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Full-waveform 
inversion

objective function:

di = monochromatic shot records
qi = monochromatic sources

Fi[m,qi] = monochromatic nonlinear forward operators

minm �(m) :=
�

1
2K

�K
i=1 �di � Fi[m]qi�2

2 = 1
2�D�F [m]Q�2

F

�
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Gauss-Newton
GN subproblem:

This is a least-squares problem:

large
over-

determined
linear 

operator

Lateral distance (Km)

D
ep

th
 (K

m
)
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Dimensionality 
reduction

minm �(m) :=

�
�

�
1

2K �

K��

i=1

�Dwi � Fi[m]wi�2
2 =

1
2
�D�F [m;Q]�2

F

�
�

�
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GN subproblem: 

min
m

�(m) :=
1
2
�D�F [m;Q]��F [m;Q]�m�2F .

Tuesday, 6 December, 11



SLIM

Gauss-Newton
GN subproblem:

This is a least-squares problem:

Lateral distance (Km)
D

ep
th

 (K
m

)
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Sparsity promotion
Modified GN subproblem (LASSO):

S is a sparsifying transform.

under-determined
linear operator

Lateral distance (Km)
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Sparse promotion

under-determined
linear operator

Lateral distance (Km)
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Pareto curve
Compute      using Pareto curve [van den Berg & Friendlander, ’08 ]
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Projected gradient. Our application of the SPG algorithm to solve (LSτ ) follows
Birgin, Mart́ınez, and Raydan [5] closely for the minimization of general nonlinear
functions over arbitrary convex sets. The method they propose combines projected-
gradient search directions with the spectral step length that was introduced by Barzilai
and Borwein [1]. A nonmonotone line search is used to accept or reject steps. The
key ingredient of Birgin, Mart́ınez, and Raydan’s algorithm is the projection of the
gradient direction onto a convex set, which in our case is defined by the constraint
in (LSτ ). In their recent report, Figueiredo, Nowak, and Wright [27] describe the
remarkable efficiency of an SPG method specialized to (QPλ). Their approach builds
on the earlier report by Dai and Fletcher [18] on the efficiency of a specialized SPG
method for general bound-constrained quadratic programs (QPs).

2. The Pareto curve. The function φ defined by (1.1) yields the optimal value
of the constrained problem (LSτ ) for each value of the regularization parameter τ .
Its graph traces the optimal trade-off between the one-norm of the solution x and
the two-norm of the residual r, which defines the Pareto curve. Figure 2.1 shows the
graph of φ for a typical problem.

The Newton-based root-finding procedure that we propose for locating specific
points on the Pareto curve—e.g., finding roots of (1.2)—relies on several important
properties of the function φ. As we show in this section, φ is a convex and differentiable
function of τ . The differentiability of φ is perhaps unintuitive, given that the one-
norm constraint in (LSτ ) is not differentiable. To deal with the nonsmoothness of
the one-norm constraint, we appeal to Lagrange duality theory. This approach yields
significant insight into the properties of the trade-off curve. We discuss the most
important properties below.

2.1. The dual subproblem. The dual of the Lasso problem (LSτ ) plays a
prominent role in understanding the Pareto curve. In order to derive the dual of
(LSτ ), we first recast (LSτ ) as the equivalent problem

(2.1) minimize
r,x

‖r‖2 subject to Ax + r = b, ‖x‖1 ≤ τ.
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Fig. 2.1. A typical Pareto curve (solid line) showing two iterations of Newton’s method. The
first iteration is available at no cost.

�v(0)

v(0)

� � (�� 1)v(0)/v�(0)

v0(0) = �krF⇤[m;Q] (D�F [m;Q]) k1

�
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Modified Gauss 
Newton

Instead of solving the full GN subproblem, we solve a series 
of dimensionality-reduced  LASSO problems.

For each LASSO subproblem, we redraw a new random 
subset of (simultaneous) source experiments.

LASSO problem solved by Spectral Projected Gradient.

Jacobian & Hessian are never formed explicitly.

We use curvelets to sparsely represent geophysical model 
updates.
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Modified Gauss-Newton
Algorithm 1: Dimensionality-reduced Gauss Newton with sparsity

Result: Output estimate for the model m
m  � m0; k  � 0 ; // initial model

while not converged do

{Dk,Qk} � {DW

k,QW

k} with W

k 2 N(0, 1) ; // indep. draw.

