### Challenges & opportunities for Compressive Sensing in seismic acquisition

Felix J. Herrmann

SLIM Seismic Laboratory for Imaging and Modeling the University of British Columbia

# **Compressive sensing**

New rigorous theory and concrete implementation with

- sampling & compression combined
- recovery by exploiting structure
- recovery guarantees
- Major breakthrough in a wide range of fields
  - signal/image processing
  - MRI imaging



## Premise

Signals in nature including seismic wavefields & sedimentary basins exhibit some sort of structure

- transform-domain sparsity
- Iow-rank property

If this is true, can we use this observation to use these properties during sampling and inversion?

Compressive sensing *delivers* on this by coming up with a *rigorous* theory and sampling *criteria* that guarantee recovery from severe subsamplings.





## **Basics of compressive sensing**

Felix J. Herrmann. UBC-EOS Technical Report. TR-2010-01. Randomized sampling and sparsity: getting more information from fewer samples. Geophysics 75, WB173 (2010); doi:10.1190/1.350614

Felix J.Herrmann, Michael P.Friedlander, Ozgur Yilmaz. Fighting the curse of dimensionality: compressive sensing in exploration seismolog 2011. In revision for Signal Processing Magazine





### **Problem statement**

Consider the following (severely) *underdetermined* system of linear equations with **A** a  $n \times N$  matrix with n < N



#### Is it possible to recover $\mathbf{x}_0$ accurately from $\mathbf{b}$

- in case **X**<sub>0</sub> has *k* non-zeros?
- in case **X**<sub>0</sub> is *compressible*, i.e., has *few* large entries and *many* small ones?

Seismic Laboratory for Imaging and Modeling

### Recovery

Naive first guess would be to recover via

$$\underbrace{\min_{\mathbf{X}} \|\mathbf{x}\|_{\ell_2} = \left(\sum_{n} |x_i|^2\right)^{1/2}}_{\text{energy}} \quad \text{subject to} \quad \underbrace{\mathbf{A}\mathbf{x} = \mathbf{y}}_{\text{perfect reconstruction}}$$

with analytic solution:

$$\tilde{\mathbf{x}} = \mathbf{A}^* (\mathbf{A}\mathbf{A}^*)^{-1} \mathbf{y}$$

will not find the k-sparse solution when n < N.

Seismic Laboratory for Imaging and Modeling

### **Recovery by strict sparsity promotion**

Better choice would be to recover via

$$\underbrace{\min_{\mathbf{x}} \|\mathbf{x}\|_{\ell_0} = \# \text{nonzeros}\{\mathbf{x}\} }_{\text{subject to}} \quad \underbrace{\mathbf{A}\mathbf{x} = \mathbf{y}}_{\text{perfect reconstruction}}$$

- if every n X n submatrix of A is nonsingular then this program recovers every ksparse vector exactly when k<n/2</li>
- We only need n>2k measurements regardless of N.
- no analytic solution
- numerically unstable
- NP-hard problem

Seismic Laboratory for Imaging and Modeling

### **Recovery by relaxed sparsity promotion**

Convexify via one-norm minimization

$$\begin{array}{ll} \min_{\mathbf{X}} \|\mathbf{x}\|_{\ell_1} = \sum_{n} |x_i| & \text{subject to} \\ \underbrace{\mathbf{A}\mathbf{x} = \mathbf{y}}_{n} \\ & \underbrace{\mathbf{A}\mathbf{x} = \mathbf{y}}_{\text{perfect reconstruction}} \end{array}$$

will recover *k*-sparse solutions with *overwhelming probability* from

 $n \ge c k \log(N/n)$  measurements

- no analytic solution
- stable
- computationally feasible
- extends to compressible signals

Seismic Laboratory for Imaging and Modeling

### Example different recovery techniques

Setup example in Matlab and run comparison

```
% L2, L1 recovery comparison for sparse signals
A = randn(40,200);
x = sparsify(randn(200,1),7); % 7 nonzero elements
plot(x)
y = A*x;
plot(y)
x_ell2 = lsqr(A,y);
plot(x_ell2)
x_ell1 = spgl1(A,y,0,1e-7,[]);
plot(x_ell1)
```

