Compressed sensing using Kronecker products Rayan Saab

SLIM
 University of British Columbia

Compressed sensing (quick review)

- Compressed sensing: signal acquisition paradigm that allows for reconstructing N-dimensional signals from n measurements, where $n \ll N$.

Compressed sensing (quick review)

- Compressed sensing: signal acquisition paradigm that allows for reconstructing N-dimensional signals from n measurements, where $n \ll N$.
- Suppose $x \in \mathbb{R}^{N}$ is (approximately) k-sparse and let A be an $n \times N$ (Gaussian) random matrix with $n \gtrsim k \log (N / k)$.

Compressed sensing (quick review)

- Compressed sensing: signal acquisition paradigm that allows for reconstructing N-dimensional signals from n measurements, where $n \ll N$.
- Suppose $x \in \mathbb{R}^{N}$ is (approximately) k-sparse and let A be an $n \times N$ (Gaussian) random matrix with $n \gtrsim k \log (N / k)$.
- Now suppose we collect the measurements $b=A x+e$ (here e is noise with $\|e\|_{2} \leq \epsilon$) and we wish to recover x from b.

Compressed sensing (quick review)

- Compressed sensing: signal acquisition paradigm that allows for reconstructing N-dimensional signals from n measurements, where $n \ll N$.
- Suppose $x \in \mathbb{R}^{N}$ is (approximately) k-sparse and let A be an $n \times N$ (Gaussian) random matrix with $n \gtrsim k \log (N / k)$.
- Now suppose we collect the measurements $b=A x+e$ (here e is noise with $\|e\|_{2} \leq \epsilon$) and we wish to recover x from b.
- Solve:

$$
x^{*}=\arg \min _{v}\|v\|_{1} \text { subject to }\|b-A v\|_{2} \leq \epsilon
$$

Compressed sensing (quick review)

- Compressed sensing: signal acquisition paradigm that allows for reconstructing N-dimensional signals from n measurements, where $n \ll N$.
- Suppose $x \in \mathbb{R}^{N}$ is (approximately) k-sparse and let A be an $n \times N$ (Gaussian) random matrix with $n \gtrsim k \log (N / k)$.
- Now suppose we collect the measurements $b=A x+e$ (here e is noise with $\|e\|_{2} \leq \epsilon$) and we wish to recover x from b.
- Solve:

$$
x^{*}=\arg \min _{v}\|v\|_{1} \text { subject to }\|b-A v\|_{2} \leq \epsilon
$$

- Then $\left\|x-x^{*}\right\|_{2} \lesssim \epsilon+\left\|x-x_{k}\right\|_{1} / \sqrt{k}$.

Compressed sensing (quick review)

- Compressed sensing: signal acquisition paradigm that allows for reconstructing N-dimensional signals from n measurements, where $n \ll N$.
- Suppose $x \in \mathbb{R}^{N}$ is (approximately) k-sparse and let A be an $n \times N$ (Gaussian) random matrix with $n \gtrsim k \log (N / k)$.
- Now suppose we collect the measurements $b=A x+e$ (here e is noise with $\|e\|_{2} \leq \epsilon$) and we wish to recover x from b.
- Solve:

$$
x^{*}=\arg \min _{v}\|v\|_{1} \text { subject to }\|b-A v\|_{2} \leq \epsilon
$$

- Then $\left\|x-x^{*}\right\|_{2} \lesssim \epsilon+\left\|x-x_{k}\right\|_{1} / \sqrt{k}$.
- Useful tool in proving this is the restricted isometry propery (RIP): A matrix A is said to satisfy the RIP with constants δ_{k} if for all k-sparse vectors x, we have

$$
\left(1-\delta_{k}\right)\|x\|_{2}^{2} \leq\|A x\|_{2}^{2} \leq\left(1+\delta_{k}\right)\|x\|_{2}^{2} .
$$

Compressed sensing (block diagram)

(Encoding)

Compressed sensing in "more" dimensions

- Compressed sensing is concerned with recovering vectors in, say \mathbb{R}^{N}.
pixel camera of Rice - the dimensions are inherently similar

Compressed sensing in "more" dimensions

- Compressed sensing is concerned with recovering vectors in, say \mathbb{R}^{N}.
- What if we want to recover objects, say, in $\mathbb{R}^{N} \times \mathbb{R}^{N}$? More generally, in d-dimensions (e.g., the Green's function)?

