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A revolution in sampling theory

During the last 6 years, we have been witnessing a revolution in
sampling theory.

Initiated by the works of Donoho (plenary talk on Monday at the
CMS meeting) and of Candès and Tao (Fields medalist), around
2004.

Opened up a new field called compressed sensing or compressive
sampling: Very active area. “Special Session on Compressed
Sensing” at CMS Winter Meeting co-organized by Friedlander,
Herrmann, OY. BIRS Workshop in March co-organized by OY.

Relies heavily on the theory of sparse approximations that has
been around for more than two decades (transforms such as
wavelets, curvelets, Gabor,...).

Various projects under DNOISE II (aim to) leverage and improve
these new techniques.
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Motivation: Signal Acquisition and Processing

Inherently analog signals: Audio, images, seismic, etc.
Objective: Use digital technology to store and process analog signals –
find efficient digital representation of analog signals.

How is this done - classical approach
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Motivation: Signal Acquisition and Processing

Inherently analog signals: Audio, images, seismic, etc.
Objective: Use digital technology to store and process analog signals –
find efficient digital representation of analog signals.

How is this done - classical approach

Sampling
(I)

Quantization
(II)

Compression
(III)

Signal f
(analog)

{ f(nT): n ∈Ι } { fq(n): n ∈Ι } { bj: j∈Ι' }

A/D conversion: 
measurement & truncation

A/D conversion: 
measurement & truncation

Source coding:
truncation & compression

(or other processing)
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Classical Approach

Stage I (Sampling)

samples obtained on a dense temporal/spatial grid,

an appropriate sampling theorem ties resolution of “reconstruction”
with the grid density.

Example: Shannon-Nyquist Sampling Theorem.
Suppose f is bandlimited with bandlimit Ω, i.e., f ∈ BΩ. Then for
τ < 1

2Ω , we have

f (t) =
∑

n

f (nτ)φ(t − nτ), ∀t.

Above φ can be chosen with fast decay so the reconstruction is local.
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Classical Sampling Theorem: The picture

A bandlimited f Fourier transform of f

−T 0 T −! −!
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Classical Sampling Theorem: The picture

A bandlimited f Fourier transform of f

−T 0 T! −! −!

Need N ≈ 2Ω× 2T samples to reconstruct f on [−T ,T ].
Equivalently: Every bandlimited function f ∈ BΩ, on [−T ,T ] can be
represented by a vector f ∈ RN which we obtain by collecting N
measurements.
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What makes the classical sampling approach work?

1 f , the signal of interest, is structured ←− “model the signal class”.

2 We measure f by obtaining its samples on a regular grid ←−
“specify the measurement scheme”.

3 Use Shannon-Nyquist sampling theorem to reconstruct ←− “find a
reconstruction method”.

Note that:

ambient dimension of the corresponding representation is N ∼ ΩT .

Different N-dimensional vectors correspond to samples of different
bandlimited functions – so no hope for dimension reduction—i.e.,
we need N independent measurements— under this signal model.
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Compressive Sampling Theory

Above: Reduced a bandlimited function f to a vector f in RN .

Question: Can we reduce the dimensionality of the problem by
restricting the signal class further?

Another bandlimited f Fourier transform of f

−T 0 T −!−!

An additional constraint of f : its Fourier transform is sparse.

Do we still need N ≈ 4ΩT samples to reconstruct f ∈ RN?
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Compressive Sampling Theory

Rephrase the question: Suppose we know that

f ∈ BΩ and f has a sparse Fourier transform.

Do we still need to sample at the Nyquist rate for a good (perfect)
reconstruction?

Consider the following set of samples (at irregular points):

−T 0 T

Here: average sampling density is only 50% of Nyquist rate.
Claim: We can recover f from these samples!
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Compressive Sampling Theory – using sparsity

Given:

1 Fourier transform of f is sparse.

2 We only know a few irregular samples, say n, that we showed in the
previous slide. Using linear algebra, write:

fsamples = Rf

where R is an n × N “restriction matrix” (with n " N).

