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• O9en wri;en as:

• Where           are convex (if they appear)

• Any opDmal local soluDon is also a opDmal global 
soluDon

Convex optimization problem

standard form convex optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

aT
i x = bi, i = 1, . . . , p

• f0, f1, . . . , fm are convex; equality constraints are affine

• problem is quasiconvex if f0 is quasiconvex (and f1, . . . , fm convex)

often written as

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

important property: feasible set of a convex optimization problem is convex

Convex optimization problems 4–6

fo, fi

Convex optimization
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• O9en wri;en as:

• Where           are convex (if they appear)

• Steepest descent, Newton, Gauss‐Newton, etc all 
converges globally, usually quickly

fo, fi

Convex optimization
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Definition

f : Rn → R is convex if dom f is a convex set and

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

(x, f(x))

(y, f(y))

• f is concave if −f is convex

• f is strictly convex if dom f is convex and

f(θx + (1 − θ)y) < θf(x) + (1 − θ)f(y)

for x, y ∈ dom f , x %= y, 0 < θ < 1

Convex functions 3–2

Convex functions
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convex not convex

Convex functions
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Concave functions

Definition

f : R
n
→ R is convex if dom f is a convex set and

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

(x, f(x))

(y, f(y))

• f is concave if −f is convex

• f is strictly convex if dom f is convex and

f(θx + (1 − θ)y) < θf(x) + (1 − θ)f(y)

for x, y ∈ dom f , x %= y, 0 < θ < 1

Convex functions 3–2
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Examples

least-squares
minimize ‖Ax − b‖2

2

• analytical solution x! = A†b (A† is pseudo-inverse)

• can add linear constraints, e.g., l # x # u

linear program with random cost

minimize c̄Tx + γxTΣx = E cTx + γ var(cTx)
subject to Gx # h, Ax = b

• c is random vector with mean c̄ and covariance Σ

• hence, cTx is random variable with mean c̄Tx and variance xTΣx

• γ > 0 is risk aversion parameter; controls the trade-off between
expected cost and variance (risk)

Convex optimization problems 4–23
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A is m x n matrix:
m = n
m > n
m < n

Example: least-squares

Thursday, December 9, 2010



Examples

least-squares
minimize ‖Ax − b‖2

2

• analytical solution x! = A†b (A† is pseudo-inverse)

• can add linear constraints, e.g., l # x # u

linear program with random cost

minimize c̄Tx + γxTΣx = E cTx + γ var(cTx)
subject to Gx # h, Ax = b

• c is random vector with mean c̄ and covariance Σ

• hence, cTx is random variable with mean c̄Tx and variance xTΣx

• γ > 0 is risk aversion parameter; controls the trade-off between
expected cost and variance (risk)
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{
{

{
Linear/Affine transforms are convex

Norms are convex

ComposiDon preserves convexity*
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• Signal regularizaDon, etc

• makes sure value don’t spike too high

Example: Reg. least-squares

minimize ‖Ax− b‖22
subject to ‖x‖2 ≤ σ

Thursday, December 9, 2010



• Signal regularizaDon, etc

• Is it a convex opDmizaDon problem?

Sparse modeling / regressor selection

fit vector b ∈ Rm as a linear combination of k regressors (chosen from n
possible regressors)

minimize ‖Ax − b‖2

subject to card(x) ≤ k

• gives k-term model

• chooses subset of k regressors that (together) best fit or explain b

• can solve (in principle) by trying all

(

n
k

)

choices

• variations:

– minimize card(x) subject to ‖Ax − b‖2 ≤ ε
– minimize ‖Ax − b‖2 + λ card(x)

Prof. S. Boyd, EE364b, Stanford University 7
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Sparse signal reconstruction

• estimate signal x, given

– noisy measurement y = Ax+ v, v ∼ N (0,σ2I) (A is known; v is not)
– prior information card(x) ≤ k

• maximum likelihood estimate x̂ml is solution of

minimize ‖Ax − y‖2

subject to card(x) ≤ k

Prof. S. Boyd, EE364b, Stanford University 8
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Sparse signal reconstruction
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• Know seismic signal is “sparse” in FK domain

