

Hybrid Stochastic-Deterministic Methods Michael Friedlander and Mark Schmidt

Outline

- Stochastic vs. Deterministic Optimization
- Theoretical Analysis of a Hybrid Method
- Empirical Analysis of a Hybrid Method
- Future Work

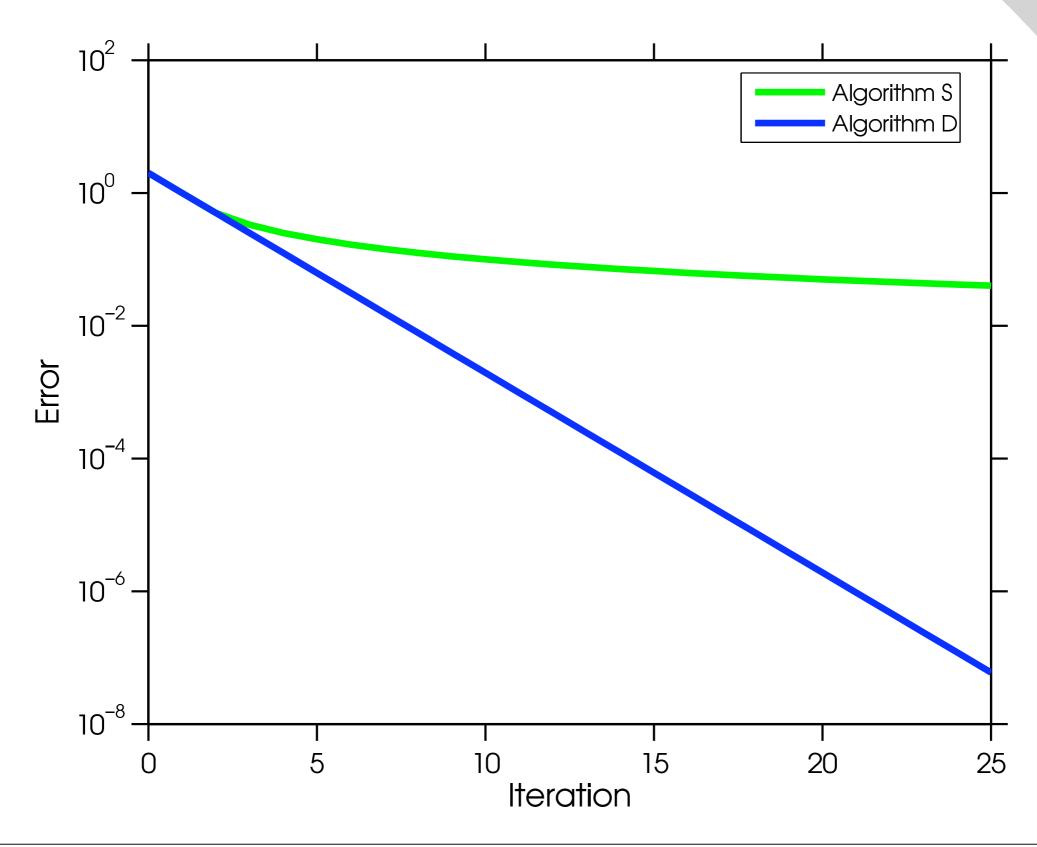
ALGORITHM S

ALGORITHM D

- We want to solve an optimization problem.
- Should we use Algorithm S or Algorithm D?

