
(spectral	  projected	  gradients)

[van den Berg & Friedlander, ’08]
[Hennenfent, FJH, et. al, ‘08]
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CS design principles

sparsifying transform

• typically localized in the time-space domain to handle the complexity of seismic 
data

• curvelets

advantageous coarse randomized sampling

• generates incoherent random undersampling “noise” in the sparsifying domain

• does not create coherent interferences in simultaneous acquisition

• does not create large gaps for measurement in the physical domain

sparsity-promoting solver

• requires few matrix-vector multiplications

✓

✓

✓
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Opportunities & 
challenges

CS offers a framework to design the next-generation of 
seismic acquisition technology.

Difficult to derive engineering principles because sampling 
matrices are prohibitively large.

Scale up to 3D data is a challenge

‣ seek higher dimensional transforms that exploit low 
rankness

‣ seek optimization techniques that exploit this property
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Opportunities & 
challenges

CS relies on a careful calibration

‣ affects of round-off errors can not be offset by 
increasing sampling rates [Saab & Yilmaz]

‣ errors in the sampling matrix are detrimental for 
recovery by sparsity promotion

Looking into

‣ classification of errors in relation to matrix type

‣ robust norms
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