Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Recovery of compressively sampled signals using partial support information Hassan Mansour

Thursday, December 9, 2010

Experimental Results 000000

Collaborators

Joint work with:

- Rayan Saab
- Özgür Yılmaz
- Michael Friedlander

Experimental Results 000000

Outline

Part 1: Introduction and Overview

Part 2: Stability and Robustness of Weighted ℓ_1 Minimization

Part 3: Experimental Results

- We address the problem of reconstructing a seismogram Z from incomplete measurements Y.
- Examples where incomplete measurements arise:
 - Dimensionality reduction of extremely high resolution seismic data (HP and Shell sensing system).
 - Simultaneous source/receiver mixing, source/receiver malfunctioning,

- We address the problem of reconstructing a seismogram Z from incomplete measurements Y.
- Examples where incomplete measurements arise:
 - Dimensionality reduction of extremely high resolution seismic data (HP and Shell sensing system).
 - Simultaneous source/receiver mixing, source/receiver malfunctioning, ...

- We address the problem of reconstructing a seismogram Z from incomplete measurements Y.
- Examples where incomplete measurements arise:
 - Dimensionality reduction of extremely high resolution seismic data (HP and Shell sensing system).
 - Simultaneous source/receiver mixing, source/receiver malfunctioning, ...

- We address the problem of reconstructing a seismogram Z from incomplete measurements Y.
- Examples where incomplete measurements arise:
 - Dimensionality reduction of extremely high resolution seismic data (HP and Shell sensing system).
 - Simultaneous source/receiver mixing, source/receiver malfunctioning, ...

- We address the problem of reconstructing a seismogram Z from incomplete measurements Y.
- Examples where incomplete measurements arise:
 - Dimensionality reduction of extremely high resolution seismic data (HP and Shell sensing system).
 - Simultaneous source/receiver mixing, source/receiver malfunctioning, ...

- We address the problem of reconstructing a seismogram Z from incomplete measurements Y.
- Examples where incomplete measurements arise:
 - Dimensionality reduction of extremely high resolution seismic data (HP and Shell sensing system).
 - Simultaneous source/receiver mixing, source/receiver malfunctioning, ...

- Every column/slice z_i of Z admits a (nearly) sparse representation in some transform domain.
- The time axis of the common-receiver gathers are sparse in the wavelet domain.
- Every source receiver slice is sparse in the curvelet domain.
- How to recovery Z from the incomplete measurements Y?

Experimental Results

Observations on Sparsity

- Every column/slice z_i of Z admits a (nearly) sparse representation in some transform domain.
- The time axis of the common-receiver gathers are sparse in the wavelet domain.
- Every source receiver slice is sparse in the curvelet domain.
- How to recovery Z from the incomplete measurements Y?

Original

Wavelet Coeffs

- Every column/slice z_i of Z admits a (nearly) sparse representation in some transform domain.
- The time axis of the common-receiver gathers are sparse in the wavelet domain.
- Every source receiver slice is sparse in the curvelet domain.
- How to recovery Z from the incomplete measurements Y?

- Every column/slice z_i of Z admits a (nearly) sparse representation in some transform domain.
- The time axis of the common-receiver gathers are sparse in the wavelet domain.
- Every source receiver slice is sparse in the curvelet domain.
- How to recovery Z from the incomplete measurements Y?

- Every column/slice z_i of Z admits a (nearly) sparse representation in some transform domain.
- The time axis of the common-receiver gathers are sparse in the wavelet domain.
- Every source receiver slice is sparse in the curvelet domain.
- How to recovery Z from the incomplete measurements Y?

- Every column/slice z_i of Z admits a (nearly) sparse representation in some transform domain.
- The time axis of the common-receiver gathers are sparse in the wavelet domain.
- Every source receiver slice is sparse in the curvelet domain.
- How to recovery Z from the incomplete measurements Y?

