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@ We address the problem of reconstructing a seismogram Z from incomplete
measurements Y .
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Motivation

@ We address the problem of reconstructing a seismogram Z from incomplete
measurements Y.
@ Examples where incomplete measurements arise:

o Dimensionality reduction of extremely high resolution seismic data (HP and
Shell sensing system).
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@ Examples where incomplete measurements arise:
o Dimensionality reduction of extremely high resolution seismic data (HP and
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Motivation

@ We address the problem of reconstructing a seismogram Z from incomplete
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@ Examples where incomplete measurements arise:

e Dimensionality reduction of extremely high resolution seismic data (HP and
Shell sensing system).
e Simultaneous source/receiver mixing, source/receiver malfunctioning, ...
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Observations on Sparsity

@ Every column/slice z; of Z admits a (nearly) sparse representation in some
transform domain.
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@ Every column/slice z; of Z admits a (nearly) sparse representation in some
transform domain.

@ The time axis of the common-receiver gathers are sparse in the wavelet
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@ Every column/slice z; of Z admits a (nearly) sparse representation in some
transform domain.

@ The time axis of the common-receiver gathers are sparse in the wavelet
domain.

@ Every source receiver slice is sparse in the curvelet domain.
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Observations on Sparsity

@ Every column/slice z; of Z admits a (nearly) sparse representation in some
transform domain.

@ The time axis of the common-receiver gathers are sparse in the wavelet
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Observations on Sparsity

@ Every column/slice z; of Z admits a (nearly) sparse representation in some
transform domain.

@ The time axis of the common-receiver gathers are sparse in the wavelet
domain.

@ Every source receiver slice is sparse in the curvelet domain.

@ How to recovery Z from the incomplete measurements Y7
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Compressed Sensing

@ Compressed Sensing is an acquisition paradigm for signals that admit
sparse or nearly sparse representations in some transform domain.
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sparse or nearly sparse representations in some transform domain.

e Consider a signal z € RY, 2z = Dz, where D is a transform matrix and z is
a k-sparse coefficient vector.

@ Given n < N linear and noisy measurements y = W Dx + e.
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@ Compressed Sensing is an acquisition paradigm for signals that admit
sparse or nearly sparse representations in some transform domain.

e Consider a signal z € RY, 2z = Dz, where D is a transform matrix and z is
a k-sparse coefficient vector.

@ Given n < N linear and noisy measurements y = W Dx + e.
@ Let A= WD, it is possible to approximate x from the measurements y if
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Compressed Sensing

@ Compressed Sensing is an acquisition paradigm for signals that admit
sparse or nearly sparse representations in some transform domain.

e Consider a signal z € RY, 2z = Dz, where D is a transform matrix and z is
a k-sparse coefficient vector.

@ Given n < N linear and noisy measurements y = W Dx + e.

@ Let A= WD, it is possible to approximate x from the measurements y if
e A obeys certain conditions

The RIP constant o is defined as the smallest constant such that Vx & ijv

(1= dw)llzlz < [[Azlz < 1+ dk)l2
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Compressed Sensing

@ Compressed Sensing is an acquisition paradigm for signals that admit
sparse or nearly sparse representations in some transform domain.

e Consider a signal z € RY, 2z = Dz, where D is a transform matrix and z is
a k-sparse coefficient vector.

@ Given n < N linear and noisy measurements y = W Dx + e.

@ Let A= WD, it is possible to approximate x from the measurements y if

e A obeys certain conditions
e x is sufficiently sparse.

o min [|Zo subject to [|[Az —y[2 < [lell,  k <n/2
T E

o min |[Z]l; subject to [Az —yll2 <lel2, &< n/log(N/n)
T E
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Stability and Robustness

@ Candés, Romberg, and Tao, and Donoho showed that /1 minimization

min ||Z||;  subject to ||AZ — y|l2 < |le]|2
TeRN

can stably and robustly recover x from incomplete and inaccurate
measurements .
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can stably and robustly recover x from incomplete and inaccurate
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o [f the r.natri.x A has 0(q 1)k < Z—H then = can be recovered with the
approximation error:
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Stability and Robustness

@ Candés, Romberg, and Tao, and Donoho showed that /1 minimization

min ||Z||;  subject to ||AZ — y|l2 < |le]|2
TERN

can stably and robustly recover x from incomplete and inaccurate
measurements .

o [f the r.natri.x A has 0(q 1)k < Z—H then = can be recovered with the
approximation error:

|x* — z||o < Che + C’lk_l/QHx — 1.

