
Aleksandr Aravkin*
saravkin@eos.ubc.ca

Joint work with 
Xiang Li*, Felix J. Herrmann*, Tristan van Leeuwen*.

*Seismic Laboratory for Imaging & Modeling
Department of Earth & Ocean Sciences
The University of British Columbia

Sparsity-promoting GN method
 

Sindad Consortium
Whistler, 2011

Tuesday, 6 December, 11

Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0).
Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

mailto:ghennenfent@eos.ubc.ca
mailto:ghennenfent@eos.ubc.ca


Seismic Laboratory for Imaging and Modeling

Outline
l FWI Mathematical Formulation

– Convex-composite structure of inverse problem

l Quick Review of Gauss-Newton (GN) Method

l Motivations for extensions and modifications
– Overwhelming data volume
– Ill-posed problem and need for regularization

l Overview of Modified Gauss-Newton Method 
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Nonlinear Least Squares Formulation
l We consider inverse problems of the form

l Objective below is Convex-Composite:

min
m

�(x) = kD�F(m; Q)k2
F =

mX

i=1

kdi �F(m)qik
2
2

D = F(m; Q) + ✏

D n⇥m matrix of observations

Q l ⇥m array of source parameters

m parameters to be recovered

F(m; Q) Forward model (calculated data)

✏ Model for error, typically Gaussian i.i.d.
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Overview of Gauss-Newton method

l Gauss-Newton method respects the convex-composite structure:

l Objective: 

l Iterated algorithm:

l Update         solves 

mk+1 = mk + ↵k�m

�m

minm �(m) = kD�F(m; Q)k2
F

min
�m

kD�F [mk;Q]�rF [mk;Q]�mk2F
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Challenges and Solutions

l Overwhelming data volume motivates Dimensionality Reduction 
– Simultaneous shots (random mixtures of right hand sides)
– Random sequential shots (for marine acquisition)

l FWI is an Ill-Posed problem
– Many potential solutions explain the same data
– Different optimization algorithms may go to different solutions from the same 

initial model. 

l Challenge is to design methods that 
– take advantage of prior knowledge to go to the RIGHT solution!
– work well in a dimensionality reduction regime 
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Dimensionality Reduction Revisited

l Taking W to be Gaussian corresponds to simultaneous shots

l Taking W to be random columns of I gives sequential shots

l To reduce dimensionality, we can work with: 

=W

�(x) = kD�F(m; Q)k2
F , D = DW , Q = QW

D�F(m; Q) DW �F(m; QW)
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Gauss-Newton Method Revisited

l Focus on a dimensionality reduced problem:

l Objective: 

l Iterated algorithm:

l We can modify the Gauss-Newton subproblem in a number ways, 
and still prove convergence of the algorithm:  

mk+1 = mk + ↵k�m

�m solves min

�m
kD�F [mk

;Q]�rF [mk
;Q]�mk2F

subject to k�mk  ⌧k

minm �(m) = kD�F(m; Q)k2
F
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Promoting Curvelet Sparsity of UPDATES

l Idea: replace usual GN subproblem with a LASSO problem:

l CS-Perspective (Dim. Red.): we are trying to recover the TRUE 
Gauss-Newton update from a subsampled data volume.  

l Regularization perspective (Ill-Posed): We force the Gauss-
Newton subproblem to stop early, and customize it to promote 
sparsity of updates. 

l Both perspectives exploit curvelet sparsity of updates.

miny kD�F [mk;Q]�rF [mk;Q] C⇤y|{z}
�m

k2F

s.t. kyk1  ⌧
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Why Curvelet Sparsity of Updates? 

l Expression for monochromatic FWI gradient: 

– This gradient can be interpreted as a ‘correlation’ of forward an adjoint 
wavefields, and hence is still compressible in curvelets, even when the current 
model estimate is far from the truth.

l Closed form expression for Gauss-Newton update:

–  Action of Gauss-Newton Hessian or its inverse is diagonal in phase space, so 
preserves the sparsity of the gradient in curvelets. 

@mi�(m) = v̄⇤ @H[m]
@mi

ū

�m = �
�
rF [m;Q]T F [m;Q]T

��1r�(m)
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