Compressed Sensing

- Compressed Sensing is an acquisition paradigm for signals that admit sparse or nearly sparse representations in some transform domain.
- Consider a signal $z \in \mathbb{R}^N$, z = Dx, where D is a transform matrix and x is a k-sparse coefficient vector.
- Given $n \ll N$ linear and noisy measurements $y = \Psi Dx + e$.
- Let $A = \Psi D$, it is possible to approximate x from the measurements y if
 - *is* sufficiently sparse.

Compressed Sensing

- Compressed Sensing is an acquisition paradigm for signals that admit sparse or nearly sparse representations in some transform domain.
- Consider a signal $z \in \mathbb{R}^N$, z = Dx, where D is a transform matrix and x is a k-sparse coefficient vector.
- Given $n \ll N$ linear and noisy measurements $y = \Psi Dx + e$.
- Let $A = \Psi D$, it is possible to approximate x from the measurements y if • A obeys certain conditions

x is sufficiently sparse.

Compressed Sensing

- Compressed Sensing is an acquisition paradigm for signals that admit sparse or nearly sparse representations in some transform domain.
- Consider a signal $z \in \mathbb{R}^N$, z = Dx, where D is a transform matrix and x is a k-sparse coefficient vector.
- Given $n \ll N$ linear and noisy measurements $y = \Psi Dx + e$.
- Let $A = \Psi D$, it is possible to approximate x from the measurements y if • A obeys certain conditions

x is sufficiently sparse.

Compressed Sensing

- Compressed Sensing is an acquisition paradigm for signals that admit sparse or nearly sparse representations in some transform domain.
- Consider a signal $z \in \mathbb{R}^N$, z = Dx, where D is a transform matrix and x is a k-sparse coefficient vector.
- Given $n \ll N$ linear and noisy measurements $y = \Psi Dx + e$.
- Let $A = \Psi D$, it is possible to approximate x from the measurements y if
 - A obeys certain conditions
 - x is sufficiently sparse

Compressed Sensing

- Compressed Sensing is an acquisition paradigm for signals that admit sparse or nearly sparse representations in some transform domain.
- Consider a signal $z \in \mathbb{R}^N$, z = Dx, where D is a transform matrix and x is a k-sparse coefficient vector.
- Given $n \ll N$ linear and noisy measurements $y = \Psi Dx + e$.
- Let $A = \Psi D$, it is possible to approximate x from the measurements y if
 - A obeys certain conditions
 - x is sufficiently sparse.

Definition: Restricted Isometry Property (RIP)

The RIP constant δ_k is defined as the smallest constant such that $\forall x \in \Sigma_k^N$

$$(1 - \delta_k) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \delta_k) \|x\|_2^2$$

Compressed Sensing

- Compressed Sensing is an acquisition paradigm for signals that admit sparse or nearly sparse representations in some transform domain.
- Consider a signal $z \in \mathbb{R}^N$, z = Dx, where D is a transform matrix and x is a k-sparse coefficient vector.
- Given $n \ll N$ linear and noisy measurements $y = \Psi Dx + e$.
- Let $A = \Psi D$, it is possible to approximate x from the measurements y if
 - A obeys certain conditions
 - x is sufficiently sparse.

Recovery Algorithms (optimization)

- $\min_{\tilde{x} \in \mathbb{R}^N} \|\tilde{x}\|_0$ subject to $\|Ax y\|_2 \le \|e\|_2$, k < n/2
- $\min_{\tilde{x}\in\mathbb{R}^N} \|\tilde{x}\|_1$ subject to $\|Ax y\|_2 \le \|e\|_2$, $k \le n/\log(N/n)$

• Candés, Romberg, and Tao, and Donoho showed that ℓ_1 minimization

$\min_{\tilde{x}\in\mathbb{R}^N} \|\tilde{x}\|_1 \quad \text{subject to } \|A\tilde{x} - y\|_2 \le \|e\|_2$

can stably and robustly recover x from incomplete and inaccurate measurements y.