ALGORITHM S ERROR = 1/K ALGORITHM D ERROR = 1/2^K

- On iteration k, Algorithm S has an error of 1/k
- On iteration k, Algorithm D has an error of 1/2^k

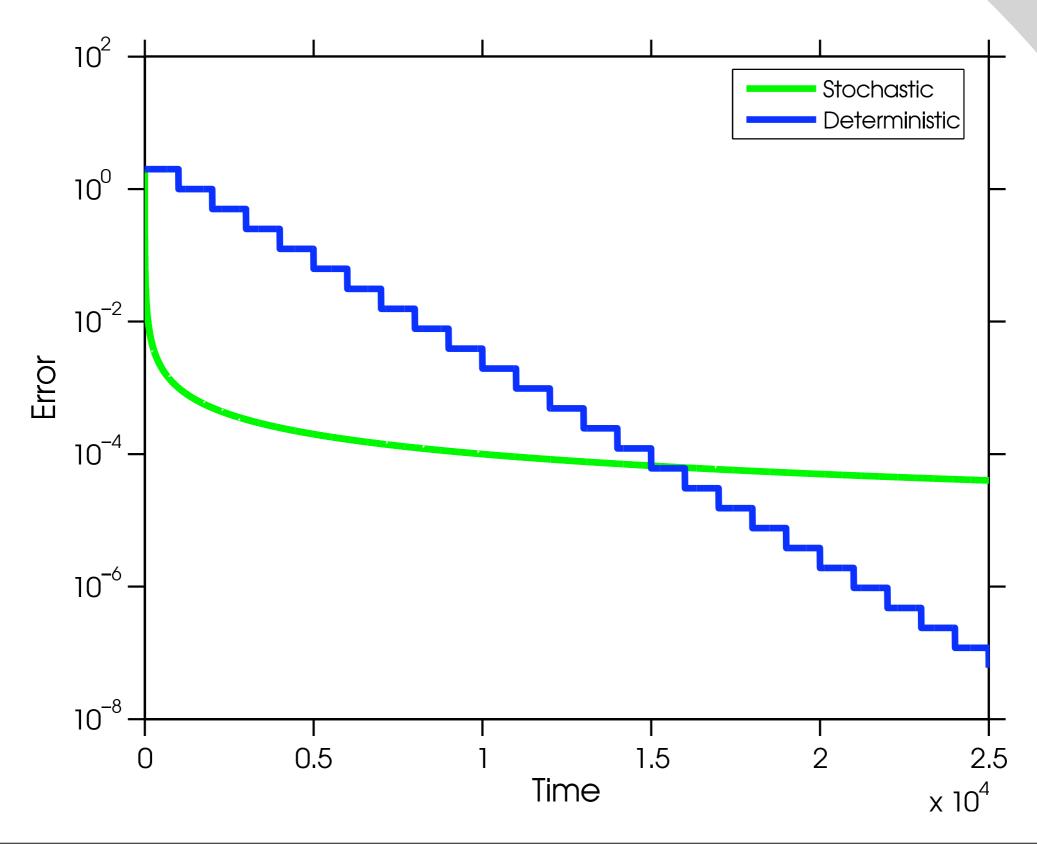



```
ALGORITHM S
ERROR = 1/K
Cost = 1
```

```
ALGORITHM D
ERROR = 1/2<sup>k</sup>
Cost = 1000
```

- Iterations of Algorithm S (Stochastic) are *cheap*
- Iterations of Algorithm D (Deterministic) are 1000 times more expensive

