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Outline

l Robust FWI
– Motivation and statistical insight
– Robust FWI formulations, with focus on Student’s t
– Results on synthetic data (including implementation at Total)

l Robust Source Estimation
– General formulation (includes Student’s t, Huber, hybrid, etc formulations). 
– Generalized Variable Projection Approach
– Specific implementations and examples
– Proof of concept numerics
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Nonlinear Least Squares Formulation
l We consider inverse problems of the form

l Choice of Gaussian error leads to least squares formulation:

D = F(m; Q) + ✏

D n⇥m matrix of observations

Q l ⇥m array of source parameters

m parameters to be recovered

F(m; Q) Forward model (calculated data)

✏ Model for error, typically Gaussian i.i.d.

minm �(m) = kD�F(m; Q)| {z }
R(m)

k2
F =

mX

i=1

kdi �F(m)qi| {z }
ri(m)

k2
2
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Statistical Perspective for Least Squares
l The NLLS formulation is equivalent to the following statistical 

model:  

l Equivalence follows from maximum likelihood estimate for model 
parameters:

l Minimizing the negative log likelihood is exactly the FWI problem. 

l Statistical perspective explains why least squares are sensitive to 
outliers and artifacts in the data! 

D = F [m;Q] + ✏

✏ ⇠ N(0, I)

L(m) / exp

✓
�1

2

���D�F [m;Q]

���
2

F

◆
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Sensitivity to Outliers in Gaussian Regime
l Large deviations from the mean are VERY unlikely in the Gaussian 

model: 

l Observations more than 4 standard deviations away from the mean 
occur less than .006 percent of the time. 

l Even when we KNOW we have an outlier 4 standard deviations 
away, we still believe it is impossible for the outlier to be more than 
8 standard deviations away!

l Low likelihood values correspond to HIGH penalties for outliers. 

Gaussian
p(|x| > 4�) 6.3⇥ 10�5

p(|x| > 8�) 1.3⇥ 10�15

p(|x| > 8�

���|x| > 4�) 2.1⇥ 10�11
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Motivation for Robust Formulations

l Errors in measurement, e.g. equipment malfunction

l Missing data: measurement instruments may fail to record

l Even more important: unexplained “artifacts” in the data! A lot of 
effort is routinely devoted to 

– Data cleaning to remove unexplained artifacts 
– Complex forward model design to explain such artifacts e.g. acoustic vs. elastic 

vs. anisotropic

l Why not use robust fitting methods with cheaper modeling?  
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Modeling from the Statistical Perspective

l We can alter the assumptions on the model error:

l Laplace/Huber have heavier tails than the Gaussian... 

l But Student’s t-density (3rd column) is heavy tailed. 

D = F [m;Q] + ✏ , ✏ has density p

Gaussian L(� = 1) T (k = 3)
p(|x| > 4�) 6.3⇥ 10�5 0.02 0.6⇥ 10�2

p(|x| > 8�) 1.3⇥ 10�15 3.3⇥ 10�4 8.1⇥ 10�4

p(|x| > 8�

���|x| > 4�) 2.1⇥ 10�11 0.02 0.14
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Some Previous Work

l Robust statistical work has a long history (I’ve seen references to 
1930’s). A few useful ‘Robust statistics’ books: 

– Huber 1981
– Hampel et al (2003)
– Marona et al, (2006)

l For robust penalties in Seismic, see 
– Huber:                 Guitton & Symes, 2003
– Huber and L1:   Brossier, Operto, Virieux 2009, 2010 
– Hybrid:                Bube, 2007.

l We are particularly interested in Student’s t distribution. See
– Lange 1989, general paper applying student’s t formulations to regression
– Fahrmeir 1998, Robust kalman smoothing using Student’s t

l In our experience, Student’s t works well for structured inverse 
problems in nonlinear Kalman smoothing, computer vision 
applications, and FWI. 
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From the Statistics to the Formulation

l Formulate maximum a posteriori (MAP) problem:

l MAP solution can be found by solving

– NLLS:  

l Theorem: heavy tailed densities correspond to nonconvex f!
– Aravkin, Friedlander, Herrmann, and van Leeuwen, 2011. 

✏ ⇠ N(0, I) () �(m) = kD�F [m; Q]k2F

D = F [m;Q] + ✏ , ✏ has density p
f(R) = � log(p)

minm �(m) := f (D�F [m;Q])
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Densities, Penalties, and Influence Functions

� log(·)

Densities Penalties

d/dx(·)

Influence fncs.

Gaussian

Laplace

Student’s t
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FWI Using Student’s t-distribution

p(✏|µ, �, k) =
�(k+1

2 )
��(k

2 )
p

⇡k

✓
1 +

(✏� µ)2

k�2

◆�(k+1)
2

Density:

Robust Objective:

p(✏|µ = 0, � = 1, k) /
�
k + ✏2

��(k+1)
2For FWI:

minm �St(m) :=

k + 1

2

mX

i=1

nX

j=1

log

�
k +

�
rij)2

�
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Gradient Comparison

Least Squares:

Student’s t: 

r�(m) =
1
2

mX

i=1

nX

j=1

rF [m,qij ]
T

�
Dij �F [m,qij ]

�

r�St(m) =
1
2

mX

i=1

nX

j=1

rF [m,qij ]T
�
Dij �F [m,qij ]