3 We also know that

f = F ∗x , where x is the Fourier transform of f .

Combining these:

fsamples = RF ∗x , where the only unknown is x .

Can we solve for x? If yes, we recover f via f = F ∗x .
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Compressive Sampling Theory – imposing sparsity

Recall: We have fsamples = RF ∗
︸ ︷︷ ︸
A

x which we want to solve for x .

Notes:

A = RF ∗ is an n × N (short) matrix – i.e., the system is
underdetermined and has infinitely many solutions.

However, we also know that the solution we seek is the Fourier
transform of f , thus sparse.

So, how about the “sparsest” solution of the system above?

Solve
xapprox = argmin ‖z‖0 subject to Az = fsamples.
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Compressive Sampling Theory – imposing sparsity

Here is the reconstruction obtained from the above samples (approx.
50% of Nyquist rate)

−T T −T T

We get essentially perfect reconstruction!

How did we solve the combinatorial optimization problem:

min ‖z‖0 subject to Az = fsamples?

We will come back to this later.
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Compressive Sampling Theory – general framework

Signal f ∈ RN , want to collect information on f .

Model the signal class: f admits a sparse representation w.r.t. a
known basis B : f = B∗x where x is sparse.

Specify a measurement scheme: Construct an m × N
measurement matrix M with m # N (above this was the restriction
matrix R)

fmeas = Mf = MB∗x

Reconstruction method: Solve the underdetermined sparse
recovery problem:

xapprox = “sparsest” z such that fmeas = MB∗z .
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Compressive Sampling Theory: main questions

Sparse recovery problem:
xapprox = “sparsest” z such that fmeas = MB∗z .

Main questions:

1 How do we find the sparsifying basis B?

2 How do we construct the measurement matrix M?

3 How many measurements do we need to have xapprox = x?

4 How do we solve the sparse recovery problem?
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Compressive Sampling Theory - sparsity transforms

First address question 1: How do we find sparsity transforms?

Note that this is dependent heavily on the class of signals of interest.

In the above example, the sparsity transform was Fourier transform.

Applied and computational harmonic analysis community has been
developing such transforms during the last three decades that are
tailored to important signal classes such as: audio, natural images,
seismic data and images.

Rich area with interesting mathematics, directly applicable
constructive results such as wavelet transform, curvelet transform
etc.

Next, we give examples of some important sparsity transforms.
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Sparsity transform - natural images

Wavelet transform sparsifies natural images.

image a wavelet atom

wavelet transform sorted coefficients
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Sparsity transform - audio

Short-time Fourier (Gabor) transform sparsifies audio signals.

audio signal a Gabor atom

0

STFT transform sorted coefficients
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Sparsity transform - seismic

Curvelet transform sparsifies seismic data and images.

sampled Green’s function a curvelet atom
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Figure 2. 2D discrete curvelet transform. (a) Discrete frequency tiling. eUj,! has center slope α!. It smoothly localizes
the frequency near the shaded wedge. (b) One curvelet at scale j and orientation " in spatial domain. Notice that the
major axes of the curvelet in the frequency and space domains are orthogonal to each other.

It is clear that Ũj,! isolates frequencies near the wedge {(ω1,ω2) : 2j−1 ≤ ω1 ≤ 2j+1, −2−j/2 ≤ ω2/ω1 − α! ≤
2−j/2}.

With the localized frequency window Ũj,! available, the final step is to choose a spatial grid to translate the
curvelet at scale j and orientation #. In the continuous transform, the grid we use has its two axes aligned with
the major and minor axes of the frequency window. For the discrete transform, two approaches are possible: (1)
a slanted grid mostly aligned with the axes of the frequency window which leads to the USFFT-based curvelet
transform (for details, see Candès at al1); (2) a grid aligned with the input Cartesian grid which leads to the
wrapping-based curvelet transform. Here we follow the wrapping-based approach.

