Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Sparse optimization and the $\ell_1\text{-norm}$ Tim Lin

Convex optimization

• Often written as:

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & Ax=b \end{array}$$

SLIM 🔮

- Where f_o, f_i are convex (if they appear)
- Any optimal local solution is also a optimal global solution

Convex optimization

• Often written as:

 $\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & Ax=b \end{array}$

SLIM 🛃

Where f_o, f_i are convex (if they appear)
Any optimal local solution is also a optimal global solution

Convex optimization

• Often written as:

 $\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & Ax=b \end{array}$

SLIM 🛃

Where *f_o, f*are convex (if they appear)
Steepest descent, Newton, Gauss-Newton, etc all converges globally, usually quickly

Convex functions

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if $\mathbf{dom} f$ is a convex set and

 $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$

SLIM 🛃

for all $x, y \in \operatorname{\mathbf{dom}} f$, $0 \le \theta \le 1$

• f is concave if -f is convex

Convex functions

not convex

convex

Convex functions

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if $\mathbf{dom} f$ is a convex set and

 $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$

SLIM 🛃

for all $x, y \in \operatorname{\mathbf{dom}} f$, $0 \le \theta \le 1$

• f is concave if -f is convex

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if $\operatorname{\mathbf{dom}} f$ is a convex set and

 $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$

for all $x, y \in \operatorname{\mathbf{dom}} f$, $0 \leq \theta \leq 1$

• f is concave if -f is convex

Concave functions

SLIM 🔶

Example: least-squares

minimize $||Ax - b||_2^2$

- analytical solution $x^* = A^{\dagger}b$ (A^{\dagger} is pseudo-inverse)
- can add linear constraints, e.g., $l \preceq x \preceq u$

A is m x n matrix: $m = n \checkmark$ $m > n \checkmark$ $m < n \succ$

Example: least-squares

Composition preserves convexity*

minimize $||Ax - b||_2^2$ Norms are convex Linear/Affine transforms are convex

- analytical solution $x^* = A^{\dagger}b$ (A^{\dagger} is pseudo-inverse)
- can add linear constraints, e.g., $l \preceq x \preceq u$

A is m x n matrix: $m = n \checkmark$ $m > n \checkmark$ $m < n \leftthreetimes$

Example: Reg. least-squares

$$\begin{array}{ll} \text{minimize} & \|Ax - b\|_2^2 \\ \text{subject to} & \|x\|_2 \leq \sigma \end{array}$$

- Signal regularization, etc
- makes sure value don't spike too high

Sparse regularization

 $\begin{array}{ll} \mbox{minimize} & \|Ax - b\|_2 \\ \mbox{subject to} & \mbox{card}(x) \leq k \end{array}$

SLIM 🛃

variations:

- minimize $\operatorname{card}(x)$ subject to $\|Ax b\|_2 \leq \epsilon$
- minimize $||Ax b||_2 + \lambda \operatorname{card}(x)$
- Signal regularization, etc
- Is it a convex optimization problem?

Sparse signal reconstruction

- estimate signal x, given
 - noisy measurement y = Ax + v , $v \sim \mathcal{N}(0, \sigma^2 I)$

SLIM 🛃

- prior information $\operatorname{card}(x) \leq k$
- maximum likelihood estimate \hat{x}_{ml} is solution of

minimize
$$||Ax - y||_2$$

subject to $card(x) \le k$

Ex: Denoising

• Know seismic signal is "sparse" in FK domain

SLIM 🛃

•
$$A := \mathcal{F}$$

• Replace $\operatorname{card}(x) \le k$ with $\operatorname{card}(x) = k$

$$\begin{array}{ll} \text{minimize} & \|\mathcal{F}x - b\|_2 \\ \text{subject to} & \mathbf{card}(x) = k \end{array}$$

 has well-defined solution via thresholding (ie, pick k largest coefs and zero the rest)

Don't know k?

Sometimes (most of the time) k is difficult to predict

SLIM 🛃

• Your best best is to solve:

 $\begin{array}{ll} \mbox{minimize} & \mbox{card}(x) \\ \mbox{subject to} & \|Ax-b\|_2 \leq \sigma \end{array}$

Don't know k?

- Sometimes (most of the time) k is difficult to predict
- Your best best is to solve:

 $\begin{array}{ll} \mbox{minimize} & \mbox{card}(x) \\ \mbox{subject to} & \|Ax-b\|_2 \leq \sigma \end{array} \end{array}$

SLIM 🔮

Don't know k?

Sometimes (most of the time) k is difficult to predict

SLIM 🐣

• Your best best is to solve:

$$\begin{array}{ll} \text{minimize} & \|x\|_1 \\ \text{subject to} & \|Ax - b\|_2 \leq \sigma \end{array}$$

SLIM 🐣

Argument 1: convex envelope of card(x) is $||x||_1$

Approximating sparsity

Argument 2: minimizing $||x||_1$ tends to produce many zeros

Approximating sparsity

Argument 3: geometric (in 2D)

Approximating sparsity

L2 Solution

Approximating sparsity

L1 Solution

L2 Solution

Approximating sparsity

L1 Solution

L2 Solution

Approximating sparsity

L1 Solution

Solving L1 minimization

$$\begin{array}{ll} \text{minimize} & \|x\|_1 \\ \text{subject to} & \|Ax - b\|_2 < \sigma \end{array}$$

- Method 1: SPG-L1 (projection)
- Method 2: reweighting
- Method 3: Continuation / Huber norm

Solving L1 minimization

Why no steepest descent / Newton?

 $\begin{array}{ll} \mbox{minimize} & \|x\|_1 & \mbox{Non-differentiable} \\ \mbox{subject to} & \|Ax-b\|_2 < \sigma \end{array}$

- Method 1: SPG-L1 (projection)
- Method 2: Reweighting
- Method 3: Continuation / Huber norm

Solving L1 minimization

Use SPGI1 (van den Berg, Friedlander, 2008)

- a projected gradient based method (seismic data-volumes are huge)
- uses root-finding to find the final one-norm

Solving L1 minimization

 $\begin{array}{ll} \mbox{minimize} & \|x\|_1 \\ \mbox{subject to} & \|Ax-b\|_2 < \sigma \end{array}$

Solving L1 minimization

minimize $||x||_1$ subject to $||Ax - b||_2 \le \sigma$ 25-20 two-norm of residual 15-Derivative given by $||\mathbf{A}^{T}\mathbf{x}||_{\infty}$ 10-5 0-2 3 5 7 0 1 4 6 one-norm of solution

Solving L1 minimization

Original problem breaks down into a series of new problems:

SPGL1

"Spectral Projected-Gradient for LI problems"

SLIM 🐣

Method 2: Reweighting

IRLS: Iteratively re-weighted least-squares

 x_k obtained from

Method 3: Continuation

Method 3: Continuation

"Huber Norm"

Method 3: Continuation

Gradual shrinkage of curvature

Method 3: Continuation

Gradual shrinkage of curvature

Method 3: Continuation

Gradual shrinkage of curvature Rapidly accelerates convergence

Summary

Use sparsity to exploit structure & a-priori knowledge about solution

SLIM

- Not convex, ergo ℓ_1
- Not differentiable, ergo tricks
- Three main classes of methods: Projection, Reweighting, Continuation

Acknowledgements

- BP EPT for motivation & feedback
- Material based on Boyd & Vandenberghe

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BP, Chevron, ConocoPhillips, Petrobras, Total SA, and WesternGeco.

SLIM 🕂