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Introduction Weighted !1 Minimization Experimental Results

Motivation
We address the problem of reconstructing a seismogram Z from incomplete
measurements Y .

Examples where incomplete measurements arise:
Dimensionality reduction of extremely high resolution seismic data (HP and
Shell sensing system).
Simultaneous source/receiver mixing, source/receiver malfunctioning, ...
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Introduction Weighted !1 Minimization Experimental Results

Observations on Sparsity
Every column/slice zi of Z admits a (nearly) sparse representation in some
transform domain.

The time axis of the common-receiver gathers are sparse in the wavelet
domain.

Every source receiver slice is sparse in the curvelet domain.

How to recovery Z from the incomplete measurements Y ?
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Compressed Sensing
Compressed Sensing is an acquisition paradigm for signals that admit
sparse or nearly sparse representations in some transform domain.

Consider a signal z ∈ RN , z = Dx, where D is a transform matrix and x is
a k-sparse coefficient vector.

Given n " N linear and noisy measurements y = ΨDx+ e.

Let A = ΨD, it is possible to approximate x from the measurements y if
A obeys certain conditions
x is sufficiently sparse.
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Compressed Sensing
Compressed Sensing is an acquisition paradigm for signals that admit
sparse or nearly sparse representations in some transform domain.

Consider a signal z ∈ RN , z = Dx, where D is a transform matrix and x is
a k-sparse coefficient vector.

Given n " N linear and noisy measurements y = ΨDx+ e.

Let A = ΨD, it is possible to approximate x from the measurements y if
A obeys certain conditions
x is sufficiently sparse.

Definition: Restricted Isometry Property (RIP)

The RIP constant δk is defined as the smallest constant such that ∀x ∈ ΣN
k

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22
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Compressed Sensing is an acquisition paradigm for signals that admit
sparse or nearly sparse representations in some transform domain.

Consider a signal z ∈ RN , z = Dx, where D is a transform matrix and x is
a k-sparse coefficient vector.

Given n " N linear and noisy measurements y = ΨDx+ e.

Let A = ΨD, it is possible to approximate x from the measurements y if
A obeys certain conditions
x is sufficiently sparse.

Recovery Algorithms (optimization)

min
x̃∈RN

‖x̃‖0 subject to ‖Ax− y‖2 ≤ ‖e‖2, k < n/2

min
x̃∈RN

‖x̃‖1 subject to ‖Ax− y‖2 ≤ ‖e‖2, k ! n/ log(N/n)
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Stability and Robustness
Candés, Romberg, and Tao, and Donoho showed that !1 minimization

min
x̃∈RN

‖x̃‖1 subject to ‖Ax̃− y‖2 ≤ ‖e‖2

can stably and robustly recover x from incomplete and inaccurate
measurements y.
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If the matrix A has δ(a+1)k < a−1
a+1 , then x can be recovered with the

approximation error:

‖x∗ − x‖2 ≤ C0ε+ C1k
−1/2‖x− xk‖1.

But, the !1 minimization formulation is non-adaptive, i.e., no prior
information on x is used in the recovery.
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Prior Information in Seismic Imaging
The columns of NMO corrected common-receiver gathers are jointly sparse
in the wavelet domain.

Typically in seismic lines, the measurement matrix is a Kronecker between
2D-curvelet and 1D-wavelet transforms.

The curvelet coefficients of source receiver slices are highly correlated in
time.
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Prior Information in Seismic Imaging
The columns of NMO corrected common-receiver gathers are jointly sparse
in the wavelet domain.

Typically in seismic lines, the measurement matrix is a Kronecker between
2D-curvelet and 1D-wavelet transforms.

The curvelet coefficients of source receiver slices are highly correlated in
time.

How do we “bias” the recovery algorithm to use the prior information while
keeping the measurement process nonadaptive?
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Part 2: Stability and Robustness of Weighted !1 Minimization

Part 3: Experimental Results
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Introduction Weighted !1 Minimization Experimental Results

Problem Setup
Suppose that x is a k-sparse signal supported on an unknown set T0.

Let T̃ be a known support estimate that is partially accurate.

We want to:
1 Recover x by incorporating T̃ in the recovery algorithm.
2 Obtain recovery guarantees based on the size and accuracy of T̃ .

Our approach: weighted !1 minimization.
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Weighted !1 Minimization
Given a set of measurements y, solve

min
x

‖x‖1,w subject to ‖Ax− y‖2 ≤ ε with wi =

{
1, i ∈ T̃ c,

ω, i ∈ T̃ .

where 0 ≤ ω ≤ 1 and ‖x‖1,w :=
∑

i wi|xi|.
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Weighted !1 Minimization in Seismic Imaging
Let Y = ΦZ, where Z is the common-receiver gather.

Vectorize the system to make the NMO operator linear.

Solve the !1 minimization problem using the support of x as the estimate
set T̃ .
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Main Results
We adopt weighted !1 minimization and derive stability and robustness
guarantees for the recovery of a signal x with partial support estimate T̃ .

We show that if at least 50% of T̃ is accurate, then weighted !1
minimization guarantees better recovery conditions and tighter error
bounds.

We show that this approach requires fewer measurements to recover the
same SNR than standard !1 minimization.
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Weighted !1 Minimization
Find the vector x from a set of measurements y using the support estimate T̃
by solving

min
x

‖x‖1,w subject to ‖Ax− y‖2 ≤ ε with wi =

{
1, i ∈ T̃ c,

ω, i ∈ T̃ .

where 0 ≤ ω ≤ 1 and ‖x‖1,w :=
∑

i wi|xi|.
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Stability and Robustness
Let x be in RN and let xk be its best k-term approximation, supported on
T0.

Let |T̃ | = ρk and define α = |T̃∩T0|
|T̃ |

, and 0 ≤ ω ≤ 1.

If A satisfies

δ(a+1)k <
a−

(
ω + (1− ω)

√
1 + ρ− 2αρ

)2

a+
(
ω + (1− ω)

√
1 + ρ− 2αρ

)2 ,

then the recovery error is bounded by

‖x∗ − x‖2 ≤ C ′
0ε+ C ′

1k
−1/2

(
ω‖xT c

0
‖1 + (1− ω)‖xT̃ c∩T c

0
‖1
)
.
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Sufficient Recovery Condition
Comparison with !1 sufficient recovery condition.
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Error Bound Constants
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Error Bound Constants
Signal compressibility constant C ′
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Part 1: Introduction and Overview

Part 2: Stability and Robustness of Weighted !1 Minimization

Part 3: Experimental Results
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Recovery of Sparse Signals
SNR averaged over 20 experiments for k-sparse signals x with k = 40, and
N = 500.
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SNR averaged over 10 experiments for signals x whose coefficients decay
like j−p where j ∈ {1, ...N} and p = 1.5. We take n = 100 and N = 500.
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Compressed Sensing of Common-Receiver Gathers
We treat every column of the common-receiver gather Z separately.

For each column j, collect nj measurements sampled randomly.

Use weighted !1 minimization to recover xj with T̃j = Vj−1.
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Conclusion and Future Work
We showed that the correlation in seismic images allows us to draw support
estimates of the data.

If at least 50% of the support estimate is accurate, then weighted !1
minimization guarantees better recovery conditions with smaller recovery
error bounds.

The recovery gain helps reduce the number of measurements acquired,
which can translate into cost reduction (e.g. wireless sensors combing
measurements).

Future work:
Extend the weighted !1 approach to seismic lines.
Compare the performance with the Kronecker approach currently used.
Study the possibility of combining weighting with Kroneckering.
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Thank you!

Partial funding provided by NSERC DNOISE II CRD.
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