Randomized full-waveform inversion with compressive sensing

Xiang Li and Felix J. Herrmann

SLIM

University of British Columbia

Full-waveform

inversion

objective function:
$\min _{\mathbf{m}} \Phi(\mathbf{m}):=\left\{\frac{1}{2 K} \sum_{i=1}^{K}\left\|\mathbf{d}_{i}-\mathcal{F}_{i}[\mathbf{m}] \mathbf{q}_{i}\right\|_{2}^{2}=\frac{1}{2}\|\mathbf{D}-\mathcal{F}[\mathbf{m}] \mathbf{Q}\|_{F}^{2}\right\}$
$\mathbf{d}_{i}=$ monochromatic shot records
$\mathbf{q}_{i}=$ monochromatic sources
$\mathcal{F}_{i}\left[\mathbf{m}, \mathbf{q}_{i}\right]=$ monochromatic nonlinear forward operators

Gauss-Newton

GN subproblem:
$\min _{\mathbf{m}} \underline{\Phi}(\mathbf{m}):=\frac{1}{2}\|\underbrace{\mathbf{D}-\mathcal{F}[\mathbf{m} ; \mathbf{Q}]}_{\mathbf{b}}-\underbrace{\nabla \mathcal{F}[\mathbf{m} ; \mathbf{Q}]}_{\mathbf{A}} \delta \mathbf{m}\|_{F}^{2}$.
This is a least-squares problem:

linear operator

Dimensionality

reduction

$\min _{\mathbf{m}} \underline{\Phi}(\mathbf{m}):=\left\{\frac{1}{2 K^{\prime}} \sum_{i=1}^{K^{\prime}}\left\|\mathbf{D w}_{i}-\mathcal{F}_{i}[\mathbf{m}] \mathbf{w}_{i}\right\|_{2}^{2}=\frac{1}{2}\|\underline{\mathbf{D}}-\mathcal{F}[\mathbf{m} ; \underline{\mathbf{Q}}]\|_{F}^{2}\right\}$

GN subproblem:
$\min _{\mathbf{m}} \underline{\Phi}(\mathbf{m}):=\frac{1}{2}\|\underline{\mathbf{D}}-\mathcal{F}[\mathbf{m} ; \underline{\mathbf{Q}}]-\nabla \mathcal{F}[\mathbf{m} ; \underline{\mathbf{Q}}] \delta \mathbf{m}\|_{F}^{2}$.

Gauss-Newton

GN subproblem:

$$
\min _{\mathbf{m}} \quad \underline{\Phi}(\mathbf{m}):=\frac{1}{2}\|\underbrace{\underline{\mathbf{D}}-\mathcal{F}[\mathbf{m} ; \underline{\mathbf{Q}}]}_{\underline{\mathbf{b}}}-\underbrace{\nabla \mathcal{F}[\mathbf{m} ; \underline{\mathbf{Q}}]}_{\underline{\mathbf{A}}} \delta \mathbf{m}\|_{F}^{2} .
$$

This is a least-squares problem:

$$
n s^{\prime} \times n f^{\prime} \times n r
$$

Sparsity promotion

Modified GN subproblem (LASSO):

$$
\min _{\mathbf{X}} \frac{1}{2}\left\|\underline{\boldsymbol{D}}-\nabla \mathcal{F}[\mathbf{m} ; \underline{\mathbf{Q}}] \mathbf{S}^{H} \mathbf{x}\right\|_{F}^{2} \quad \text { subject to } \quad\|\mathbf{x}\|_{1} \leq \tau
$$

$$
\underline{\mathbf{b}} \quad \underline{\mathbf{A}} \mathbf{S}^{H} \mathbf{x}
$$

S is a sparsifying transform.

Sparse promotion

Modified GN subproblem (LASSO)

$$
\begin{gathered}
\min _{\mathbf{X}} \frac{1}{2}\left\|\underline{\boldsymbol{\delta} \mathbf{D}}-\nabla \mathcal{F}[\mathbf{m} ; \underline{\mathbf{Q}}] \mathbf{S}^{H} \mathbf{x}\right\|_{F}^{2} \quad \text { subject to } \\
\underline{\mathbf{b}} \quad \underline{\mathbf{A}} \mathbf{S}^{H} \mathbf{x}
\end{gathered}
$$

This is a least-squares problem:

Pareło curve

Compute \mathcal{T} using Pareto curve [van den Berg \& Friendlander, ${ }^{\text {'08 }}$]

Pareto curves

Newton

Instead of solving the full GN subproblem, we solve a series of dimensionality-reduced LASSO problems.

For each LASSO subproblem, we redraw a new random subset of (simultaneous) source experiments.

LASSO problem solved by Spectral Projected Gradient. Jacobian \& Hessian are never formed explicitly.

We use curvelets to sparsely represent geophysical model updates.