•    

• Replace                         with 

• has well‐defined soluDon via thresholding
(ie, pick k largest coefs and zero the rest)

A := F

card(x) ≤ k card(x) = k

minimize ‖Fx− b‖2

subject to card(x) = k

Ex: Denoising

Thursday, December 9, 2010



• SomeDmes (most of the Dme) k is difficult to 
predict

• Your best best is to solve:

Don’t know k?

minimize card(x)
subject to ‖Ax− b‖2 ≤ σ

Thursday, December 9, 2010



• SomeDmes (most of the Dme) k is difficult to 
predict

• Your best best is to solve:

Not Convex

Don’t know k?

minimize card(x)
subject to ‖Ax− b‖2 ≤ σ
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card(x) in 1D
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• SomeDmes (most of the Dme) k is difficult to 
predict

• Your best best is to solve:

Don’t know k?

minimize ‖x‖1
subject to ‖Ax− b‖2 ≤ σ
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F igu re 3: A t t he origin, t he canonical  0 sparsi ty count f 0 (t) is bet ter approxima ted by t he
log-sum penal ty funct ion f l og ,  (t) t han by t he t radi t ional convex  1 relaxa t ion f 1 (t).

many possibili t ies of t his na t ure and t hey tend to work well (somet imes bet ter t han t he log-sum
penal ty). B ecause of space limi t a t ions, however, we will limi t ourselves to empirical st udies of t he
performance of t he log-sum penal ty, and leave t he choice of other penal t ies for fur t her research.

2.5 Historical progression

T he development of t he reweighted  1 algori t hm has an interest ing historical parallel wi t h t he use
of I tera t ively R eweighted L east Squares (I R LS) for robust st a t ist ical est ima t ion [37–39]. Consider
a regression problem A x = b where t he observa t ion ma t rix A is overdetermined. I t was not iced t ha t
st andard least squares regression, in which one minimizes ‖r‖2 where r = A x − b is t he residual
vector, lacked robust ness vis a vis ou t liers. To defend against t his, I R LS was proposed as an
i tera t ive met hod to minimize instead t he ob ject ive

min
x

∑

i

 ( ri( x )),

where  (·) is a penal ty funct ion such as t he  1 norm [37, 40]. T his minimiza t ion can be accomplished
by solving a sequence of weighted least-squares problems where t he weights {wi} depend on t he
previous residual wi =  ′( ri) / ri . For typical choices of  t his dependence is in fact inversely
propor t ional—large residuals will be penalized less in t he subsequent i tera t ion and vice versa—
as is t he case wi t h our reweighted  1 algori t hm. Interest ingly, just as I R LS involved i tera t ively
reweight ing t he  2-norm in order to bet ter approxima te an  1-like cri terion, our algori t hm involves
i tera t ively reweight ing t he  1-norm in order to bet ter approxima te an  0-like cri terion.

3 Numerical experiments

We present a series of experiments demonst ra t ing t he benefi ts of reweight ing t he  1 penal ty. We
will see t ha t t he requisi te number of measurements to recover or approxima te a signal is typi-
cally reduced, in some cases by a subst ant ial amount . We also demonst ra te t ha t t he reweight ing
approach is robust and broadly applicable, providing examples of sparse and compressible signal
recovery, noise-aware recovery, model select ion, error correct ion, and 2-dimensional tot al-varia t ion
minimiza t ion. M eanwhile, we address impor t ant issues such as how one can choose  wisely and
how robust is t he algori t hm to t his choice, and how many reweight ing i tera t ions are needed for
convergence.

