Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Robust inversion, data-fitting, and inexact gradient methods

Michael P. Friedlander

Computer Science University of British Columbia

SINBAD Sponsor Meeting December 5, 2011

Collaborators:

Sasha Aravkin, Felix Herrmann, Tristan van Leeuwen, and Mark Schmidt

$$\underset{x}{\text{minimize}} \quad f(x) \quad := \quad \sum_{i=1}^{m} f_i(x)$$

Examples:

- least-squares $f_i(x) = (a_i^T x b_i)^2$ $f(x) = \|Ax - b\|^2$ • max likelihood $f_i(x) = -\log p(b_i; x)$

$$\underset{x}{\text{minimize}} \quad f(x) \quad := \quad \sum_{i=1}^{m} f_i(x)$$

m

Examples:

- least-squares $f_i(x) = (a_i^T x b_i)^2$ $f(x) = ||Ax b||^2$
- max likelihood $f_i(x) = -\log p(b_i; x)$

Context:

- *m* large
- each $f_i(x)$ and $\nabla f_i(x)$ expensive to evaluate

$$\underset{x}{\text{minimize}} \quad f(x) \quad := \quad \sum_{i=1}^{m} f_i(x)$$

m

Examples:

- least-squares $f_i(x) = (a_i^T x b_i)^2$ $f(x) = ||Ax b||^2$
- max likelihood $f_i(x) = -\log p(b_i; x)$

Context:

- *m* large
- each $f_i(x)$ and $\nabla f_i(x)$ expensive to evaluate

Computing costs:

- minimize passes through full data set (f_1, \ldots, f_m)
- count $f_i / \nabla f_i$ evals, not $f / \nabla f$ evals

minimize
$$f(x) := \frac{1}{m} \sum_{i=1}^{m} f_i(x)$$

Examples:

- least-squares $f_i(x) = (a_i^T x b_i)^2$ $f(x) = ||Ax b||^2$
- max likelihood $f_i(x) = -\log p(b_i; x)$

Context:

- *m* large
- each $f_i(x)$ and $\nabla f_i(x)$ expensive to evaluate

Computing costs:

- minimize passes through full data set (f_1, \ldots, f_m)
- count $f_i / \nabla f_i$ evals, not $f / \nabla f$ evals

FULL WAVEFORM INVERSION **Experiments:** Each of *m* "shots" yields a vector of measurements:

sources: q_1, \ldots, q_m , measurements: d_1, \ldots, d_m

1 source, 1 frequency:

$$\underset{x,u}{\text{minimize }} \|d - Pu\|^2 \quad \text{subj to} \quad H_{\omega}(x)u = q$$

All sources, all frequencies:

(eg, 10k sources, \sim 10 freqs)

minimize
$$\sum_{i}^{m} \sum_{\omega \in \Omega} \|d_i - PH_{\omega}(x)^{-1}q_i\|^2$$

Main cost is solution of Helmholtz equation for each (i, ω) pair:

$$H_{\omega}(x)u=q_i$$

$$D = F(x)Q + \mathcal{E}$$
 $D = [d_1, \dots, d_m]$
 $Q = [q_1, \dots, q_m]$

$$D = F(x)Q + \mathcal{E}$$

 $Q = [q_1, \dots, q_m]$

Nonlinear least-squares formulation:

$$\min_{x} f(x) := \frac{1}{m} \|R(x)\|_{F}^{2} \quad \text{with} \quad R(x) = D - F(x)Q$$

$$D = F(x)Q + \mathcal{E}$$

 $Q = [q_1, \dots, q_m]$

Nonlinear least-squares formulation:

$$\min_{x} f(x) := \frac{1}{m} \|R(x)\|_{F}^{2} \quad \text{with} \quad R(x) = D - F(x)Q$$

Reduction via averaging: generate small number of avgs ($s \ll m$)

$$\widetilde{d}_j = \sum_{i=1}^m w_{ij} d_i$$
 and $\widetilde{q}_j = \sum_{i=1}^m w_{ij} q_i$, $j = 1, \dots, s$.