Stochastic vs. Deterministic



Stochastic vs. Deterministic

```
STOCHASTIC
ERROR = 1/K
Cost = 1
```

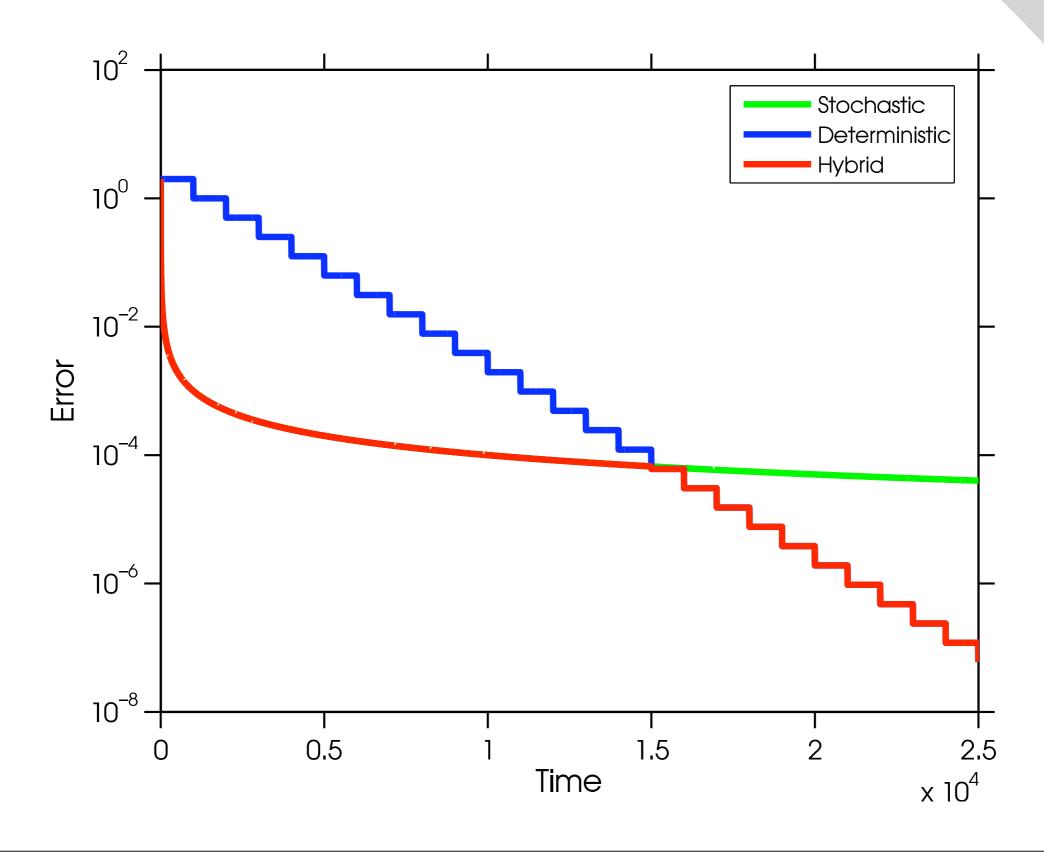
```
DETERMINISTIC
ERROR = 1/2<sup>K</sup>
Cost = 1000
```

- Stochastic does better initially (low cost)
- Deterministic catches up and passes (low error)

Simple Hybrid Method

- Can we get the best of both worlds?
- Simple hybrid method:
 - Start with stochastic
 - Switch to deterministic

