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Outline

Sparsity promotion in geophysics via SPG`1

a few examples of sparsity promotion in geophysics
exploiting Pareto tradeoff curve and inexact Newton method

Dimensionality Reduction for Sparsity Promotion
simultaneous and sequential subsampling
modifying SPG`1 to take advantage of dimensionality reduction

Simultaneous Estimation of Green’s Function and Source Wavelet
theoretical formulation
current implementation and joint optimality conditions

Robust and Sparsity Promoting Formulations
motivating application: basis pursuit denoise with huber
generalized analysis of the SPG`1 framework
inexact Secant method
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SPARSITY PROMOTION FOR
GEOPHYSICS USING SPG`1



Seismic Acquisition

Data are acquired in the field using thousands of source experiments. For
every source experiment, time traces are obtained by an array of receivers.
Seismic surveys take months to complete, and full data volume is
overwhelming.
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Missing Traces Interpolation

BPσ: min ‖x‖1 st ‖b − RC ∗x‖2 ≤ σ

Problem Specification

b seismic shot gathers with missing traces

C Curvelet transform

R Restriction to available data

x curvelet coefficients of the data

σ error level

Results
Missing traces can be recovered.
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Sparse Formulation for Migration

BPσ: min ‖x‖1 st ‖r − J ∗C ∗x‖2 ≤ σ

Problem Specification

r residual at smooth model estimate

m smooth velocity estimate

J Jacobian of forward model

C Curvelet transform

x curvelet coefficients of the update

σ error level

Results
Improved recovery compared to LS inversion for
subsampled data (Xiang Li’s presentation).
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Pareto curve: [Berg & F., 2008, 2011]

BPσ: min ‖x‖1 st 1
2‖Ax − b‖2

2 ≤ σ

LSτ : min 1
2‖Ax − b‖2

2 st ‖x‖1 ≤ τ

The key is the value function

v(τ) := min
‖x‖1≤τ

1
2‖Ax − b‖2

2

1
2‖Ax − b‖2

2

‖x‖1

(τ, σ)

Algorithm
1 Evaluate v(τ) by solving LSτ inexactly projected gradient

2 Compute v′(τ) inexactly duality theory

3 Solve v(τ) = σ Inexact Newton’s method
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Root Finding: v(τ) = σ

Approximately solve
minimize 1

2‖Ax − b‖2
2

subj to ‖x‖1 ≤ τk

Approximate values
obtain approximate vk , v′k

Newton update
τk+1 ← τk − (vk − σ)/v′k

Warm starts on iterates
Slowly include non-zero components into the vector x.
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DIMENSIONALITY REDUCTION
FOR BPDN



Structure of Seismic LASSO Problems
In least squares migration, the LASSO problem

LSτ : min φ(x) := 1
2‖Ax − b‖2

2 st ‖x‖1 ≤ τ

has special structure:

φ(x) = 1
2
‖∇F [m0;Q]︸ ︷︷ ︸

A

δm︸︷︷︸
x

− δd︸︷︷︸
b

‖2
F

Because of problem size, we want to work with dimensionality reduced
problems:

min φ̃(x) := 1
2‖∇F [m0; Q̃]︸ ︷︷ ︸

Ã

δm︸︷︷︸
x

− δ̃D︸︷︷︸
b̃

‖2
F

st ‖x‖1 ≤ τ

where
Q̃ = QW , δ̃D = δDW

for some random matrix W. Subsampled LASSO problems use k
n of the

full volume, where k is the number of columns in W.
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Stochastic Root Finding: v(τ) = σ

Approximately solve
ṽk = min ‖Ãx − b̃‖2

2

subj to ‖x‖1 ≤ τk

Sampling Schemes
Easy to sample so that
vk = ‖Ax̄ − b‖2

2 = E[‖Ãx̄ − b̃‖2
2]

and
AT(Ax̄ − b) = E[ÃT(Ãx̄ − b̃)]

Approximate values
Therefore we have approx.
v(τ), v′(τ).

Randomized Newton update
τk+1 ← τk − (vk − σ)/v′k

Warm starts on iterates
Slowly include non-zero components into the vector x.
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Conclusions and Questions

Conclusions:
Dimensionality reduction techniques allow Least-Squares migration at
a fraction of the cost of the full problem.
The approach may be interpreted as a stochastic root-finding method,
extending SPG`1.

Open Questions:
How close are random estimates of vk to the inexact but nonrandom
estimates of vk?
How can we control the noise so that the random error is dominated
by the ‘inexact’ error?
What can we say about the random estimates of v′(τ)?
What can we say about the solutions xk obtained from the randomized
LASSO problems?
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SIMULTANEOUS ESTIMATION OF
GREEN’S FUNCTION AND SOURCE

WAVELET



A Different Way to Write EPSI:

Consider the EPSI formulation:

min
G,q
‖G‖1 s.t. ‖P−G (diag(q) + RP)︸ ︷︷ ︸

A(q)

‖2
F ≤ σ (1)

where G is the Green’s function, q is a vector representing the source
wavelet, P is the recorded data, and R is the known reflection operator.

Note that (1) is an extension of the BPDN formulation. It is therefore
natural to consider

min
G,q

φ(G,q) := ‖P−GA(q)‖2
F s.t. ‖G‖1 ≤ τ (2)

Note that (2) is an extension to the standard LASSO problem.
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Solving for optimal source wavelet

min
G,q

φ(G,q) = ‖P−GA(q)‖2
F s.t. ‖G‖1 ≤ τ

For fixed G, it is easy to solve for an optimal q:

qi(G) = (Gi,·)T(P−GRP)i,·

(Gi,·)T(Gi,·)

Note that this looks a lot like the formula for LS source estimation.