 $\bullet\,$ Candés, Romberg, and Tao, and Donoho showed that ℓ_1 minimization

$$\min_{\tilde{x}\in\mathbb{R}^N} \|\tilde{x}\|_1 \quad \text{subject to } \|A\tilde{x}-y\|_2 \le \|e\|_2$$

can stably and robustly recover x from incomplete and inaccurate measurements y.

• If the matrix A has $\delta_{(a+1)k} < \frac{a-1}{a+1}$, then x can be recovered with the approximation error:

$$||x^* - x||_2 \le C_0 \epsilon + C_1 k^{-1/2} ||x - x_k||_1.$$

• But

 $\bullet\,$ Candés, Romberg, and Tao, and Donoho showed that ℓ_1 minimization

$$\min_{\tilde{x}\in\mathbb{R}^N} \|\tilde{x}\|_1 \quad \text{subject to } \|A\tilde{x}-y\|_2 \le \|e\|_2$$

can stably and robustly recover x from incomplete and inaccurate measurements y.

• If the matrix A has $\delta_{(a+1)k} < \frac{a-1}{a+1}$, then x can be recovered with the approximation error:

$$||x^* - x||_2 \le C_0 \epsilon + C_1 k^{-1/2} ||x - x_k||_1.$$

But

 $\bullet\,$ Candés, Romberg, and Tao, and Donoho showed that ℓ_1 minimization

$$\min_{\tilde{x}\in\mathbb{R}^N} \|\tilde{x}\|_1 \quad \text{subject to } \|A\tilde{x}-y\|_2 \le \|e\|_2$$

can stably and robustly recover x from incomplete and inaccurate measurements y.

• If the matrix A has $\delta_{(a+1)k} < \frac{a-1}{a+1}$, then x can be recovered with the approximation error:

$$\|x^* - x\|_2 \le C_0 \epsilon + C_1 k^{-1/2} \|x - x_k\|_1.$$

• But, the ℓ_1 minimization formulation is non-adaptive, i.e., no prior information on x is used in the recovery.

- The columns of NMO corrected common-receiver gathers are jointly sparse in the wavelet domain.
- Typically in seismic lines, the measurement matrix is a Kronecker between 2D-curvelet and 1D-wavelet transforms.
- The curvelet coefficients of source receiver slices are highly correlated in time.

- The columns of NMO corrected common-receiver gathers are jointly sparse in the wavelet domain.
- Typically in seismic lines, the measurement matrix is a Kronecker between 2D-curvelet and 1D-wavelet transforms.
- The curvelet coefficients of source receiver slices are highly correlated in time.

- The columns of NMO corrected common-receiver gathers are jointly sparse in the wavelet domain.
- Typically in seismic lines, the measurement matrix is a Kronecker between 2D-curvelet and 1D-wavelet transforms.
- The curvelet coefficients of source receiver slices are highly correlated in time.

- The columns of NMO corrected common-receiver gathers are jointly sparse in the wavelet domain.
- Typically in seismic lines, the measurement matrix is a Kronecker between 2D-curvelet and 1D-wavelet transforms.
- The curvelet coefficients of source receiver slices are highly correlated in time.

- The columns of NMO corrected common-receiver gathers are jointly sparse in the wavelet domain.
- Typically in seismic lines, the measurement matrix is a Kronecker between 2D-curvelet and 1D-wavelet transforms.
- The curvelet coefficients of source receiver slices are highly correlated in time.

- The columns of NMO corrected common-receiver gathers are jointly sparse in the wavelet domain.
- Typically in seismic lines, the measurement matrix is a Kronecker between 2D-curvelet and 1D-wavelet transforms.
- The curvelet coefficients of source receiver slices are highly correlated in time.

- The columns of NMO corrected common-receiver gathers are jointly sparse in the wavelet domain.
- Typically in seismic lines, the measurement matrix is a Kronecker between 2D-curvelet and 1D-wavelet transforms.
- The curvelet coefficients of source receiver slices are highly correlated in time.