Modified Gauss-Newton

Algorithm 1: Dimensionality-reduced Gauss Newton with sparsity

Result: Output estimate for the model \mathbf{m}
$\mathbf{m} \longleftarrow \mathbf{m}_{0} ; k \longleftarrow 0 ; \quad / /$ initial model
while not converged do $\left\{\underline{\mathbf{D}}^{k}, \underline{\mathbf{Q}}^{k}\right\} \longleftarrow\left\{\mathbf{D} \mathbf{W}^{k}, \mathbf{Q} \mathbf{W}^{k}\right\}$ with $\mathbf{W}^{k} \in N(0,1) ; / /$ indep. draw. ${\underline{\delta \mathbf{D}^{k}}}^{k} \longleftarrow \underline{\mathrm{D}}^{k}-\mathcal{F}\left[\mathbf{m}^{k} ; \underline{\mathrm{Q}}^{k}\right] ; \quad / /$ residual $\tau^{k} \longleftarrow(1-\alpha)\left\|\underline{\mathbf{D}}^{k}\right\|_{F} /\left\|\nabla \mathcal{F}^{*}\left[\mathbf{m}^{k} ; \underline{\mathbf{Q}}^{k}\right] \underline{\delta \mathbf{D}^{k}}\right\|_{\infty} ; \quad / /$ one-norm LASSO $\delta \mathbf{x} \longleftarrow\left\{\begin{array}{l}\arg \min _{\delta \mathbf{x}} \frac{1}{2}\left\|\underline{\delta \mathbf{D}^{k}}-\nabla \mathcal{F}\left[\mathbf{m}^{k} ; \underline{\mathbf{Q}}^{k}\right] \delta \mathbf{x}\right\|_{F}^{2} \\ \text { subject to }\|\delta \mathbf{x}\|_{1} \leq \tau^{k}\end{array}\right.$
$\mathbf{m}^{k+1} \longleftarrow \mathbf{m}^{k}+\gamma^{k} \mathbf{C}^{*} \delta \mathbf{x} ; \quad / /$ update with linesearch $k \longleftarrow k+1 ;$
end

FWI results

Time-harmonic Helmholtz:

- 205×701 with mesh size of 10 m
- 9 point stencil [c. jo et.al., '96]
- absorbing boundary condition with damping layer with thickness proportional to wavelength
- solve wavefields on the fly with direct solver

FWI results

Split-spread surface-free 'land' acquisition:

- 350 sources with sampling interval 20 m
- 701 receivers with sampling interval 10 m
- maximal offset 7 km (3.5 X depth of model)
- Ricker wavelet with central frequency of I 2 Hz
- recording time for each shot is 3.6 s

FWI results

FWI:

- 10 overlapping frequency bands with 10 frequencies ($2.9 \mathrm{~Hz}-25 \mathrm{~Hz}$)
- 10 Gauss-Newton steps for each frequency band (solved with max 20 spectral-projected gradient iterations)

Results

True model

Results

Initial model

Results

Modified GN 7 sim. shots without renewals

25 times speedup compared to full GN

Results

Modified GN 7 sim. shots with renewals

25 times speedup compared to full GN

Results

Model error

Results

Modified GN I sim. shots with renewals

I 75 times speedup compared to full GN

Results

Modified GN I sim. shots without renewals

I 75 times speedup compared to full GN

Results

Model error

Results

Modified GN 7 seq. shots without renewals

25 times speedup compared to full GN

Results

Modified GN 7 seq. shots with renewals

25 times speedup compared to full GN

Results

Modified GN 7 sim. shots with renewals

25 times speedup compared to full GN

Results

Model error

Results

Modified GN 7 seq. shots without renewals

Results

Modified GN 7 seq. shots with renewals

marine acquisition: min offset 100 m ; max offset 3 km

Results

Model error

Results

Modified GN 7 seq. shots with renewals

Results

Batching LBFGS seq. shots [vanLeeuwen'।।]

Computational cost can be reduced significantly by using randomized dimensionality reduction.

High-resolution images can be attainable by using sparsity promotion.

LASSO problems maintain fast decrease in residual while preserving sparsity of the solution.

Simultaneous shots produce less source cross-talk artifacts.
Renewals lead to significant improvements-especially for random subsets of sequential shots.

Acknowledgments

We would like to thank Charles Jones from BG for providing us with the BG Compass model. This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R8I254) and the Collaborative Research and Development Grant DNOISE II (375 142-08).

This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BP, BGP, Chevron, ConocoPhillips, Petrobras, PGS, Total SA, and WesternGeco.

Thank you

slim.eos.ubc.ca

Further reading

Compressive sensing

- Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information by Candes, 06.
- Compressed Sensing by D. Donoho, '06
- Curvelets and Wave Atoms for Mirror-Extended Images by L. Demanet, L.Ying, 07.

Simultaneous acquisition

- A new look at simultaneous sources by Beasley et. al., '98.
- Changing the mindset in seismic data acquisition by Berkhout '08.

Simultaneous simulations, imaging, and full-wave inversion:

- Faster shot-record depth migrations using phase encoding by Morton \& Ober, '98.
- Phase encoding of shot records in prestack migration by Romero et. al., '00.
- Efficient Seismic Forward Modeling using Simultaneous Random Sources and Sparsity by N. Neelamani et. al., '08.
- Compressive simultaneous full-waveform simulation by FJH et. al., '09.
- Fast full-wavefield seismic inversion using encoded sources by Krebs et. al., '09
- Randomized dimensionality reduction for full-waveform inversion by FJH \& X. Li, 'IO

Stochastic optimization and machine learning:

- A Stochastic Approximation Method by Robbins and Monro, I95I
- Neuro-Dynamic Programming by Bertsekas, '96
- Robust stochastic approximation approach to stochastic programming by Nemirovski et. al., '09
- Stochastic Approximation and Recursive Algorithms and Applications by Kushner and Lin
- Stochastic Approximation approach to Stochastic Programming by Nemirovski
- An effective method for parameter estimation with PDE constraints with multiple right hand sides. by Eldad Haber, Matthias Chung, and Felix J. Herrmann.' 10

[^0]
[^0]: Tuesday, 6 December, 11