@ But, the /1 minimization formulation is non-adaptive, i.e., no prior
information on x is used in the recovery.
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Prior Information in Seismic Imaging

@ The columns of NMO corrected common-receiver gathers are jointly sparse
in the wavelet domain.
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@ The columns of NMO corrected common-receiver gathers are jointly sparse
in the wavelet domain.

50 -

100 |-

150

200 |-

250 |-

300

350 -

400 |=

450 -

500 |-

NMO

0.2

0.4

0.6

0.8

1.2

141

1.6

1.8

Wavelet Coeffs

T

8 /25

Thursday, December 9, 2010



Introduction Weighted £1 Minimization Experimental Results
O000e O0O0000000 000000

Prior Information in Seismic Imaging

@ The columns of NMO corrected common-receiver gathers are jointly sparse
in the wavelet domain.

@ Typically in seismic lines, the measurement matrix is a Kronecker between
2D-curvelet and 1D-wavelet transforms.
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Prior Information in Seismic Imaging

@ The columns of NMO corrected common-receiver gathers are jointly sparse
in the wavelet domain.

@ Typically in seismic lines, the measurement matrix is a Kronecker between
2D-curvelet and 1D-wavelet transforms.

@ The curvelet coefficients of source receiver slices are highly correlated in
time.
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@ The columns of NMO corrected common-receiver gathers are jointly sparse
in the wavelet domain.

@ Typically in seismic lines, the measurement matrix is a Kronecker between
2D-curvelet and 1D-wavelet transforms.

@ The curvelet coefficients of source receiver slices are highly correlated in
time.
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Prior Information in Seismic Imaging

@ The columns of NMO corrected common-receiver gathers are jointly sparse
in the wavelet domain.

@ Typically in seismic lines, the measurement matrix is a Kronecker between
2D-curvelet and 1D-wavelet transforms.

@ The curvelet coefficients of source receiver slices are highly correlated in
time.
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Prior Information in Seismic Imaging

@ The columns of NMO corrected common-receiver gathers are jointly sparse
in the wavelet domain.

@ Typically in seismic lines, the measurement matrix is a Kronecker between
2D-curvelet and 1D-wavelet transforms.

@ The curvelet coefficients of source receiver slices are highly correlated in
time.

@ How do we “bias” the recovery algorithm to use the prior information while
keeping the measurement process nonadaptive?
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Part 2: Stability and Robustness of Weighted ¢; Minimization
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Problem Setup

@ Suppose that = is a k-sparse signal supported on an unknown set Tj.

o Let T be a known support estimate that is partially accurate.
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Problem Setup

@ Suppose that = is a k-sparse signal supported on an unknown set Tj.
o Let 7 be a known support estimate that is partially accurate.

@ We want to:

@ Recover x by incorporating T in the recovery algorithm. N
@ Obtain recovery guarantees based on the size and accuracy of T..
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Problem Setup

@ Suppose that = is a k-sparse signal supported on an unknown set Tj.
o Let 7 be a known support estimate that is partially accurate.

@ We want to:

@ Recover x by incorporating T in the recovery algorithm. N
@ Obtain recovery guarantees based on the size and accuracy of T..

@ Our approach: weighted ¢; minimization.
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Weighted ¢; Minimization

Given a set of measurements y, solve
I, 1e€7T°,
w, 1e€T.

min ||z||1w subject to ||[Ax —yl|l2 <€ with w; =«
€T

\
where 0 < w < 1 and ||2]/1.y i= 3, wy|z:].
> TOC >
T nT, T n T
T .
A%
1 Osws<1 1
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Weighted ¢; Minimization in Seismic Imaging

@ Let Y = ®Z, where Z is the common-receiver gather.
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Weighted ¢; Minimization in Seismic Imaging

@ Let Y = ®Z, where Z is the common-receiver gather.