- The columns of NMO corrected common-receiver gathers are jointly sparse in the wavelet domain.
- Typically in seismic lines, the measurement matrix is a Kronecker between 2D-curvelet and 1D-wavelet transforms.
- The curvelet coefficients of source receiver slices are highly correlated in time.

- The columns of NMO corrected common-receiver gathers are jointly sparse in the wavelet domain.
- Typically in seismic lines, the measurement matrix is a Kronecker between 2D-curvelet and 1D-wavelet transforms.
- The curvelet coefficients of source receiver slices are highly correlated in time.
- How do we "bias" the recovery algorithm to use the prior information while keeping the measurement process nonadaptive?

Part 1: Introduction and Overview

Part 2: Stability and Robustness of Weighted ℓ_1 Minimization

Part 3: Experimental Results

Weighted ℓ_1 Minimization $\bullet 00000000$

Problem Setup

- Suppose that x is a k-sparse signal supported on an unknown set T_0 .
- Let T be a known support estimate that is partially accurate.
- We want to:
 - \bigcirc Recover x by incorporating T in the recovery algorithm.
 - \bigcirc Obtain recovery guarantees based on the size and accuracy of T.
- Our approach: weighted ℓ_1 minimization.

Weighted ℓ_1 Minimization $\bullet 00000000$ Experimental Results

Problem Setup

- Suppose that x is a k-sparse signal supported on an unknown set T_0 .
- Let T be a known support estimate that is partially accurate.
- We want to:
 - \bigcirc Recover x by incorporating T in the recovery algorithm.
 - \bigcirc Obtain recovery guarantees based on the size and accuracy of T.
- Our approach: weighted ℓ_1 minimization.

Weighted ℓ_1 Minimization $\bullet 00000000$

Problem Setup

- Suppose that x is a k-sparse signal supported on an unknown set T_0 .
- Let \widetilde{T} be a known support estimate that is partially accurate.
- We want to:
 - ① Recover x by incorporating \widetilde{T} in the recovery algorithm.
 - 2 Obtain recovery guarantees based on the size and accuracy of \tilde{T} .

• Our approach: weighted ℓ_1 minimization.

Weighted ℓ_1 Minimization $\bullet 00000000$

Problem Setup

- Suppose that x is a k-sparse signal supported on an unknown set T_0 .
- Let \widetilde{T} be a known support estimate that is partially accurate.
- We want to:
 - ① Recover x by incorporating \widetilde{T} in the recovery algorithm.
 - 2 Obtain recovery guarantees based on the size and accuracy of \tilde{T} .
- Our approach: weighted ℓ_1 minimization.

Experimental Results 000000

Weighted ℓ_1 Minimization

Given a set of measurements y, solve

$$\min_{x} \|x\|_{1,w} \text{ subject to } \|Ax - y\|_{2} \leq \epsilon \quad \text{with} \quad w_{i} = \begin{cases} 1, & i \in \widetilde{T}^{c}, \\ \omega, & i \in \widetilde{T}. \end{cases}$$

where $0 \le \omega \le 1$ and $||x||_{1,w} := \sum_i w_i |x_i|$.

• Let $Y = \Phi Z$, where Z is the common-receiver gather.

- Vectorize the system to make the NMO operator linear.
- Solve the ℓ_1 minimization problem using the support of x as the estimate set \widetilde{T} .

• Let $Y = \Phi Z$, where Z is the common-receiver gather.

- Vectorize the system to make the NMO operator linear.
- Solve the ℓ_1 minimization problem using the support of x as the estimate set \widetilde{T} .

- Let $Y = \Phi Z$, where Z is the common-receiver gather.
- Vectorize the system to make the NMO operator linear.
- Solve the ℓ_1 minimization problem using the support of x as the estimate set \widetilde{T} .

- Let $Y = \Phi Z$, where Z is the common-receiver gather.
- Vectorize the system to make the NMO operator linear.
- Solve the ℓ_1 minimization problem using the support of x as the estimate set \widetilde{T} .