Dimensionally reduced misfit: $f_w(x) = \frac{1}{s} \|\widetilde{R}(x)\|_f^2$

$$D = F(x)Q + \mathcal{E}$$

 $Q = [q_1, \dots, q_m]$

Nonlinear least-squares formulation:

$$\min_{x} f(x) := \frac{1}{m} \|R(x)\|_{F}^{2} \quad \text{with} \quad R(x) = D - F(x)Q$$

Reduction via averaging: generate small number of avgs ($s \ll m$)

$$\widetilde{d}_j = \sum_{i=1}^m w_{ij} d_i$$
 and $\widetilde{q}_j = \sum_{i=1}^m w_{ij} q_i$, $j = 1, \dots, s$.

Dimensionally reduced misfit: $f_w(x) = \frac{1}{s} \|\widetilde{R}(x)\|_f^2$

Stochastic optimization interpretation: if weights w_{ij} are iid,

$$E[f_w(x)] = f(x)$$
 and $E[\nabla f_w(x)] = \nabla f(x)$

Nonlinear LS with missing data (partial Marmoussi)

true reflectivity

marine acquisition mask

recovery via nonlinear least squares

Robust misfit measures

 $D = F(x)Q + \mathcal{E}$ with $\mathcal{E} \sim$ heavy-tailed dist'n

Robust error model to capture

- missing data
- artifacts not captured by forward model

Robust full-waveform inversion

minimize misfit R(x) = D - F(x)Q

Normal

Laplace

Student's-t

Sampling strategies for dimensionality reduction

Generic inverse problem

$$\min_{x} f(x) := \frac{1}{m} \sum_{i}^{m} \rho(r_i) \quad \text{with} \quad R(x) = [r_1, \ldots, r_m]$$

Data averaging is generally not sufficient to guarantee that

$$E_w[f_w(x)] = f(x)$$
 and $E_w[
abla f_w(x)] =
abla f(x)$

However, random subset selection

$$\widetilde{R}(x) = \frac{1}{s} [r_{i(1)}, r_{i(2)}, \dots, r_{i(s)}]$$

yields desired "expected objective" property for dimensionally reduced misfit f_w .

MODEL PROBLEM

$$\underset{x}{\text{minimize}} \quad f(x) := \frac{1}{m} \sum_{i=1}^{m} f_i(x)$$

Complexity of steepest descent

Baseline Algorithm:

$$x_{k+1} \leftarrow x_k - \alpha_k \nabla f(x_k), \qquad \alpha_k \equiv 1/L$$

Assume: Lipschitz ∇f with param L

Sublinear rate:

•
$$f(x_k) - f(x_*) = O(1/k)$$

•
$$f(x_k) - f(x_*) = O(1/k^2)$$
 (optimal rate with extrapolation)
[Nesterov '83; Tseng '08]

Linear rate: additionally assume that f is strongly convex w/ param μ

•
$$f(x_k) - f(x_*) = O([1 - \mu/L]^k)$$

Note: if f is twice differentiable, $\mu I \preceq \nabla^2 f(x) \preceq LI$

(constant stepsize)

Incremental gradient methods

Algorithm: $x_{k+1} \leftarrow x_k - \alpha \nabla f_i(x_k), i \in \{1, \dots, m\}$ cyclic

Constant stepsize: $\alpha_k \equiv 1/L$

• $||x_k - x_*||^2 \le \mathcal{O}([1 - \mu/L]^k) + m^2 L/\mu$ k full cycles

Decreasing stepsize: $\sum_k \alpha_k = \infty$, $\sum_k \alpha_k^2 < \infty$

• $||x_k - x_*||^2 = \mathcal{O}(1/k)$ k full cycles

Incremental gradient methods

Algorithm: $x_{k+1} \leftarrow x_k - \alpha \nabla f_i(x_k), i \in \{1, \dots, m\}$ cyclic, randomized