Seismic Laboratory for Imaging and Modeling

### Example different recovery techniques





sampled signal y

Seismic Laboratory for Imaging and Modeling

### Example different recovery techniques





### **Coarse sampling schemes**



SLIM 🔶



### Undersampling "noise"

"noise" interferences:

- due to  $\mathbf{A}^{H}\mathbf{A} \neq \mathbf{I}$  (Gram matrix)
- defined by  $\mathbf{A}^{H}\mathbf{A}\mathbf{x}_{0}-\alpha\mathbf{x}_{0} = \mathbf{A}^{H}\mathbf{b}-\alpha\mathbf{x}_{0}$



SLIM 🦊

SLIM 🦊

## Mutual coherence

Compressive Sensing is all about controlling the off-diagonals of the Gram matrix

Accomplished by a combination of

- randomization
- with spreading of sampling vectors in the sparsifying domain
  - e.g. Fourier vs Dirac

## Sparse recovery

### Solve optimization problem:



SLIM 🛃

- convexification of the NP-hard zero-norm problem
- suite of different large-scale solvers available
- recovery quality depends on coherence & aspect ratio of A & sparsity of X

#### **Example** [signal length 1024, 50 non zeros]



SLIM 🦊

SLIM 🔶

# Observations

Compressive Sensing breaks coherent/periodic interferences

randomization & incoherence

Sparsity-promoting recovery hinges on

- ► aspect ratio of **A** & sparsity of **x**
- mutual coherence of A

Compressive Sensing is a design problem seeking sampling & sparsifying transforms that act as random Gaussian matrices...





## **Compressive acquisition**

Felix J. Herrmann. UBC-EOS Technical Report. TR-2010-01. Randomized sampling and sparsity: getting more information from fewer samples. Geophysics 75, WB173 (2010); doi:10.1190/1.350614

Felix J.Herrmann, Michael P.Friedlander, Ozgur Yilmaz. Fighting the curse of dimensionality: compressive sensing in exploration seismolog 2011. In revision for Signal Processing Magazine





## Compressive acquisition Challenge:

Acquisition costs are determined by Nyquist

Key idea: Randomize acquisition, subsample, and sparse recovery

Intelligent reduction of acquisition costs via randomized

- jitter & coil acquisition
   [Hennenfent & FJH, 08-'; Moldoveanu '10-]
- amplitude/phase-encoded simultaneous 'land' acquisition [Krohn et. al., 2006]
- ditter continuous 'marine' acquisition
   [Beasley, '98, Berkhout, '08, Blacquiere, '10; Abma, '10, Mansour & FJH, '11]

## CS design principles

### **D** sparsifying transform

 typically localized in the time-space domain to handle the complexity of seismic data SLIM 🕂

### advantageous coarse randomized sampling

 generates incoherent random undersampling "noise" in the sparsifying domain

### **D** sparsity-promoting solver

requires few matrix-vector multiplications

### **Fourier reconstruction**



### 1 % of coefficients

Seismic Laboratory for Imaging and Modeling

### **Wavelet reconstruction**



### 1 % of coefficients

Seismic Laboratory for Imaging and Modeling

### **Curvelet reconstruction**



### 1 % of coefficients

Seismic Laboratory for Imaging and Modeling

[Demanet et. al., '06]

Curvelets

![](_page_25_Picture_2.jpeg)

![](_page_25_Figure_3.jpeg)

SLIM 🔶

### **Detect the wavefronts**

![](_page_26_Figure_1.jpeg)

Seismic Laboratory for Imaging and Modeling

SLIM 🔶

# Empirical performance analysis

Selection of the appropriate sparsifying transform

nonlinear approximation error

$$SNR(\rho) = -20 \log \frac{\|\mathbf{f} - \mathbf{f}_{\rho}\|}{\|\mathbf{f}\|} \quad \text{with} \quad \rho = k/P$$

recovery error

$$\operatorname{SNR}(\delta) = -20 \log \frac{\|\mathbf{f} - \tilde{\mathbf{f}}_{\delta}\|}{\|\mathbf{f}\|}$$
 with  $\delta = n/N$ 