- Let $Y = \Phi Z$, where Z is the common-receiver gather.
- Vectorize the system to make the NMO operator linear.
- Solve the ℓ_1 minimization problem using the support of x as the estimate set \widetilde{T} .

- Let $Y = \Phi Z$, where Z is the common-receiver gather.
- Vectorize the system to make the NMO operator linear.
- Solve the ℓ_1 minimization problem using the support of x as the estimate set \widetilde{T} .

Main Results

- We adopt weighted ℓ_1 minimization and derive stability and robustness guarantees for the recovery of a signal x with partial support estimate \tilde{T} .
- We show that if at least 50% of \tilde{T} is accurate, then weighted ℓ_1 minimization guarantees better recovery conditions and tighter error bounds.
- We show that this approach requires fewer measurements to recover the same SNR than standard ℓ_1 minimization.

Experimental Results

Main Results

- We adopt weighted ℓ_1 minimization and derive stability and robustness guarantees for the recovery of a signal x with partial support estimate \widetilde{T} .
- We show that if at least 50% of \widetilde{T} is accurate, then weighted ℓ_1 minimization guarantees better recovery conditions and tighter error bounds.
- We show that this approach requires fewer measurements to recover the same SNR than standard ℓ_1 minimization.

Main Results

- We adopt weighted ℓ_1 minimization and derive stability and robustness guarantees for the recovery of a signal x with partial support estimate \tilde{T} .
- We show that if at least 50% of \widetilde{T} is accurate, then weighted ℓ_1 minimization guarantees better recovery conditions and tighter error bounds.
- We show that this approach requires fewer measurements to recover the same SNR than standard ℓ_1 minimization.

Experimental Results

Weighted ℓ_1 Minimization

Find the vector x from a set of measurements y using the support estimate \widetilde{T} by solving

$$\begin{split} \min_{x} & \|x\|_{1,\mathrm{w}} \text{ subject to } \|Ax - y\|_{2} \leq \epsilon \quad \text{with} \quad w_{i} = \begin{cases} 1, & i \in \widetilde{T}^{c}, \\ \omega, & i \in \widetilde{T}. \end{cases} \\ \text{where } 0 \leq \omega \leq 1 \text{ and } \|x\|_{1,\mathrm{w}} := \sum_{i} \mathrm{w}_{i} |x_{i}|. \end{split}$$

Stability and Robustness

- Let x be in \mathbb{R}^N and let x_k be its best k-term approximation, supported on T_0 .
- Let $|\widetilde{T}| = \rho k$ and define $\alpha = \frac{|\widetilde{T} \cap T_0|}{|\widetilde{T}|}$, and $0 \le \omega \le 1$.
- If A satisfies

$$\delta_{(a+1)k} < \frac{a - \left(\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho}\right)^2}{a + \left(\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho}\right)^2},$$

$$\|x^* - x\|_2 \le C_0' \epsilon + C_1' k^{-1/2} \left(\omega \|x_{T_0^c}\|_1 + (1 - \omega) \|x_{\widetilde{T}^c \cap T_0^c}\|_1 \right).$$

Stability and Robustness

- Let x be in \mathbb{R}^N and let x_k be its best k-term approximation, supported on T_0 .
- Let $|\widetilde{T}| = \rho k$ and define $\alpha = \frac{|\widetilde{T} \cap T_0|}{|\widetilde{T}|}$, and $0 \le \omega \le 1$.