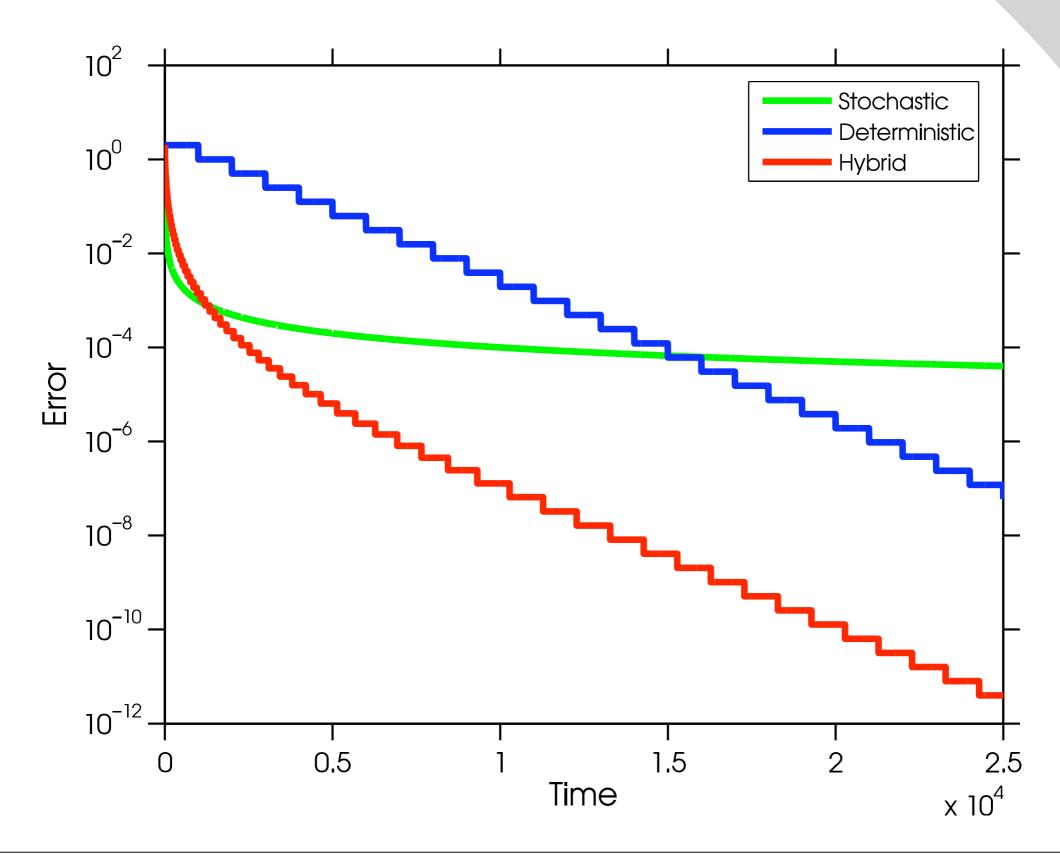
Simple Hybrid Method



Better Hybrid Methods?

- The question underlying our work:
 - Can a hybrid method do better than both?
- Basic idea is similar:
 - Start with stochastic
 - Gradually become deterministic

Hybrid Method



Outline

- Stochastic vs. Deterministic Optimization
- Theoretical Analysis of a Hybrid Method
- Empirical Analysis of a Hybrid Method
- Future Work

Deterministic Algorithm

- We want to minimize a strongly convex f(x).
- Take gradient steps with a small step size:

$$\mathbf{x}^{k+1} \leftarrow \mathbf{x}^k - (1/M)\nabla f(\mathbf{x}^k).$$

• The convergence rate is *linear*:

$$f(\mathbf{x}^k) - f(\mathbf{x}^*) \le (1 - m/M)^k (f(\mathbf{x}^0) - f(\mathbf{x}^*)),$$

Stochastic Algorithm

- Replace the gradient with a noisy version: $g(\mathbf{x}^k) \leftarrow \nabla f(\mathbf{x}^k) + \omega^k$.
- Noise must be zero-mean, finite-variance.
- This might be much cheaper to compute.
- But the convergence rate is sub-linear:

$$\mathbb{E}[f(\mathbf{x}^k)] - f(\mathbf{x}^*) = \mathcal{O}(1/k).$$

Hybrid Algorithm

• Use a gradient with error:

$$g(\mathbf{x}^k) \leftarrow \nabla f(\mathbf{x}^k) + \omega^k$$
.

- We don't assume error is unbiased.
- But, we assume we can bound error size:

$$||\omega^k||^2 \le B^k$$

Can we achieve a *linear* convergence rate?

Hybrid Algorithm

We have shown that if the bounds satisfy:

$$B^k \le 2M(m/M - c)d^k$$

• Then you get a *linear* convergence rate:

$$f(\mathbf{x}^k) - f(\mathbf{x}^*) \le (1 - c)^k (f(\mathbf{x}^0) - f(\mathbf{x}^*))$$

- Classic result is special case where c = m/M.
- For c < m/M, never require the exact gradient.

Hybrid Algorithm

- Theory agrees with intuition, you can have a big error if either:
 - You are far from the solution (d^k large).
 - The problem is well-behaved (m/M small).