Compressed sensing in "more" dimensions

- Compressed sensing is concerned with recovering vectors in, say \mathbb{R}^{N}.
- What if we want to recover objects, say, in $\mathbb{R}^{N} \times \mathbb{R}^{N}$? More generally, in d-dimensions (e.g., the Green's function)?
- No problem if we we can treat "object" as vector in $\mathbb{R}^{N^{2}}$. Example: Single pixel camera of Rice - the dimensions are inherently similar.

Compressed sensing in "more" dimensions

- Compressed sensing is concerned with recovering vectors in, say \mathbb{R}^{N}.
- What if we want to recover objects, say, in $\mathbb{R}^{N} \times \mathbb{R}^{N}$? More generally, in d-dimensions (e.g., the Green's function)?
- No problem if we we can treat "object" as vector in $\mathbb{R}^{N^{2}}$. Example: Single pixel camera of Rice - the dimensions are inherently similar.
- On the other hand, if we were to take a video, "the time axis" cannot be compressively sensed in the same way that pixels are!

Compressed sensing in "more" dimensions

- Compressed sensing is concerned with recovering vectors in, say \mathbb{R}^{N}.
- What if we want to recover objects, say, in $\mathbb{R}^{N} \times \mathbb{R}^{N}$? More generally, in d-dimensions (e.g., the Green's function)?
- No problem if we we can treat "object" as vector in $\mathbb{R}^{N^{2}}$. Example: Single pixel camera of Rice - the dimensions are inherently similar.
- On the other hand, if we were to take a video, "the time axis" cannot be compressively sensed in the same way that pixels are!
- In (some) seismic applications, the object of interest is the Green's function.
- We have source "dimensions", receiver "dimensions", and time. The dimensions are inherently different!

Compressed sensing in seismic acquisition

- We have "source dimensions", "receiver dimensions", and time. The dimensions are inherently different!

```
- Experiments that we are allowed to conduct consist of:
    (1) firing (known combinations of) sources, collecting the response at each
            receiver over a period of time.
        (2) repeating the above for several source configurations
        Possible objective (?) reduce cost (=time, money, storage space,
        computational complexity, cost of randomness) without compromising
    accuracy (too much)
```


Compressed sensing in seismic acquisition

- We have "source dimensions", "receiver dimensions", and time. The dimensions are inherently different!
- Experiments that we are allowed to conduct consist of:
(1) firing (known combinations of) sources, collecting the response at each receiver over a period of time.
(2) repeating the above for several source configurations.
computational complexity, cost of randomness)
accuracy (ton much)

Compressed sensing in seismic acquisition

- We have "source dimensions", "receiver dimensions", and time. The dimensions are inherently different!
- Experiments that we are allowed to conduct consist of:
(1) firing (known combinations of) sources, collecting the response at each receiver over a period of time.
(2) repeating the above for several source configurations.
- Possible objective (?) reduce cost (=time, money, storage space, computational complexity, cost of randomness) without compromising accuracy (too much).

Compressed sensing in seismic acquisition

- So how can we reduce cost:
(1) option 1: Fire a fewer total number of sources, e.g.,
- jitter sampling of a fine grid of sources
- firing combinations of sources simultaneously \rightarrow repeat a few times.
(2) option 2: Combining receiver recordings and storing/transmitting the combinations, with fewer combinations than receivers (save battery life, computation time).
(3) option 3: Do both of the above - possibly treat the time axis similarly.