• If A satisfies

$$\delta_{(a+1)k} < \frac{a - \left(\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho}\right)^2}{a + \left(\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho}\right)^2},$$

$$\|x^* - x\|_2 \le C_0' \epsilon + C_1' k^{-1/2} \left(\omega \|x_{T_0^c}\|_1 + (1 - \omega) \|x_{\widetilde{T}^c \cap T_0^c}\|_1 \right).$$

Stability and Robustness

- Let x be in \mathbb{R}^N and let x_k be its best k-term approximation, supported on T_0 .
- Let $|\widetilde{T}| = \rho k$ and define $\alpha = \frac{|\widetilde{T} \cap T_0|}{|\widetilde{T}|}$, and $0 \le \omega \le 1$.
- If A satisfies

$$\delta_{(a+1)k} < \frac{a - \left(\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho}\right)^2}{a + \left(\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho}\right)^2},$$

$$\|x^* - x\|_2 \le C_0' \epsilon + C_1' k^{-1/2} \left(\omega \|x_{T_0^c}\|_1 + (1 - \omega) \|x_{\widetilde{T}^c \cap T_0^c}\|_1 \right).$$

Stability and Robustness

- Let x be in \mathbb{R}^N and let x_k be its best k-term approximation, supported on T_0 .
- Let $|\widetilde{T}| = \rho k$ and define $\alpha = \frac{|\widetilde{T} \cap T_0|}{|\widetilde{T}|}$, and $0 \le \omega \le 1$.
- If A satisfies

$$\delta_{(a+1)k} < \frac{a - \left(\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho}\right)^2}{a + \left(\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho}\right)^2},$$

$$\|x^* - x\|_2 \le C_0' \epsilon + C_1' k^{-1/2} \left(\omega \|x_{T_0^c}\|_1 + (1 - \omega) \|x_{\widetilde{T}^c \cap T_0^c}\|_1 \right).$$

Experimental Results 000000

Sufficient Recovery Condition

Comparison with ℓ_1 sufficient recovery condition.

Introduction 00000 Weighted ℓ_1 Minimization 00000000

Experimental Results 000000

Error Bound Constants

Measurement noise constant C'_0 :

Experimental Results 000000

Error Bound Constants

Signal compressibility constant C'_1 :

Experimental Results

Part 1: Introduction and Overview

Part 2: Stability and Robustness of Weighted ℓ_1 Minimization

Part 3: Experimental Results

Recovery of Sparse Signals

• SNR averaged over 20 experiments for k-sparse signals x with k = 40, and N = 500.

Experimental Results

Recovery of Sparse Signals

- SNR averaged over 20 experiments for k-sparse signals x with k = 40, and N = 500.
- The noise free case:

Experimental Results

Recovery of Sparse Signals

- SNR averaged over 20 experiments for k-sparse signals x with k = 40, and N = 500.
- The noisy measurement vector case

Recovery of Compressible Signals

• SNR averaged over 10 experiments for signals x whose coefficients decay like j^{-p} where $j \in \{1, ..., N\}$ and p = 1.5. We take n = 100 and N = 500.

Experimental Results

Recovery of Compressible Signals

- SNR averaged over 10 experiments for signals x whose coefficients decay like j^{-p} where $j \in \{1, ..., N\}$ and p = 1.5. We take n = 100 and N = 500.
- The noise free case:

Experimental Results

Recovery of Compressible Signals

- SNR averaged over 10 experiments for signals x whose coefficients decay like j^{-p} where $j \in \{1, ..., N\}$ and p = 1.5. We take n = 100 and N = 500.
- The noisy measurement vector case

Compressed Sensing of Common-Receiver Gathers

- We treat every column of the common-receiver gather Z separately.
- For each column j, collect n_j measurements sampled randomly.
- Use weighted ℓ_1 minimization to recover x_j with $T_j = V_{j-1}$.

Compressed Sensing of Common-Receiver Gathers

- We treat every column of the common-receiver gather Z separately.
- For each column j, collect n_j measurements sampled randomly.
- Use weighted ℓ_1 minimization to recover x_j with $T_j = V_{j-1}$.

Compressed Sensing of Common-Receiver Gathers

- We treat every column of the common-receiver gather Z separately.
- For each column j, collect n_j measurements sampled randomly.
- Use weighted ℓ_1 minimization to recover x_j with $\widetilde{T}_j = V_{j-1}$.

