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Introduction Mathematical formulation Numerical experiments

Compressed sensing (quick review)
Compressed sensing: signal acquisition paradigm that allows for
reconstructing N -dimensional signals from n measurements, where n ! N .

Suppose x ∈ RN is (approximately) k-sparse and let A be an n×N
(Gaussian) random matrix with n ! k log (N/k).
Now suppose we collect the measurements b = Ax + e (here e is noise with
‖e‖2 ≤ ε) and we wish to recover x from b.

Solve:
x∗ = arg min

v
‖v‖1 subject to ‖b−Av‖2 ≤ ε

Then ‖x− x∗‖2 " ε + ‖x− xk‖1/
√

k.

Useful tool in proving this is the restricted isometry propery (RIP): A
matrix A is said to satisfy the RIP with constants δk if for all k-sparse
vectors x, we have

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22.
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Introduction Mathematical formulation Numerical experiments

Compressed sensing (block diagram)
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!"#$% & '! #$ ( ))*+!, -./0123113405674./89):9;4<308)

#$ ( ))*+!,

=.4;911308)
>:6=?):5@?)AB)

' ( CDE!!
F G H'? F (IJ)!

K42L.9119<)6901308))
>M0;4<308B)

# G NF G *'?!
# (I0!

F (IJ

O>PB!
)P ( QR? ST)

UV/073W/7340)X6/2LY308Z)
# G [\]? F^)

_9/1V.92907)

3 / 22

Thursday, December 9, 2010



Introduction Mathematical formulation Numerical experiments

Compressed sensing in “more” dimensions
Compressed sensing is concerned with recovering vectors in, say RN .

What if we want to recover objects, say, in RN × RN? More generally, in
d-dimensions (e.g., the Green’s function)?

No problem if we we can treat “object” as vector in RN2
. Example: Single

pixel camera of Rice - the dimensions are inherently similar.

On the other hand, if we were to take a video, ”the time axis” cannot be
compressively sensed in the same way that pixels are!

In (some) seismic applications, the object of interest is the Green’s function.

We have source ”dimensions”, receiver ”dimensions”, and time. The
dimensions are inherently different!
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Compressed sensing in seismic acquisition
We have “source dimensions”, “receiver dimensions”, and time. The
dimensions are inherently different!

Experiments that we are allowed to conduct consist of:
1 firing (known combinations of) sources, collecting the response at each

receiver over a period of time.
2 repeating the above for several source configurations.

Possible objective (?) reduce cost (=time, money, storage space,
computational complexity, cost of randomness) without compromising
accuracy (too much).
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Introduction Mathematical formulation Numerical experiments

Compressed sensing in seismic acquisition
So how can we reduce cost:

1 option 1: Fire a fewer total number of sources, e.g.,
jitter sampling of a fine grid of sources
firing combinations of sources simultaneously → repeat a few times.

2 option 2: Combining receiver recordings and storing/transmitting the
combinations, with fewer combinations than receivers (save battery life,
computation time).

3 option 3: Do both of the above - possibly treat the time axis similarly.
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Compressed sensing in seismic acquisition
Below, “data cube” corresponds to seismic line
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Introduction Mathematical formulation Numerical experiments

Mathematical formulation
In two dimensions: collect the measurements B of X:

B = A1XA∗
2.

Define: M ⊗A =





M(1, 1)A M(1, 2)A . . . M(1, N2)A
M(2, 1)A M(2, 2)A . . . M(2, N2)A

...
...

. . .
...

M(n2, 1)A M(n2, 2)A . . . M(n2, N2)A





Vectorize:
B(:) = (A2 ⊗A1)X(:).

In d-dimensions :

B(:) = (Ad ⊗Ad−1 ⊗ . . .⊗A1)︸ ︷︷ ︸
A

X(:).
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Introduction Mathematical formulation Numerical experiments

Back to compressed sensing
When A is n×N , random, we can (with high probability) recover all
k-sparse vectors with k ! n/ log N .

How? !1-minimization!

What about when A is a Kronecker product of several Ai’s?