• oversampling ratio

 $\delta/\rho \quad \text{with} \quad \rho = \inf\{\tilde{\rho}: \quad \overline{\text{SNR}}(\delta) \leq \text{SNR}(\tilde{\rho})\}$ 

[FJH, '10]

SLIM 🦊

### Nonlinear approximation error

![](_page_28_Figure_2.jpeg)

## CS design principles

### Sparsifying transform

 typically localized in the time-space domain to handle the complexity of seismic data SLIM 🕂

- curvelets
- advantageous coarse randomized sampling
  - generates incoherent random undersampling "noise" in the sparsifying domain

### **D** sparsity-promoting solver

requires few matrix-vector multiplications

### **Different sampling schemes**

![](_page_30_Figure_1.jpeg)

Seismic Laboratory for Imaging and Modeling

![](_page_31_Picture_0.jpeg)

![](_page_32_Picture_0.jpeg)

![](_page_33_Picture_0.jpeg)

Data

![](_page_34_Figure_2.jpeg)

![](_page_34_Figure_3.jpeg)

![](_page_34_Figure_4.jpeg)

sim. shots

**Sparse recovery** 

SLIM 🔶

![](_page_35_Figure_2.jpeg)

![](_page_36_Figure_2.jpeg)

SLIM 🔶

[F]H, '10]

# Empirical performance analysis

Selection of the appropriate sparsifying transform

• nonlinear approximation error

$$SNR(\rho) = -20 \log \frac{\|\mathbf{f} - \mathbf{f}_{\rho}\|}{\|\mathbf{f}\|} \quad \text{with} \quad \rho = k/P$$

recovery error

$$\operatorname{SNR}(\delta) = -20 \log \frac{\|\mathbf{f} - \mathbf{\tilde{f}}_{\delta}\|}{\|\mathbf{f}\|}$$
 with  $\delta = n/N$ 

• oversampling ratio

 $\delta/\rho \quad \text{with} \quad \rho = \inf\{\tilde{\rho}: \quad \overline{\text{SNR}}(\delta) \leq \text{SNR}(\tilde{\rho})\}$ 

### Multiple experiments

![](_page_38_Figure_1.jpeg)

![](_page_38_Figure_2.jpeg)

SLIM 🔶

## CS design principles

### **M** sparsifying transform

typically localized in the time-space domain to handle the complexity of seismic data

SLIM 🕂

curvelets

### advantageous coarse randomized sampling

- generates incoherent random undersampling "noise" in the sparsifying domain
- does not create coherent interferences in simultaneous acquisition
- does not create large gaps for measurement in the physical domain

### **D** sparsity-promoting solver

requires few matrix-vector multiplications

SLIM 🔶

# **Reality check**

"When a traveler reaches a fork in the road, the  $I_1$ -norm tells him to take either one way or the other, but the  $I_2$  -norm instructs him to head off into the bushes."

## John F. Claerbout and Francis Muir, 1973

• quadratic programming [many references!]

$$\operatorname{QP}_{\lambda}: \quad \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}$$

**basis pursuit denoise** [Chen et al.'95]

$$BP_{\sigma}: \min_{\mathbf{x}} \|\mathbf{x}\|_{1} \quad \text{s.t.} \quad \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2} \le \sigma$$

$$LS_{\tau}: \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} \quad \text{s.t.} \quad \|\mathbf{x}\|_{1} \leq \tau$$

Seismic Laboratory for Imaging and Modeling

• quadratic programming [many references!]

$$\operatorname{QP}_{\lambda}: \quad \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}$$

**basis pursuit denoise** [Chen et al.'95]

$$BP_{\sigma}: \min_{\mathbf{x}} \|\mathbf{x}\|_{1} \quad \text{s.t.} \quad \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2} \le \sigma$$

$$LS_{\tau}: \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} \quad \text{s.t.} \quad \|\mathbf{x}\|_{1} \leq \tau$$