Extensions

- Many assumptions can be relaxed:
 - You only need bounds on m, M, d^k.
 - You only need to bound $E[||w^k||^2]$.
 - You don't need convexity (for local rates).
 - You don't need smoothness (for proximal).
 - You can analyze other algorithms.

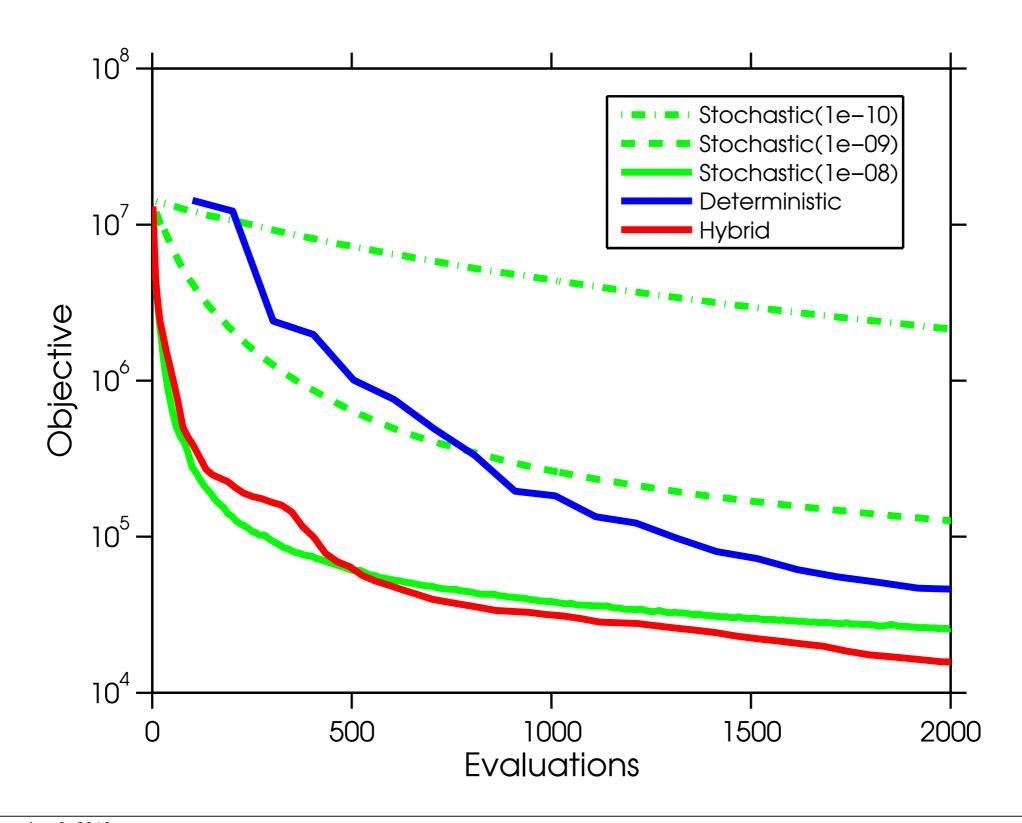
Outline

- Stochastic vs. Deterministic Optimization
- Theoretical Analysis of a Hybrid Method
- Empirical Analysis of a Hybrid Method
- Future Work

Cross-Well Tomography

- Synthetic cross-well tomography data set prepared by Tristan van Leeuwen.
- 101 point sources of acoustic energy (7 frequencies) and 101 receivers.
- Deterministic: All 101 sources (L-BFGS)
- Stochastic: 1 random source on each iteration.
- Hybrid: Start with 1 random source, on each iteration randomly add 1 extra source (L-BFGS)

Comparison of Methods



Outline

- Stochastic vs. Deterministic Optimization
- Theoretical Analysis of a Hybrid Method
- Empirical Analysis of a Hybrid Method
- Future Work

Summary and Future Work

- Summary:
 - Linear convergence of a hybrid method.
 - Promising experimental results.
- Future work is connecting theory to practice:
 - Analysis of more complex algorithms.
 - Ways to control noise.