�Dk  � D

k �F [mk;Qk]; // residual

⌧k  � (1� ↵) k�DkkF / krF⇤[mk;Qk]�Dkk1; // one-norm LASSO

�x �
(
argmin�x

1
2k�D

k �rF [mk;Qk]�xk2F
subject to k�xk1  ⌧k

m

k+1  �m

k + �k
C

⇤�x ; // update with linesearch

k  � k + 1;
end
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FWI results

Time-harmonic Helmholtz:

• 205 X 701 with mesh size of 10m

• 9 point stencil [C. Jo et. al., ’96]

• absorbing boundary condition with damping layer with 
thickness proportional to wavelength

• solve wavefields on the fly with direct solver

Tuesday, 6 December, 11
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FWI results
Split-spread surface-free ‘land’ acquisition:

• 350 sources with sampling interval 20m

• 701 receivers with sampling interval 10m

• maximal offset 7km (3.5 X depth of model)

• Ricker wavelet with central frequency of 12Hz

• recording time for each shot is 3.6s

Tuesday, 6 December, 11
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FWI results
FWI:

• 10 overlapping frequency bands with 10 frequencies
(2.9Hz-25Hz)

• 10 Gauss-Newton steps for each frequency band
(solved with max 20 spectral-projected gradient iterations)

[Bunks ‘95; Pratt ’98 ]
Tuesday, 6 December, 11
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Results

True model
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Results

Initial model
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Results

Modified GN 7 sim. shots without renewals 

25 times speedup compared to full GN
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Results

Modified GN 7 sim. shots with renewals

25 times speedup compared to full GN
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Results Model error
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Results

Modified GN 1 sim. shots with renewals

175 times speedup compared to full GN
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Results

Modified GN 1 sim. shots without renewals

175 times speedup compared to full GN
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Results Model error
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Results

Modified GN 7 seq. shots without renewals

25 times speedup compared to full GN
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Results

Modified GN 7 seq. shots with renewals

25 times speedup compared to full GN
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Results

Modified GN 7 sim. shots with renewals

25 times speedup compared to full GN
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Results Model error
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Results

Modified GN 7 seq. shots without renewals

marine acquisition:  min offset 100m;  max offset 3km 
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Results

Modified GN 7 seq. shots with renewals

marine acquisition:  min offset 100m;  max offset 3km 
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Results Model error
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Results

Modified GN 7 seq. shots with renewals
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Results

Batching LBFGS seq. shots [vanLeeuwen ’11 ]
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Conclusions

Computational cost can be reduced significantly by using randomized 
dimensionality reduction.

High-resolution images can be attainable by using sparsity 
promotion.

LASSO problems maintain fast decrease in residual while 
preserving sparsity of  the solution. 

Simultaneous shots produce less source cross-talk artifacts.

Renewals lead to significant improvements-especially for random 
subsets of sequential shots.
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Further reading
Compressive sensing

– Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information by Candes, 06.

– Compressed Sensing by D. Donoho, ’06
– Curvelets and Wave Atoms for Mirror-Extended Images by L. Demanet, L. Ying, 07.

Simultaneous acquisition

– A new look at simultaneous sources by Beasley et. al., ’98.
– Changing the mindset in seismic data acquisition by Berkhout ’08.

Simultaneous simulations, imaging, and full-wave inversion:

– Faster shot-record depth migrations using phase encoding by Morton & Ober, ’98.
– Phase encoding of shot records in prestack migration by Romero et. al., ’00.

– Efficient Seismic Forward Modeling using Simultaneous Random Sources and Sparsity by N. Neelamani et. al., ’08.

– Compressive simultaneous full-waveform simulation by FJH et. al., ’09.
– Fast full-wavefield seismic inversion using encoded sources by Krebs et. al., ’09

– Randomized dimensionality reduction for full-waveform inversion by FJH & X. Li, ’10

l Stochastic optimization and machine learning:

– A Stochastic Approximation Method by Robbins and Monro, 1951

– Neuro-Dynamic Programming by Bertsekas, ’96
– Robust stochastic approximation approach to stochastic programming by Nemirovski et. al., ’09

– Stochastic Approximation and Recursive Algorithms and Applications by Kushner and Lin
– Stochastic Approximation approach to Stochastic Programming by Nemirovski

– An effective method for parameter estimation with PDE constraints with multiple right hand sides. by Eldad Haber, Matthias Chung, 
and Felix J. Herrmann. ’10
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