@ Vectorize the system to make the NMO operator linear.
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@ Let Y = ®Z, where Z is the common-receiver gather.

@ Vectorize the system to make the NMO operator linear.
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Weighted ¢; Minimization in Seismic Imaging

@ Let Y = ®Z, where Z is the common-receiver gather.
@ Vectorize the system to make the NMO operator linear.

@ Solve the /1 minimization problem using the support of z as the estimate
set T

NMO &U stack’ X
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*
*
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Main Results

e We adopt weighted ¢; minimization and derive stability and robustness
guarantees for the recovery of a signal x with partial support estimate 7'
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guarantees for the recovery of a signal x with partial support estimate 7'

o We show that if at least 50% of T is accurate, then weighted /;

minimization guarantees better recovery conditions and tighter error
bounds.

13 /25

Thursday, December 9, 2010



Weighted £1 Minimization
®00000

Main Results

e We adopt weighted ¢; minimization and derive stability and robustness
guarantees for the recovery of a signal x with partial support estimate 7'

o We show that if at least 50% of T is accurate, then weighted /;
minimization guarantees better recovery conditions and tighter error
bounds.

@ We show that this approach requires fewer measurements to recover the
same SNR than standard ¢; minimization.
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Weighted ¢; Minimization

Find the vector x from a set of measurements y using the support estimate 1T
by solving

.

1, ieTe,

min ||z||; w subject to [[Az — y|ls <€ with w; = =
x w, 1€ T.

\
where 0 < w <1 and HZL‘Hl W oe— ZWZ‘ZCZ‘
— — 9 1
< TO >le TOC >
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14 / 25

Thursday, December 9, 2010



Introduction Weighted £1 Minimization Experimental Results
O0000 O0000@e000 O00000

Stability and Robustness

@ Let x be in RY and let x;, be its best k-term approximation, supported on
To.

15 /25

Thursday, December 9, 2010



Introduction Weighted £1 Minimization Experimental Results
00000 000000000 000000

Stability and Robustness

@ Let x be in RY and let x;, be its best k-term approximation, supported on
To.

o Let |T| = pk and define a = % and 0 <w < 1.
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Stability and Robustness

@ Let x be in RY and let x;, be its best k-term approximation, supported on
To.

o Let |T| = pk and define a = % and 0 <w < 1.

@ If A satisfies

a— (w+(1—w)yT+p-— 2ap)2
a+ (w+ (1—w)yT+p-— 204,0)27
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Stability and Robustness

@ Let = be in RY and let z; be its best k-term approximation, supported on
PP PP

1o.
o Let |T| = pk and define o = % and 0 <w < 1.
o If A satisfies

a— (w+(1—w)yT+p-— 204,0)2
a+ (w+ (1—w)yT+p-— 204,0)27

O(at1)k <

then the recovery error is bounded by

2% = 22 < Che + CLb™Y2 (wllargll + (1= ) [0 llt)
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Comparison with £; sufficient recovery condition.

Sufficient Recovery Condition
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Error Bound Constants

Measurement noise constant Cj:
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Signal compressibility constant C7:

Error bound compressibility constant (C1)
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Part 3: Experimental Results
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Recovery of Sparse Signals

@ SNR averaged over 20 experiments for k-sparse signals z with £ = 40, and
N = 500.
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Recovery of Sparse Signals

Experimental Results
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@ SNR averaged over 20 experiments for k-sparse signals z with £ = 40, and

N = 500.

@ [ he noise free case:
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Recovery of Sparse Signals

@ SNR averaged over 20 experiments for k-sparse signals z with £ = 40, and
N = 500.