Fix the scale j and angle #. Suppose L1,j,! and L2,j,! are a pair of positive integers which satisfy the following

conditions: (1) one cannot find two ω and ω′ such that Ũj,!(ω) ≥ 0, Ũj,!(ω′) ≥ 0, and ω1 − ω′
1 and ω2 − ω′

2 are
multiples of L1,j,! and L2,j,! respectively; and (2) L1,j,! · L2,j,! is minimal.

The discrete curvelet with index k at scale j and angle # is defined by means of its Fourier transform:

ϕ̂D
j,!,k(ω) = Ũj,!(ω) · exp[−2πi(k1ω1/L1,j,! + k2ω2/L2,j,!)]/

√
L1,j,! · L2,j,!.

for 0 ≤ k1 < L1,j,! and 0 ≤ k2 < L2,j,!. Geometrically, the computation of the coefficients ϕD
j,!,k for fixed j and #

is equivalent to wrapping the windowed frequency data Ũj,!(ω)f̂(ω) around a L1,j,! by L2,j,! rectangle centered
at the origin, and then applying the inverse FFT to the wrapped data. This justifies the word “wrapping”. Our
choice of L1,j,! and L2,j,! guarantees the data does not overlap with itself after the wrapping process.

Last scale j = je = log2(n/2). This final scale extracts the highest frequency content. For the purpose of
this paper, the basis functions used at this scale are like wavelets (for other choices, see Candès et al1). The
frequency window is

Ũje,0(ω) = W̃je(ω).

The curvelets at this level are defined by

ϕ̂D
je,0,k(ω) = Ũje,0(ω) · exp[−2πi(k1ω1/L1,je + k2ω2/L2,je)]/

√
L1,je · L2,je ,

with L1,je = L2,je = n and 0 ≤ k1, k2 < n.
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Compressive Sampling Theory: main questions

Sparse recovery problem:
xapprox = “sparsest” z such that fmeas = MB∗z .

Main questions:

1 How do we find the sparsifying basis B?

2 How do we construct the measurement matrix M?

3 How many measurements do we need to have xapprox = x?

4 How do we solve the sparse recovery problem?
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Sparse recovery problem

Fix a sparsity basis B and a measurement matrix M (more later).
Set A = MB∗. We need to solve:

Recall: A is n × N, n " N. We are after reconstruction algorithms, i.e.,
decoders, ∆ : Rn #→ RN , with the following properties:

C1. ∆(Ax) = x whenever x is k-sparse (exact reconstruction for
sufficiently small k).

C2. ‖x −∆(Ax + e)‖ ! ‖e‖+ ‖x − xk‖. Here e: measurement error,
e.g., thermal and computational noise. Reconstruction works for
noisy measurements and approx. sparse signals.

C3. ∆(·) can be computed efficiently (in some sense).

Whether we can achieve C1–C3 will depend on the choice of the
measurement matrix A and dimensionality relations between n,N, and k .
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Sparse recovery problem – the decoder ∆0

Given y = Ax , the (noise-free) encoding of x , we want to find x . Clearly,
this problem is non-trivial:

underdetermined system y = Az has infinitely many solutions
(provided A is full-rank).

x is one of these! Decoder must choose the correct solution.

An intuitive decoder: choose the sparsest solution.

∆0(b) := argmin
z

‖z‖0 subject to y = Az .

Theorem (Donoho et al.)

If A is in general position (i.e., its Kruskal rank or its “spark” is n), then
∆0(Ax) = x for x ∈ ΣN

s with s < n/2.

Note: ∆0 is not stable or robust. More importantly, we need to solve a
combinatorial optimization problem.
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Sparse recovery problem – convex relaxation

The optimization problem for ∆0 is combinatorial. Need alternatives.

How about !2 minimization? Choose the solution with smallest
2-norm:

∆2(y) := argmin
z

‖z‖2 subject to y = Az .

∆2 = A∗(AA∗)−1. The solution is not sparse.

A much better alternative: !1 minimization. Choose the solution
with smallest 1-norm:

∆1(y) := argmin
z

‖z‖1 subject to y = Az .