�

k + (Dij �F [m, qij ])2
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Marmoussi with 50% data corrupted at random
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Figure 2: (a) true model [s2/km2]. (b) initial model [s2/km2] and (c) true reflectivity.
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Figure 3: (a) data slice at 15 Hz with spiky noise, (b) source-receiver mask.
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Figure 4: Inversion result (difference with initial model) with least-squares (a), Huber (b) and Students T (c) misfit for data with
spiky noise.
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Figure 5: Inversion result (difference with initial model) with least-squares (a), Huber (b) and Students T (c) misfit for incomplete
data. Both robust approaches recover well. The Huber result shows some minor artifacts that are not present in the more robust
Students T formulation.
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Histograms of residual magnitudes:
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Marmoussi, LS fit, 50% corrupted data
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Marmoussi, Huber fit, 50% corrupted data
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Marmoussi: T fit, 50% corrupted data
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Marmoussi: LS fit, corrupted data ignored
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Marmoussi II: Total Implementation

Initial Model, 4 Hz
20% Corrupted Data
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Results: Least Squares with GOOD data, 4Hz
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Results: Least Squares with BAD data, 4 Hz
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Results: Student’s t with BAD data, 10 DF, 4Hz
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Results: Least Squares with GOOD data
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Source Estimation for Robust Formulations
l We consider general inverse problems of the form

l We estimate source amplitudes and model parameters jointly.

di n⇥ 1 shot record

qi l ⇥ 1 source

m parameters to be recovered

F i(m) Forward model (calculated data)

↵i Unknown source amplitude

�i Smooth misfit function (robust)

minm,↵
�(m, ↵) =

mX

i=1

�i (ri(m, ↵i)) ,

ri(m, ↵i) : = di � ↵iF i(m)qi
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Generalized Variable Projection Approach

l For fixed model parameters, obtain a function of amplitudes only:

l Find the optimal amplitudes by minimizing this function:

l One can easily show that as long as misfit is smooth, 

– As long as amplitudes are re-estimated at each step, we iterate as usual, and 
still converge to a minimum of the joint objective.

– The key now is to solve the amplitude-only problem FAST.

⇢(↵) =
mX

i=1

�i(ri(m̂ , ↵i))

r�(m, ↵(m)) = rm�(m, ↵̂)

↵̂ = argmin
↵

mX

i=1

�i(ri(m̂ , ↵i))
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Newton Method for Amplitude-Only Problem
l For each amplitude, implement (scalar) Newton’s method: 

– When misfit is least squares, this method converges in one iteration and reduces 
to standard source estimation formula. 

– In general, good solutions are obtained in 5 to 10 iterations, so general source 
estimation requires only a little more effort than LS source estimation. 

– When the Hessian is not positive definite (Student’s t), it is easy to adjust. 

– Updates to amplitudes to not require any forward modeling - note that model is 
fixed throughout the entire process. 

↵k+1
i = ↵k

i + sk
i dk

i

dk
i = �r�i(ri(m̂, ↵k

i ))T F i(m̂)qi

kF i(m̂)qik2H
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Source Estimation for Student’s t-Formulation

l Full algorithm: 

l Hessian for Student’s t misfit is NOT positive definite, but we use a 
simple modification to design a nice method. 

l In practice, the method converges in just a few iterations, without a 
line search. 

l It took just a few hours to implement Student’s t source estimation 
in a massively parallel FWI code at Total, thanks to Henri Calandra.

↵k+1
i = ↵k

i �
X

j

rk
ijfij

k + (rk
ij)2

. X

j

f2
ij

k + (rk
ij)2

fij = (F i(m)qi)j

rk
ij = dij � ↵i(F i(m)qi)j
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Proof of Concept
l We perform a simple experiment: 

– (1) We generate vectors of observed and predicted data randomly. 
– (2) We estimate source amplitude using LS and Student’s t methods. 
– (3) We add ‘outliers’ to a portion of the data
– (4) We re-estimate the source using LS and Student’s t, and compare. 

l Results: for vectors of 100,000 measurements, we generated 
outliers 10000 times larger than actual data points. 

LS Error (%) T Error (%)

Good data 0 ⇡ 1%

10 outliers ⇡ 1000% ⇡ 1%

100 outliers ⇡ 9000% ⇡ 1%
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Conclusions

l Robust formulations to FWI that are able to ignore LARGE 
unexplained artifacts in the data.  

l A particularly robust approach is obtained using heavy tailed 
densities, such as the Student’s t, and corresponding non-convex 
penalties. 

– It is easy to modify an existing code base to solve the Student’s t FWI problem! 

l We have also derived a general methodology for robust source 
estimation using variable projection, and applied it to Robust FWI 
with Student’s t.

l Future work includes strategies for automated estimation of 
degrees of freedom parameters k and uncertainty quantification. 
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• We	
  consider	
  a	
  subset	
  of	
  the	
  Marmoussi	
  model

• 151	
  shots,	
  301	
  receivers

• 9	
  pt.	
  discretization	
  of	
  Helmholtz	
  operator	
  with	
  absorbing	
  boundary;	
  10	
  m.	
  
spacing	
  on	
  grid	
  

• Sample	
  of	
  Frequencies	
  	
  [5.0,	
  6.0,	
  11.5,	
  14.0,	
  15.5,	
  17.5,	
  23.5]	
  Hz

Marmoussi Example
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