Compressed sensing in seismic acquisition

Below, "data cube" corresponds to seismic line

Mathematical formulation

- In two dimensions: collect the measurements B of X :

$$
B=A_{1} X A_{2}^{*} .
$$

Mathematical formulation

- In two dimensions: collect the measurements B of X :

$$
B=A_{1} X A_{2}^{*} .
$$

- Define: $M \otimes A=\left[\begin{array}{cccc}M(1,1) A & M(1,2) A & \ldots & M\left(1, N_{2}\right) A \\ M(2,1) A & M(2,2) A & \ldots & M\left(2, N_{2}\right) A \\ \vdots & \vdots & \ddots & \vdots \\ M\left(n_{2}, 1\right) A & M\left(n_{2}, 2\right) A & \ldots & M\left(n_{2}, N_{2}\right) A\end{array}\right]$

Mathematical formulation

- In two dimensions: collect the measurements B of X :

$$
B=A_{1} X A_{2}^{*} .
$$

- Define: $M \otimes A=\left[\begin{array}{cccc}M(1,1) A & M(1,2) A & \ldots & M\left(1, N_{2}\right) A \\ M(2,1) A & M(2,2) A & \ldots & M\left(2, N_{2}\right) A \\ \vdots & \vdots & \ddots & \vdots \\ M\left(n_{2}, 1\right) A & M\left(n_{2}, 2\right) A & \ldots & M\left(n_{2}, N_{2}\right) A\end{array}\right]$
- Vectorize:

$$
B(:)=\left(A_{2} \otimes A_{1}\right) X(:) .
$$

Mathematical formulation

- In two dimensions: collect the measurements B of X :

$$
B=A_{1} X A_{2}^{*} .
$$

- Define: $M \otimes A=\left[\begin{array}{cccc}M(1,1) A & M(1,2) A & \ldots & M\left(1, N_{2}\right) A \\ M(2,1) A & M(2,2) A & \ldots & M\left(2, N_{2}\right) A \\ \vdots & \vdots & \ddots & \vdots \\ M\left(n_{2}, 1\right) A & M\left(n_{2}, 2\right) A & \ldots & M\left(n_{2}, N_{2}\right) A\end{array}\right]$
- Vectorize:

$$
B(:)=\left(A_{2} \otimes A_{1}\right) X(:) .
$$

- In d-dimensions :

$$
B(:)=\underbrace{\left(A_{d} \otimes A_{d-1} \otimes \ldots \otimes A_{1}\right)}_{A} X(:) .
$$

Back to compressed sensing

- When A is $n \times N$, random, we can (with high probability) recover all k-sparse vectors with $k \lesssim n / \log N$.
- How? ℓ_{1}-minimization!
- No straightforward answer! In general, the restricted isometry constant of

Back to compressed sensing

- When A is $n \times N$, random, we can (with high probability) recover all k-sparse vectors with $k \lesssim n / \log N$.
- How? ℓ_{1}-minimization!
- What about when A is a Kronecker product of several A_{i} 's?

Back to compressed sensing

- When A is $n \times N$, random, we can (with high probability) recover all k-sparse vectors with $k \lesssim n / \log N$.
- How? ℓ_{1}-minimization!
- What about when A is a Kronecker product of several A_{i} 's?
- No straightforward answer! In general, the restricted isometry constant of A is larger than the worst RIP constant of the A_{i} 's.
- From now on let us assume that all A_{i} have the same dimensions and RIP constants.

Back to compressed sensing

- When A is $n \times N$, random, we can (with high probability) recover all k-sparse vectors with $k \lesssim n / \log N$.
- How? ℓ_{1}-minimization!
- What about when A is a Kronecker product of several A_{i} 's?
- No straightforward answer! In general, the restricted isometry constant of A is larger than the worst RIP constant of the A_{i} 's.
- From now on let us assume that all A_{i} have the same dimensions and RIP constants.
- Bad news: This can at best guarantee the recovery of k-sparse vectors by ℓ_{1} minimization (terrible, because we have N^{d} entries in our "object")
- Ideally, we would like to recover k^{d}-sparse vectors.
- Cannot do that (place all k^{d} non-zeros on one dimension.)