This can be formulated as a convex program. Moreover, unlike 2-norm,
1-norm promotes sparsity. (See talks by M. Friedlander and T. Lin.)
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Sparse recovery by 1-norm minimization

Recent exciting developments show that ∆1 satisfies the conditions
(C1)-(C3), thus “equivalent to ∆0”, under certain conditions.

Theorem (Candès-Romberg-Tao, Donoho)

Suppose that A is “sufficiently similar” to an orthonormal matrix. Then,
∃ kmax(A) such that

‖x −∆1(Ax + e)‖2 ! ‖e‖2 + k−1/2‖x − xk‖1

for all k ≤ kmax. In particular,

x is k-sparse ⇒ ∆1(Ax) = x .

Remark. ∆1 satisfies (C1)-(C3) if x is sufficiently sparse. Next, we
investigate the dependence of kmax to A.
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How to choose the measurement matrix

There are precise conditions on A (in terms of its RIP constants)
that guarantee that the theorem holds.

For example, if A is a random matrix with iid Gaussian entries, then

n ! k log(N/k)

will suffice. Number of measurements scale only logarithmically
with the ambient dimension: grid size in our previous example.

This is theoretically optimal (deep results in geometric functional
analysis).

Other classes (Bernoulli, partial Fourier, ...) of random matrices will
do, too!
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How to choose the measurement matrix — more remarks

Gaussian and sub-Gaussian matrices are unitarily invariant, so the
dimension relation is independent of the sparsity basis. These are
universal measurement matrices:

M is Gaussian and B is unitary =⇒ A = MB∗ is Gaussian.

Ideal for dimension reduction in simulations. Also, acquisition with
simultaneous sources.

Difficult to implement depending on the physics—e.g.,, in the
sampling example. In such cases:

sample in a domain that is incoherent with the sparsity
domain: e.g.,

sparse in Fourier =⇒ sample in time

Randomly sub-sample (possibly on a jittered grid), i.e.,
“apply” a restriction matrix R .

The corresponding A = RM will be a “good” compressive sampling
matrix.
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Impact on applications

One of the main conclusions of compressive sampling theory: Accuracy
scales logarithmically with the grid size.

Far-reaching implications:

Digital camera technology (e.g., Baraniuk et al.)

Medical imaging (e.g., Lustig and Donoho)

Analog-to-digital conversion (e.g., Baraniuk et al.,)

Seismic imaging and interpolation (SLIM)

Denoising
Interpolation – recovery from data with missing traces
Primary/multiple separation
Acquisition with simultaneous sources
“Compressed computation” and full wave inversion
...
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Our theoretical contributions

Past work:

CS recovery algorithms via non-convex optimization (Saab and Y)

A provably convergent algorithm for coherent source separation
(Wang, Saab, Herrmann, Y)

Efficient quantization (for A/D conversion ) of compressive samples
(Saab, Y, and collaborators)

Improved compressive recovery when partial, relatively accurate
support information is available via weighted !1 minimization
(Mansour, Saab, Friedlander, Y) – see Mansour’s talk.

Ongoing work:

Leveraging our recent results on weighted !1 to obtain a
“reweighted” version with provable recovery guarantees (Mansour).

Leverage higher-dimensional structure in the sparsity pattern –
measurement matrices that can be factored as Kroenecker products
(Saab – see Saab’s talk)

...
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Concluding remarks

Compressive sampling theory: number of samples scales only
logarithmically with the grid size!

Theory helps us design effective (optimal) acquisition geometries.

Dimension reduction process is linear; reconstruction is non-linear.
(In contrast to classical methods where reconstruction is linear,
however dimension reduction is non-linear.)

Transforming consequences for seismic (as well as other) signal
acquisition and processing.

Very active area of research — 100s of papers in the last few years.

Active group at UBC, covering this area from all angles: theory,
algorithms, and applications to various problems in exploration
seismology – see the upcoming talks.
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