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Outline

® Robust FWI

— Motivation and statistical insight
— Robust FWI formulations, with focus on Student’s t
— Results on synthetic data (including implementation at Total)

® Robust Source Estimation
— General formulation (includes Student’s t, Huber, hybrid, etc formulations).
— Generalized Variable Projection Approach
— Specific implementations and examples
— Proof of concept numerics
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Nonlinear Least Squares Formulation

® \Ve consider inverse problems of the form

D=F(m;Q) + e

D n X m matrix of observations

Q [ X m array of source parameters

m parameters to be recovered
F(m; Q) Forward model (calculated data)

€ Model for error, typically Gaussian i.i.d.

® Choice of Gaussian error leads to least squares formulation:

min ®(m) = || D — F(m; Q) |7 = > _[Id; — F(m)q, |3

Im
1=1

R (m) ri(m)
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Statistical Perspective for Least Squares

® The NLLS formulation is equivalent to the following statistical
model:

D = Fm;Q|+e€

e ~ N(O,T7)
® Equivalence follows from maximum likelihood estimate for model
parameters:
1 2
L(m) o exp 5 |D — F|m; Q]H
F

® Minimizing the negative log likelihood is exactly the FWI problem.

® Statistical perspective explains why least squares are sensitive to
outliers and artifacts in the datal
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Sensitivity to Outliers in Gaussian Regime

® |arge deviations from the mean are VERY unlikely in the Gaussian

model: G :
aussian
p(|lx| > 40) 6.3 x 107°
p(|x| > 80) 1.3 x 107+
p(lz| > 8o|lz| > 40) | 2.1 x 1071

® Observations more than 4 standard deviations away from the mean
occur less than .006 percent of the time.

® Even when we KNOW we have an outlier 4 standard deviations
away, we still believe it is impossible for the outlier to be more than
8 standard deviations away!

® [ow likelihood values correspond to HIGH penalties for outliers.
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Motivation for Robust Formulations

® Errors in measurement, e.g. equipment malfunction
® Missing data: measurement instruments may fail to record

® Even more important: unexplained “artifacts” in the data! A lot of
effort is routinely devoted to

— Data cleaning to remove unexplained artifacts

— Complex forward model design to explain such artifacts e.g. acoustic vs. elastic
VS. anisotropic

® \Why not use robust fitting methods with cheaper modeling?
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Modeling from the Statistical Perspective

® Ve can alter the assumptions on the model error:

D = Fm;Q|+e€, €hasdensity p
Gaussian L(A=1) T(k=3)
p(|z| > 40) 6.3 x 107° 0.02 0.6 x 10~ 2
p(|z| > 80) 1.3 x 1071 | 3.3x107* | 8.1 x 1074
p(lz| > 8o||lz| > 40) | 2.1 x 1071 0.02 0.14

® | aplace/Huber have heavier tails than the Gaussian...

® But Student’s t-density (3rd column) is heavy tailed.

Tuesday, 6 December, 11




Some Previous Work

® Robust statistical work has a long history (I've seen references to
1930’s). A few useful ‘Robust statistics’ books:

— Huber 1981
— Hampel et al (2003)
— Marona et al, (2006)

® For robust penalties in Seismic, see

— Huber: Guitton & Symes, 2003
— Huber and L1: Brossier, Operto, Virieux 2009, 2010
— Hybrid: Bube, 2007.

® Ve are particularly interested in Student’s t distribution. See
— Lange 1989, general paper applying student’s t formulations to regression
— Fahrmeir 1998, Robust kalman smoothing using Student’s t

® |n our experience, Student’s t works well for structured inverse
problems in nonlinear Kalman smoothing, computer vision
applications, and FWI.
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From the Statistics to the Formulation

® Formulate maximum a posteriori (MAP) problem:

D = Fm;Q|+ €, e€hasdensity p
f(R) = —log(p)

® MAP solution can be found by solving

min ®(m) := f (D — F|m; Q|)

Im

- Nus: €~ N(0,I) <= @(m) = ||D - Fm; Q]|

® Theorem: heavy tailed densities correspond to nonconvex f!
— Aravkin, Friedlander, Herrmann, and van Leeuwen, 2011.
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Densities, Penalties, and Influence Functions
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FWI Using Student’s t-distribution

INLEY (e — u) ’
DENSITY: p(E‘/L,O‘, k) — O'F(g) [k <1+ ko? )
—(k+1)
FOR FWI: plelpu=0,0 =1,k) « (k + 62) i

RoBUST OBJECTIVE:

1
min (I)St( ) k—l_ ZZIOg k—l_ rlJ )