Seismic Laboratory for Imaging and Modeling

• quadratic programming [many references!]

$$\operatorname{QP}_{\lambda}: \quad \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}$$

**basis pursuit denoise** [Chen et al.'95]

$$BP_{\sigma}: \min_{\mathbf{x}} \|\mathbf{x}\|_{1} \quad \text{s.t.} \quad \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2} \leq \sigma$$

$$LS_{\tau}: \quad \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} \quad \text{s.t.} \quad \|\mathbf{x}\|_{1} \leq \tau$$

Seismic Laboratory for Imaging and Modeling

• quadratic programming [many references!]

$$\operatorname{QP}_{\lambda}: \quad \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}$$

**basis pursuit denoise** [Chen et al.'95]

$$BP_{\sigma}: \min_{\mathbf{x}} \|\mathbf{x}\|_{1} \quad \text{s.t.} \quad \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2} \leq \sigma$$

$$\mathrm{LS}_{\tau}: \quad \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} \quad \text{s.t.} \quad \|\mathbf{x}\|_{1} \leq \tau$$

Seismic Laboratory for Imaging and Modeling

• quadratic programming [many references!]

$$\operatorname{QP}_{\lambda}: \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}$$

basis pursuit denoise [Chen et al.'95]

$$BP_{\sigma}: \min_{\mathbf{x}} \|\mathbf{x}\|_{1} \quad \text{s.t.} \quad \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2} \leq \sigma$$

• LASSO [Tibshirani'96]

$$\mathrm{LS}_{\tau}: \quad \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} \quad \text{s.t.} \quad \|\mathbf{x}\|_{1} \leq \tau$$

Seismic Laboratory for Imaging and Modeling

#### SLIM 🤚

# Pareto curve

 $\begin{array}{ll} \text{minimize} & \|x\|_1 \\ \text{subject to} & \|Ax - b\|_2 \leq \sigma \end{array}$ 

Look at the solution space and the line of optimal solutions (Pareto curve)

![](_page_46_Figure_4.jpeg)

(van den Berg, Friedlander, 2008)

# Pareto curve

 $\begin{array}{ll} \mbox{minimize} & \|x\|_1 \\ \mbox{subject to} & \|Ax - b\|_2 \leq \sigma \end{array}$ 

SLIM 🛃

Look at the solution space and the line of optimal solutions (Pareto curve)

![](_page_47_Figure_3.jpeg)

### [van den Berg & Friedlander, '08] [Hennenfent, FJH, et. al, '08] **Pareto curve**

 $\begin{array}{ll} \mbox{minimize} & \|x\|_1 \\ \mbox{subject to} & \|Ax - b\|_2 \leq \sigma \end{array}$ 

SLIM 🛃

Look at the solution space and the line of optimal solutions (Pareto curve)

![](_page_48_Figure_3.jpeg)

## CS design principles

### **M** sparsifying transform

typically localized in the time-space domain to handle the complexity of seismic data

SLIM 🕂

curvelets

### advantageous coarse randomized sampling

- generates incoherent random undersampling "noise" in the sparsifying domain
- does not create coherent interferences in simultaneous acquisition
- does not create large gaps for measurement in the physical domain
- Sparsity-promoting solver
  - requires few matrix-vector multiplications

# Opportunities & challenges

CS offers a framework to design the next-generation of seismic acquisition technology.

Difficult to derive engineering principles because sampling matrices are prohibitively large.

Scale up to 3D data is a challenge

- seek higher dimensional transforms that exploit low rankness
- seek optimization techniques that exploit this property

# Opportunities & challenges

CS relies on a careful calibration

- affects of round-off errors can not be offset by increasing sampling rates [Saab & Yilmaz]
- errors in the sampling matrix are detrimental for recovery by sparsity promotion

Looking into

- classification of errors in relation to matrix type
- robust norms