Back to compressed sensing

- When A is $n \times N$, random, we can (with high probability) recover all k-sparse vectors with $k \lesssim n / \log N$.
- How? ℓ_{1}-minimization!
- What about when A is a Kronecker product of several A_{i} 's?
- No straightforward answer! In general, the restricted isometry constant of A is larger than the worst RIP constant of the A_{i} 's.
- From now on let us assume that all A_{i} have the same dimensions and RIP constants.
- Bad news: This can at best guarantee the recovery of k-sparse vectors by ℓ_{1} minimization (terrible, because we have N^{d} entries in our "object")
- Ideally, we would like to recover k^{d}-sparse vectors.
- Cannot do that (place all k^{d} non-zeros on one dimension.)
- What about trying to recover a $k \times k \times \ldots \times k$ "hypercube" (or dimension-wise permutations of it)?
- Can easily do it!! Solve $d \ell_{1}$-minimization problems sequentially!!

Compressed sensing in seismic acquisition

Kronecker compressed sensing

- Thus, there is an algorithm (involving many ℓ_{1}-minimization problems) that recovers the hypercube of side k, and all its permutations.

Kronecker compressed sensing

- Thus, there is an algorithm (involving many ℓ_{1}-minimization problems) that recovers the hypercube of side k, and all its permutations.
- Above algorithm works with high probability (on the draw of the matrices) for all such structured sparse supports .

Kronecker compressed sensing

- Thus, there is an algorithm (involving many ℓ_{1}-minimization problems) that recovers the hypercube of side k, and all its permutations.
- Above algorithm works with high probability (on the draw of the matrices) for all such structured sparse supports .
- Not a practical algorithm...

Kronecker compressed sensing

- Thus, there is an algorithm (involving many ℓ_{1}-minimization problems) that recovers the hypercube of side k, and all its permutations.
- Above algorithm works with high probability (on the draw of the matrices) for all such structured sparse supports .
- Not a practical algorithm...
- However, this suggests that we can hope to recover structured sparse supports of size k^{d}, eventhough some sets of size k^{d} cannot be recovered!!

Kronecker compressed sensing

Proposition

Let $A_{i}, i \in\{1, \ldots, d\}$ be $n \times N$ Gaussian random matrices "with RIP constant δ_{k} ". Suppose that X is supported on $\otimes_{i=1}^{d} T_{i}$ and denote by $x:=X(:)$, then the following holds

$$
\left(1-\delta_{k}\right)^{d}\|x\|_{2}^{2} \leq\left\|\left(\otimes_{i=1}^{d} A_{i}\right) x\right\|_{2}^{2} \leq\left(1+\delta_{k}\right)^{d}\|x\|_{2}^{2} .
$$

If $\delta_{k} \leq 0.25 / d$, then $(1-1 / 3)\|x\|_{2}^{2} \leq\left\|\left(\otimes_{i=1}^{d} A_{i}\right) x\right\|_{2}^{2} \leq(1+1 / 3)\|x\|_{2}^{2}$.

Lemma

Let $A_{i}, i \in\{1, \ldots, d\}$ be $n \times N$ Gaussian random matrices with RIP constant $\delta_{k+1} \lesssim(k / n)^{1 / 2-\alpha} \leq \frac{1}{4 d}$ and let $A=\otimes_{i=1}^{d} A_{i}$. Denote by $\Omega=\otimes_{i=1}^{d} T_{i}$ then the following holds

$$
\left\|A_{\Omega}^{\dagger} a_{\ell}\right\|_{2} \lesssim(k / n)^{1 / 2-\alpha} .
$$

Kronecker compressed sensing

Theorem

Let A and Ω be as above, and let $s=\left(s_{j}\right)_{j \in \Omega}$ be a (Rademacher/Bernoulli) random sign sequence. With high probability every vector x supported on Ω with sign pattern s is the unique solution to the optimization problem

$$
\min \|v\|_{1} \text { subject to } A v=A x
$$

Kronecker compressed sensing

Theorem

Let A and Ω be as above, and let $s=\left(s_{j}\right)_{j \in \Omega}$ be a (Rademacher/Bernoulli) random sign sequence. With high probability every vector x supported on Ω with sign pattern s is the unique solution to the optimization problem

$$
\min \|v\|_{1} \text { subject to } A v=A x
$$

- This shows that we can use ℓ_{1} minimization on the whole system to recover structured sparse sets with sparsity k^{d}.