The upshot is that if at every iteration we solve for the optimal q as a
function of G, we can say something about convergence.
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Spectral Projected Variable Projection?

Suppose we think of q̂ = q(G) as a function of G, either available in
closed form or quickly obtainable. Then the modified LASSO problem
can be rewritten

min
G

f (G) = φ(G, q̂) = ‖P−GA(q̂)‖2
F s.t. ‖G‖1 ≤ τ

The key point is that the gradient ∇f is given by

2A(q̂)(P−GA(q̂)) + 0

Therefore, the Spectral Gradient algorithm will converge to a local
minimum of f (G), as long as q̂ is updated before every gradient
computation.

Moreover, when it does, we have an optimal Ḡ and the corresponding
q(Ḡ), so we have solved φ(G,q)!
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Conclusions and Questions

Conclusions:
EPSI is a true extension of the BPDN framework, and can be attacked
using the same tools.

At least for the extended LASSO problems, it is clear that we can find
a local minimum.

Open Questions:

Currently, the EPSI implementation does not update q before every
gradient computation. Will this change make a difference?

What does the ‘Pareto’ curve for f (G) look like? Is it convex?

Can we prove that we solve the extended BPDN problem?
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GENERALIZED FRAMEWORK FOR
ROBUST AND SPARSE

FORMULATIONS



Robust Formulations
Statistical interpretation of least-squares problems:

Objective Statistical Model Error model
min

x
‖Ax − b‖2

2 b = Ax + ε ε ∼ N (0, I ) .

Formulations based on least squares recovery and Gaussian modeling are
known to be vulnerable to outliers in the data, which may be random
errors or systematic features unexplained by the forward model.
Robust formulations can be derived by replacing the Gaussian distribution
assumption on ε with a heavier-tailed distribution:

Formulation Objective Error model

Gaussian
∑

(aT
i x − bi)2 εi ∼ N (0, 1)

Laplace
∑
|aT

i x − bi | εi ∼ L(0, 1)

Huber
∑
ρh(aT

i x − bi) εi ∼ H (0, 1)

Student’s t
∑

log(k + (aT
i x − bi)2) εi ∼ S(0, 1)
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Robust References

Robust methods are an active area of research in statistics and across
many applications. A few references:

Robust Statistics
Huber ’81 M-estimates
Marona et al. ’06 M-estimates and other topics
Seber and Wild, ’00 Robust nonlinear regression

Seismic Imaging
Guitton and Symes, ‘03 Huber norm
Bube and Nemeth, ‘07 Huber and hybrid `1-`2 norms
Brossier et al. ‘09 and ‘10 Huber and `1 norms
AYA, MPF, FJH, TVL. ’11 Dim. red. & robust penalties (Student’s t).

We focus on the convex robust formulations in this talk. Can we combine
these ideas with sparsity promotion via BPDN?
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Generalized Objectives, Penalties, and Value Functions

P1(σ): min φ(x) st h(b −Ax) ≤ σ

P2(τ): min h(b −Ax) st φ(x) ≤ τ

Problems P1(σ) and P2(τ) are linked by

v2(τ) := min
φ(x)≤τ

h(b −Ax)

v2(τ) describes tradeoff between misfit measure
h and regularization function φ. Note that h can
be robust!

h(b −Ax)

φ(x)

(τ, σ)

Broad summary of results:
1 v2(τ) is always convex, but may not be differentiable.
2 As of last week, we completely understand variational properties of

v2(τ) with respect to b and τ for arbitrary convex φ, h.
3 Solving v2(τ) = σ can always be done using an inexact secant method.
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A Little Less General

P1(σ): min ‖x‖1 st h(b −Ax) ≤ σ

P2(τ): min h(b −Ax) st ‖x‖1 ≤ τ

v2(τ) := min
‖x‖1≤τ

h(b −Ax)

Suppose that h is differentiable. Then

v′2(τ) = −‖AT∇h(b −Ax̄)‖∞ ,

where x̄ is the minimizing parameter value.

h(b −Ax)

φ(x)

(τ, σ)

Some examples of convex differentiable h:
1 Huber
2 Hybrid (Bube and Nemeth; strictly convex robust objective)
In some cases, v2(τ) is not differentiable, but it is always convex. We
therefore introduce a novel inexact secant method.
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Inexact Secant method for v2(τ) = σ

Theorem
The inexact secant method
for finding v2(τ) = σ, given
by
τk+1 ← τk − l(τk)−σ

mk

mk = l(τk)−u(τk−1)
(τk−τk−1)

is superlinearly convergent
as long as
1 u(τk)− l(τk) shrinks

fast enough
2 v2(τ) has a nonzero

subgradient at τσ.

Tuesday, November 15, 2011

h(b −Ax)

σ
τ2 τ3 τ4 τ5 τσ

φ(x)
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Sparse and Robust Formulation

HBPσ: min ‖x‖1 st ρ(d −Ax) ≤ σ

Problem Specification

x 20-sparse spike train in R512

d measurements in R120

A Measurement matrix satisfying RIP

ρ Huber function

σ error level set at .01

Results
In the presence of outliers, the robust
formulation recovers the spike train, while the
standard formulation does not.
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Conclusions and Questions

Conclusions:
We have shown an extension of the foundation underlying SPG`1 that
allows many potential new applications.

The motivating application, combining robustness and sparsity,
requires only minor modifications to an existing SPG`1
implementation. In fact, Tim has already implemented it in SPG`1.

Open Questions:

How much improvement can we get for real applications using the
Huber-`1 formulation?

What other applications within the general framework presented are
interesting and feasible?

What do we do when either the misfit function h or the regularizer φ is
non-convex?
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