Constant stepsize: $\alpha_k \equiv 1/L$, $\alpha_k \equiv m/L$

•
$$\|x_k - x_*\|^2 \le \mathcal{O}([1 - \mu/L]^k) + m^2 L/\mu$$
 k full cycles

• $\mathbb{E}[||x_k - x_*||^2] < \mathcal{O}([1 - \mu/L]^k) + m^2 L/\mu$

k iterations

Decreasing stepsize: $\sum_{k} \alpha_{k} = \infty$, $\sum_{k} \alpha_{k}^{2} < \infty$

- $||x_k x_*||^2 = \mathcal{O}(1/k)$ k full cycles
- $\mathbb{E}[||x_k x_*||^2] = \mathcal{O}(1/k)$

k iterations

EXAMPLES

Seismic inversion

Recover image of geological structures via nonlinear least squares

$$\underset{x}{\text{minimize}} \sum_{i}^{m} \sum_{\omega \in \Omega} \|d_{i} - PH_{\omega}(x)^{-1}q_{i}\|^{2}$$

Observations: Each of *m* "shots" is an experiment:

sources: q_1, \ldots, q_m , measurements: d_1, \ldots, d_m

0.01 of 39 passes

0.4 of 39 passes

0.8 of 39 passes

2 of 39 passes

2.6 of 39 passes

4 of 39 passes

7 of 39 passes

10 of 39 passes

16 of 39 passes

22 of 39 passes

30 of 39 passes

39 of 39 passes

Image denoising

- Statistical denoising via conditional random fields
- Kumar/Hebert ('04) dataset of 50 synthetic 64×64 images
- Generalization of logistic model to capture dependencies among labels

$$\min_{x} \sum_{i=1}^{m} p(b_i; x)$$

• p is intractable and approximated

full gradient incremental gradient batched sampling

incremental gradient

batched sampling

0.25 of 5 passes

incremental gradient

batched sampling

0.50 of 5 passes

incremental gradient

batched sampling

0.75 of 5 passes

full gradient

incremental gradient

batched sampling

1 of 5 passes

incremental gradient

batched sampling

2 of 5 passes

full gradient

incremental gradient

batched sampling

3 of 5 passes

incremental gradient

batched sampling

N

4 of 5 passes

incremental gradient

batched sampling

5 of 5 passes

ALGORITHM

Sampling approach

Increasing batch:

$$\mathcal{B}_k \subseteq \{1,\ldots,m\}, \quad |\mathcal{B}_k| \to m$$

Sample gradient:

$$g_k(x) := rac{1}{|\mathcal{B}_k|} \sum_{i \in \mathcal{B}_k}
abla f_i(x)$$

Algorithm:

$$x_{k+1} \leftarrow x_k - \alpha_k d$$
 with $H_k d = -g_k(x_k)$

Analysis: Based on controlling gradient error *e_k*:

$$g_k(x) =
abla f(x_k) + e, \qquad \|e_k\|^2 \leq \epsilon_k \quad ext{or} \quad \mathbb{E}[\|e_k\|^2] \leq \epsilon_k$$

Gradient with errors

Prototype algo:
$$x_{k+1} \leftarrow x_k - \alpha g_k$$
, $g_k = \nabla f(x_k) + e_k$, $\alpha \equiv 1/L$

Given

• Lipschitz gradient (L); strong convexity (μ)

•
$$\|e_k\|^2 \leq \epsilon_k$$

•
$$\lim_{k\to\infty} \epsilon_{k+1}/\epsilon_k \leq 1$$

Convergence for all $k = 1, 2, \ldots$

$$||x_k - x_*||^2 \le (1 - \mu/L)^k [f(x_0) - f(x_*)] + O(\epsilon_k)$$

Growing batch size

Prototype algo:

$$x_{k+1} \leftarrow x_k - \alpha g_k, \qquad g_k = \frac{1}{s} \sum_{i \in \mathcal{B}_k} \nabla f_i(x_k), \qquad \alpha \equiv 1/L$$

Batch strategy:

- 1. Deterministic: pre-determined batch sequence
- 2. Randomized: uniform sampling without replacement

Unsampled fraction of the population:

$$\rho_k := \frac{m-s}{m}$$

Convergence: for all $k = 1, 2, \ldots$

$$\|\mathbf{x}_{k} - \mathbf{x}_{*}\|^{2} = \mathcal{O}([1 - \mu/L]^{k}) + \mathcal{O}(\rho_{k}^{2})$$
$$\boldsymbol{\mathcal{E}}[\|\mathbf{x}_{k} - \mathbf{x}_{*}\|^{2}] = \mathcal{O}([1 - \mu/L]^{k}) + \mathcal{O}(\rho_{k}/s)$$

Randomization is key

Sample average:

$$g_k(x) = rac{1}{s} \sum_{i \in \mathcal{B}_k}
abla f_i(x)$$

Batching algorithm in practice

Sample approximation:

$$ar{f}_k(x) = rac{1}{s}\sum_{i\in\mathcal{B}_k}f_i(x), \qquad g_k(x) = rac{1}{s}\sum_{i\in\mathcal{B}_k}
abla f_i(x)$$

Algorithm:

$$x_{k+1} \leftarrow x_k - \alpha_k d_k, \qquad H_k d = -g_k(x_k)$$

Quasi-Newton Hessian using

$$s_k = x_{k+1} - x_k, \qquad y_k := g_k(x_{k+1}) - g_k(x_k)$$

Linesearch on sample function

$$\bar{f}(x_k + \alpha d_k) < \bar{f}(x_k)$$

APPLICATIONS

Seismic inversion

$$\min_{x} \sum_{i}^{m} \sum_{\omega \in \Omega} \|d_i - PH_{\omega}(x)^{-1}q_i\|^2$$

- Recover seismic image via nonlinear least squares
- Marmousi 2D acoustic model; 101 sources/receivers; 8 frequencies

Binary logistic regression

$$\min_{x} \sum_{i}^{m} -\log p(b_i \mid a_i, x), \quad p(b_i \mid a_i, x) = \frac{1}{1 + \exp(-b_i a_i^T x)}, \quad b_i \in \{-1, 1\}$$

- Email spam classifier (Cormack and Lynam, 2005)
- TREC 2005 dataset: 92,189 email msgs from Enron investigation

Multinomial logistic regression

$$\min_{x} \sum_{i}^{m} -\log p(b_{i}=j \mid a_{i}, \{x\}_{j \in \mathcal{C}}), \quad b_{i} \in \mathcal{C}$$

- Digit classification 0 1 2 3 4 5 6 7 8 9
- MNIST dataset: 70,000 handwritten 28×28 images of digits

Chain-structured conditional random fields

$$\min_{x} \sum_{i}^{m} p(\{b_{i}^{k}=j_{k}\}_{k\in\Omega} \mid \{a_{i}^{k}\}_{k\in\Omega}, \{x_{j}\}_{j\in\mathcal{C}}), \quad b_{i}^{k}\in\mathcal{C}, \ k\in\Omega$$

- Noun phrase chunking in natural-language processing
- CoNLL-2000 Shared Task dataset: 211,727 words in 8,936 sentences

General conditional random fields

• Kumar/Hebert dataset of 50 synthetic 64×64 images

Thanks!

Read:

- Herrmann, Friedlander, and Yılmaz, "Fighting the curse of dimensionality: compressive sensing in exploration seismology", August 2011
- Friedlander and Schmidt, "Hybrid deterministic-stochastic methods for data fitting", to appear in *SIAM J. Scientific Computing*, September 2011
- Aravkin, Friedlander, and van Leeuwen, "Robust inversion via semistochastic dimensionality reduction", October 2011
- Aravkin, Friedlander, Herrmann, and van Leeuwen, "Robust inversion, dimensionality reduction, and randomize sampling", November 2011

Email:

mpf@cs.ubc.ca

Surf:

http://www.cs.ubc.ca/~mpf