No straightforward answer! In general, the restricted isometry constant of
A is larger than the worst RIP constant of the Ai’s.

From now on let us assume that all Ai have the same dimensions and RIP
constants.

Bad news: This can at best guarantee the recovery of k-sparse vectors by
!1 minimization
(terrible, because we have Nd entries in our ”object”)

Ideally, we would like to recover kd-sparse vectors.

Cannot do that (place all kd non-zeros on one dimension.)

What about trying to recover a k × k × ...× k “hypercube” (or
dimension-wise permutations of it)?

Can easily do it!! Solve d !1-minimization problems sequentially!!
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Compressed sensing in seismic acquisition
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Kronecker compressed sensing
Thus, there is an algorithm (involving many !1-minimization problems) that
recovers the hypercube of side k, and all its permutations.

Above algorithm works with high probability (on the draw of the matrices)
for all such structured sparse supports .

Not a practical algorithm...

However, this suggests that we can hope to recover structured sparse
supports of size kd, eventhough some sets of size kd cannot be recovered!!
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Kronecker compressed sensing

Proposition

Let Ai, i ∈ {1, ..., d} be n×N Gaussian random matrices “with RIP constant
δk”. Suppose that X is supported on ⊗d

i=1Ti and denote by x := X(:), then
the following holds

(1− δk)d‖x‖22 ≤ ‖(⊗d
i=1Ai)x‖22 ≤ (1 + δk)d‖x‖22.

If δk ≤ 0.25/d, then (1− 1/3)‖x‖22 ≤ ‖(⊗d
i=1Ai)x‖22 ≤ (1 + 1/3)‖x‖22.

Lemma
Let Ai, i ∈ {1, ..., d} be n×N Gaussian random matrices with RIP constant
δk+1 ! (k/n)1/2−α ≤ 1

4d and let A = ⊗d
i=1Ai. Denote by Ω = ⊗d

i=1Ti then the
following holds

‖A†
Ωa"‖2 ! (k/n)1/2−α.
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Kronecker compressed sensing

Theorem
Let A and Ω be as above, and let s = (sj)j∈Ω be a (Rademacher/Bernoulli)
random sign sequence. With high probability every vector x supported on Ω
with sign pattern s is the unique solution to the optimization problem

min ‖v‖1 subject to Av = Ax

.

This shows that we can use !1 minimization on the whole system to recover
structured sparse sets with sparsity kd.

Ongoing research: extend this to more general support set models ←
experimental results indicate that this is true for more general support sets.

Ongoing research: prove robustness to model-mismatch (compressible
signals) and stability to noise.
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Numerical experiments: synthetic examples
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Numerical experiments: synthetic examples
200× 200 signal X

signal is k × k sparse, k = 25, i.e., the supported is “structured”.

A1, A2 are Gaussian random 100× 200 matrices

=⇒ reduction in data size by a factor of 4!!

sparsity basis used: identity

Using !1-minimization, reconstruction is exact!!
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Numerical experiments: synthetic examples
200× 200 signal X

signal is k2 sparse, k = 25, i.e., the support is not “structured”

A1, A2 are Gaussian random 100× 200 matrices

=⇒ reduction in data size by a factor of 4!!

sparsity basis used: identity

Using !1-minimization, reconstruction is exact!!

It appears that adversarial sets are rare. Proof is an open problem, work in
progress.
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Introduction Mathematical formulation Numerical experiments

Numerical experiments: seismic example
128× 128× 512 data cube (long axis is time).

A1, A2 are Gaussian random 64× 128 matrices

A3 is the identity.

=⇒ reduction in data size by a factor of 4!!

sparsity basis used: 2D-Curvelets ⊗ wavelets.

Using !1-minimization, reconstruction SNR ∼ 10.2 dB
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Common-offset
y-axis: time in increments of 4ms
x-axis: source number
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Introduction Mathematical formulation Numerical experiments

time slice, t = 80 ∗ 4ms

y-axis: source number
x-axis: receiver number
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Introduction Mathematical formulation Numerical experiments

Thank you!
NSERC DNOISE II CRD

22 / 22

Thursday, December 9, 2010