Kronecker compressed sensing

Theorem

Let A and Ω be as above, and let $s=\left(s_{j}\right)_{j \in \Omega}$ be a (Rademacher/Bernoulli) random sign sequence. With high probability every vector x supported on Ω with sign pattern s is the unique solution to the optimization problem

$$
\min \|v\|_{1} \text { subject to } A v=A x
$$

- This shows that we can use ℓ_{1} minimization on the whole system to recover structured sparse sets with sparsity k^{d}.
- Ongoing research: extend this to more general support set models \leftarrow experimental results indicate that this is true for more general support sets.

Kronecker compressed sensing

Theorem

Let A and Ω be as above, and let $s=\left(s_{j}\right)_{j \in \Omega}$ be a (Rademacher/Bernoulli) random sign sequence. With high probability every vector x supported on Ω with sign pattern s is the unique solution to the optimization problem

$$
\min \|v\|_{1} \text { subject to } A v=A x
$$

- This shows that we can use ℓ_{1} minimization on the whole system to recover structured sparse sets with sparsity k^{d}.
- Ongoing research: extend this to more general support set models \leftarrow experimental results indicate that this is true for more general support sets.
- Ongoing research: prove robustness to model-mismatch (compressible signals) and stability to noise.

Numerical experiments: synthetic examples

Figure: Original

Numerical experiments: synthetic examples

- 200×200 signal X
- signal is $k \times k$ sparse, $k=25$, i.e., the supported is "structured".
- A_{1}, A_{2} are Gaussian random 100×200 matrices
- \Longrightarrow reduction in data size by a factor of 4 !!
- sparsity basis used: identity
- Using ℓ_{1}-minimization, reconstruction is exact!!

Numerical experiments: synthetic examples

Figure: Original

Numerical experiments: synthetic examples

- 200×200 signal X
- signal is k^{2} sparse, $k=25$, i.e., the support is not "structured"
- A_{1}, A_{2} are Gaussian random 100×200 matrices
- \Longrightarrow reduction in data size by a factor of 4 !!
- sparsity basis used: identity
- Using ℓ_{1}-minimization, reconstruction is exact!!

Numerical experiments: synthetic examples

- 200×200 signal X
- signal is k^{2} sparse, $k=25$, i.e., the support is not "structured"
- A_{1}, A_{2} are Gaussian random 100×200 matrices
- \Longrightarrow reduction in data size by a factor of 4 !!
- sparsity basis used: identity
- Using ℓ_{1}-minimization, reconstruction is exact!!
- It appears that adversarial sets are rare. Proof is an open problem, work in progress.

Numerical experiments: seismic example

- $128 \times 128 \times 512$ data cube (long axis is time).
- A_{1}, A_{2} are Gaussian random 64×128 matrices
- A_{3} is the identity.
- \Longrightarrow reduction in data size by a factor of 4 !!
- sparsity basis used: 2D-Curvelets \otimes wavelets.
- Using ℓ_{1}-minimization, reconstruction SNR $\sim 10.2 \mathrm{~dB}$

Common-offset

y-axis: time in increments of 4 ms
x-axis: source number

Figure: Original

Common-offset

y-axis: time in increments of 4 ms
x-axis: source number

Figure: Reconstructed

Common-offset

y-axis: time in increments of 4 ms
x-axis: source number

Figure: Difference

Shot record

y-axis: time in increments of 4 ms
x-axis: source number

Figure: Original

Shot record

y-axis: time in increments of 4 ms
x-axis: source number

Figure: Reconstructed

Shot record

y-axis: time in increments of 4 ms
x-axis: source number

Figure: Difference

time slice, $t=80 * 4 m s$

y-axis: source number x-axis: receiver number

Figure: Original

time slice, $t=80 * 4 m s$

y-axis: source number x-axis: receiver number

Figure: Reconstructed

time slice, $t=80 * 4 m s$

y-axis: source number x-axis: receiver number

Figure: Difference

Thank you!

NSERC DNOISE II CRD