Im
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Gradient Comparison

LEAST SQUARES:

(44

V&(m) = ! LLV}' m qw] (D — ]:[m,qij])

21]1

STUDENT’S T:

. VFm qw] (Dij — Fm, q;;])

Vs (m) = 2 )

i=1 j=1 _f.[maqij])Q
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Marmoussi with 50% data corrupted at random
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Histograms of residual magnitudes:
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Marmoussi, LS fit, 50% corrupted data
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Marmoussi, Huber fit, 50% corrupted data
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Marmoussi: T fit, 50% corrupted data
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Marmoussi: LS fit, corrupted data ignored

Seismic Laboratory for Imaging and Modeling

Tuesday, 6 December, 11



Marmoussi ll: Total Implementation
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Results: Least Squares with GOOD data, 4Hz
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Results: Least Squares with BAD data, 4 Hz




Results: Student’s t with BAD data, 10 DF, 4Hz
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Results: Least Squares with GOOD data
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Source Estimation for Robust Formulations

® \Ve consider general inverse problems of the form

min ®(m, o) Z¢z (ri(m, o;)) ,

m,

ri(m, a;) : = di — o; Fi(m)q;

d; n X 1 shot record

q; [ x 1 source

m parameters to be recovered
Fi(m) | Forward model (calculated data)

o Unknown source amplitude

O Smooth misfit function (robust)

® Ve estimate source amplitudes and model parameters jointly.
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Generalized Variable Projection Approach

® For fixed model parameters, obtain a function of amplitudes only:
Try

plar) = Z@(I‘i(ﬁl , Q7))

® Find the optimal amplitudes by minimizing this function:

® One can easily show that as long as misfit is smooth,
Vé(m,ax(m)) = Vi P(m, &)

— As long as amplitudes are re-estimated at each step, we iterate as usual, and
still converge to a minimum of the joint objective.

— The key now is to solve the amplitude-only problem FAST.

Tuesday, 6 December, 11



Newton Method for Amplitude-Only Problem

® For each amplitude, implement (scalar) Newton’s method:

ozf“ — oc,]f -+ s,]fd,]f
S Voln(m,al) T F (m)a,
Z | F s (m)aq;|3

— When misfit is least squares, this method converges in one iteration and reduces
to standard source estimation formula.

— In general, good solutions are obtained in 5 to 10 iterations, so general source
estimation requires only a little more effort than LS source estimation.

— When the Hessian is not positive definite (Student’s t), it is easy to adjust.

— Updates to amplitudes to not require any forward modeling - note that model is
fixed throughout the entire process.
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Source Estimation for Student’s t-Formulation

Oéiﬂ‘l — ()47]/.{ _ TZJ fw /Z Z]
® Full algorithm: ] k =+ (
fig = (fi(m)Qi)j
rfj = di; — o (Fi(m)q;)’

® Hessian for Student’s t misfit is NOT positive definite, but we use a
simple modification to design a nice method.

® |n practice, the method converges in just a few iterations, without a
line search.

® |t took just a few hours to implement Student’s t source estimation
iIn @ massively parallel FWI code at Total, thanks to Henri Calandra.
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Proof of Concept

® \We perform a simple experiment:

1) We generate vectors of observed and predicted data randomly.
2) We estimate source amplitude using LS and Student’s t methods.

(
(
(3) We add ‘outliers’ to a portion of the data
(

4) We re-estimate the source using LS and Student’s t, and compare.

® Results: for vectors of 100,000 measurements, we generated
outliers 10000 times larger than actual data points.

LS Error (%) | T Error (%)
Good data 0 ~ 1%
10 outliers ~ 1000% ~ 1%
100 outliers ~ 9000% ~ 1%
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Conclusions

® Robust formulations to FWI that are able to ignore LARGE
unexplained artifacts in the data.

® A particularly robust approach is obtained using heavy tailed
densities, such as the Student’s t, and corresponding non-convex
penalties.
— It is easy to modify an existing code base to solve the Student’s t FWI problem!

® \Ve have also derived a general methodology for robust source
estimation using variable projection, and applied it to Robust FWI
with Student’s t.

® Future work includes strategies for automated estimation of
degrees of freedom parameters k and uncertainty quantification.
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Marmoussi Example

o \We consider a subset of the Marmoussi model
e 151 shots, 301 receivers

o 9pt. discretization of Helmholtz operator with absorbing boundary; 10 m.
spacing on grid

« Sample of Frequencies [5.0, 6.0, 11.5, 14.0, 15.5, 17.5, 23.5] Hz
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