@ The noisy measurement vector case
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Recovery of Compressible Signals

@ SNR averaged over 10 experiments for signals x whose coefficients decay
like 5P where j € {1,...N} and p = 1.5. We take n = 100 and N = 500.
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@ SNR averaged over 10 experiments for signals x whose coefficients decay
like 5P where j € {1,...N} and p = 1.5. We take n = 100 and N = 500.
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Recovery of Compressible Signals

@ SNR averaged over 10 experiments for signals x whose coefficients decay
like 5P where j € {1,...N} and p = 1.5. We take n = 100 and N = 500.

@ The noisy measurement vector case
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Compressed Sensing of Common-Receiver Gathers

@ We treat every column of the common-receiver gather Z separately.
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Compressed Sensing of Common-Receiver Gathers

@ We treat every column of the common-receiver gather Z separately.

@ For each column 7, collect n; measurements sampled randomly.

Weighted £1 Minimization

000000000

@ Use weighted ¢; minimization to recover z; with TJ = V;_1.

min, ||x|| {1 s.t. Ax =y,

o ming||x||i,, s.t. Ax =y,

ming||x|[yy s.t. Ax =y,
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00@000
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Compressed Sensing Results
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Compressed Sensing Results
o TL():N/B, Uz :N/5 fOFjZl,Q,...

@ Average SNR: 11.35dB for ¢; vs 18.47dB for weighted-/;.
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Compressed Sensing Results
o n():N/B, Uz :N/5 fOFjZl,Q,...

@ Average SNR: 11.35dB for ¢; vs 18.47dB for weighted-/;.

@ /1 minimization requires 40% more measurements to achieve the same
SNR.
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Conclusion and Future Work

@ We showed that the correlation in seismic images allows us to draw support
estimates of the data.

24 /25

Thursday, December 9, 2010



Experimental Results
00e0

Conclusion and Future Work

@ We showed that the correlation in seismic images allows us to draw support
estimates of the data.

o If at least 50% of the support estimate is accurate, then weighted /4

minimization guarantees better recovery conditions with smaller recovery
error bounds.

24 /25

Thursday, December 9, 2010



Experimental Results
00e0

Conclusion and Future Work

@ We showed that the correlation in seismic images allows us to draw support
estimates of the data.

o If at least 50% of the support estimate is accurate, then weighted /4

minimization guarantees better recovery conditions with smaller recovery
error bounds.

@ The recovery gain helps reduce the number of measurements acquired,

which can translate into cost reduction (e.g. wireless sensors combing
measurements).

24 /25

Thursday, December 9, 2010



Experimental Results
00e0

Conclusion and Future Work

@ We showed that the correlation in seismic images allows us to draw support
estimates of the data.

o If at least 50% of the support estimate is accurate, then weighted /4
minimization guarantees better recovery conditions with smaller recovery
error bounds.

@ The recovery gain helps reduce the number of measurements acquired,
which can translate into cost reduction (e.g. wireless sensors combing
measurements).

@ Future work:

o Extend the weighted /1 approach to seismic lines.

24 /25

Thursday, December 9, 2010



Experimental Results
00e0

Conclusion and Future Work

@ We showed that the correlation in seismic images allows us to draw support
estimates of the data.

o If at least 50% of the support estimate is accurate, then weighted /4
minimization guarantees better recovery conditions with smaller recovery
error bounds.

@ The recovery gain helps reduce the number of measurements acquired,
which can translate into cost reduction (e.g. wireless sensors combing
measurements).

@ Future work:

o Extend the weighted /1 approach to seismic lines.
e Compare the performance with the Kronecker approach currently used.

24 /25

Thursday, December 9, 2010



Experimental Results
00e0

Conclusion and Future Work

@ We showed that the correlation in seismic images allows us to draw support
estimates of the data.

o If at least 50% of the support estimate is accurate, then weighted /4
minimization guarantees better recovery conditions with smaller recovery
error bounds.

@ The recovery gain helps reduce the number of measurements acquired,
which can translate into cost reduction (e.g. wireless sensors combing
measurements).

@ Future work:

o Extend the weighted /1 approach to seismic lines.
e Compare the performance with the Kronecker approach currently used.
e Study the possibility of combining weighting with Kroneckering.
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