Experimental Results

Compressed Sensing Results

Compressed Sensing Results

- $n_0 = N/3$, $n_j = N/5$ for j = 1, 2, ...
- Average SNR: 11.35dB for ℓ_1 vs 18.47dB for weighted- ℓ_1 .
- ℓ_1 minimization requires 40% more measurements to achieve the same SNR.

Compressed Sensing Results

- $n_0 = N/3$, $n_j = N/5$ for j = 1, 2, ...
- Average SNR: 11.35dB for ℓ_1 vs 18.47dB for weighted- ℓ_1 .
- ℓ_1 minimization requires 40% more measurements to achieve the same SNR.

Conclusion and Future Work

- We showed that the correlation in seismic images allows us to draw support estimates of the data.
- If at least 50% of the support estimate is accurate, then weighted ℓ_1 minimization guarantees better recovery conditions with smaller recovery error bounds.
- The recovery gain helps reduce the number of measurements acquired, which can translate into cost reduction (e.g. wireless sensors combing measurements).
- Future work:
 - \sim Extend the weighted ℓ_{12} approach to seismic lines.
 - Compare the performance with the Kronecker approach currently used.
 - Study the possibility of combining weighting with Kroneckering.

Conclusion and Future Work

- We showed that the correlation in seismic images allows us to draw support estimates of the data.
- If at least 50% of the support estimate is accurate, then weighted ℓ_1 minimization guarantees better recovery conditions with smaller recovery error bounds.
- The recovery gain helps reduce the number of measurements acquired, which can translate into cost reduction (e.g. wireless sensors combing measurements).
- Future work:
 - Extend the weighted ℓ_1 approach to seismic lines.
 - Compare the performance with the Kronecker approach currently used.
 - Study the possibility of combining weighting with Kroneckering.
- We showed that the correlation in seismic images allows us to draw support estimates of the data.
- If at least 50% of the support estimate is accurate, then weighted ℓ_1 minimization guarantees better recovery conditions with smaller recovery error bounds.
- The recovery gain helps reduce the number of measurements acquired, which can translate into cost reduction (e.g. wireless sensors combing measurements).
- Future work:
 - Extend the weighted ℓ_1 approach to seismic lines.
 - Compare the performance with the Kronecker approach currently used.
 Study the possibility of combining weighting with Kroneckering.

- We showed that the correlation in seismic images allows us to draw support estimates of the data.
- If at least 50% of the support estimate is accurate, then weighted ℓ_1 minimization guarantees better recovery conditions with smaller recovery error bounds.
- The recovery gain helps reduce the number of measurements acquired, which can translate into cost reduction (e.g. wireless sensors combing measurements).
- Future work:
 - Extend the weighted ℓ_1 approach to seismic lines.
 - Compare the performance with the Kronecker approach currently used.
 - Study the possibility of combining weighting with Kroneckering.

- We showed that the correlation in seismic images allows us to draw support estimates of the data.
- If at least 50% of the support estimate is accurate, then weighted ℓ_1 minimization guarantees better recovery conditions with smaller recovery error bounds.
- The recovery gain helps reduce the number of measurements acquired, which can translate into cost reduction (e.g. wireless sensors combing measurements).
- Future work:
 - Extend the weighted ℓ_1 approach to seismic lines.
 - Compare the performance with the Kronecker approach currently used.
 - Study the possibility of combining weighting with Kroneckering.

- We showed that the correlation in seismic images allows us to draw support estimates of the data.
- If at least 50% of the support estimate is accurate, then weighted ℓ_1 minimization guarantees better recovery conditions with smaller recovery error bounds.
- The recovery gain helps reduce the number of measurements acquired, which can translate into cost reduction (e.g. wireless sensors combing measurements).
- Future work:
 - Extend the weighted ℓ_1 approach to seismic lines.
 - Compare the performance with the Kronecker approach currently used.
 - Study the possibility of combining weighting with Kroneckering.

Introduction 00000 Weighted ℓ_1 Minimization 000000000

Experimental Results

Thank you!

Partial funding provided by NSERC DNOISE II CRD.