9

Argument 1: convex envelope of card(x) is ‖x‖1

Approximating sparsity
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example (m = 100, n = 30): histogram of residuals for penalties

φ(u) = |u|, φ(u) = u2, φ(u) = max{0, |u|−a}, φ(u) = − log(1−u2)
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shape of penalty function has large effect on distribution of residuals

Approximation and fitting 6–5

Argument 2: minimizing         tends to produce many zeros‖x‖1

Approximating sparsity
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L1 Ball L2 Ball

Argument 3: geometric (in 2D)

Approximating sparsity

Thursday, December 9, 2010



L1 SoluDon L2 SoluDon

Approximating sparsity
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L1 SoluDon L2 SoluDon

Approximating sparsity
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L1 SoluDon L2 SoluDon

sparse solutions

Approximating sparsity
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L1 SoluDon L2 SoluDon

dense solution

Approximating sparsity
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minimize ‖x‖1

subject to ‖Ax− b‖2 < σ

• Method 1: SPG‐L1 (projecDon)

• Method 2: reweighDng

• Method 3: ConDnuaDon / Huber norm

Solving L1 minimization
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minimize ‖x‖1

subject to ‖Ax− b‖2 < σ

• Method 1: SPG‐L1 (projecDon)

• Method 2: ReweighDng

• Method 3: ConDnuaDon / Huber norm

Why no steepest descent / Newton?

Non‐differenDable

Solving L1 minimization
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Projected gradient. Our application of the SPG algorithm to solve (LSτ ) follows
Birgin, Mart́ınez, and Raydan [5] closely for the minimization of general nonlinear
functions over arbitrary convex sets. The method they propose combines projected-
gradient search directions with the spectral step length that was introduced by Barzilai
and Borwein [1]. A nonmonotone line search is used to accept or reject steps. The
key ingredient of Birgin, Mart́ınez, and Raydan’s algorithm is the projection of the
gradient direction onto a convex set, which in our case is defined by the constraint
in (LSτ ). In their recent report, Figueiredo, Nowak, and Wright [27] describe the
remarkable efficiency of an SPG method specialized to (QPλ). Their approach builds
on the earlier report by Dai and Fletcher [18] on the efficiency of a specialized SPG
method for general bound-constrained quadratic programs (QPs).

2. The Pareto curve. The function φ defined by (1.1) yields the optimal value
of the constrained problem (LSτ ) for each value of the regularization parameter τ .
Its graph traces the optimal trade-off between the one-norm of the solution x and
the two-norm of the residual r, which defines the Pareto curve. Figure 2.1 shows the
graph of φ for a typical problem.

The Newton-based root-finding procedure that we propose for locating specific
points on the Pareto curve—e.g., finding roots of (1.2)—relies on several important
properties of the function φ. As we show in this section, φ is a convex and differentiable
function of τ . The differentiability of φ is perhaps unintuitive, given that the one-
norm constraint in (LSτ ) is not differentiable. To deal with the nonsmoothness of
the one-norm constraint, we appeal to Lagrange duality theory. This approach yields
significant insight into the properties of the trade-off curve. We discuss the most
important properties below.

2.1. The dual subproblem. The dual of the Lasso problem (LSτ ) plays a
prominent role in understanding the Pareto curve. In order to derive the dual of
(LSτ ), we first recast (LSτ ) as the equivalent problem

(2.1) minimize
r,x

‖r‖2 subject to Ax + r = b, ‖x‖1 ≤ τ.
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Fig. 2.1. A typical Pareto curve (solid line) showing two iterations of Newton’s method. The
first iteration is available at no cost.

Use SPGl1 (van den Berg, Friedlander, 2008)
‐ a projected gradient based method (seismic data‐volumes are huge)
‐ uses root‐finding to find the final one‐norm

Feasible

Pareto curve

Solving L1 minimization
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Fig. 2.1. A typical Pareto curve (solid line) showing two iterations of Newton’s method. The
first iteration is available at no cost.

minimize ‖x‖1

subject to ‖Ax− b‖2 < σ

σ

‖x‖1feasible soluDon with smallest 

Solving L1 minimization
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DerivaDve given by ||ATx||∞

Solving L1 minimization

minimize ‖x‖1
subject to ‖Ax− b‖2 ≤ σ
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Original problem breaks down into a series of new problems:
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(c) Pareto curve and solution path

Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

(Projected Gradient)

minimize ‖Ax− b‖2
subject to ‖x‖1 ≤ τ

Solving L1 minimization
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!1ball

(‖x‖1 = τ)

Possible soluDons of Ax=b

minimize ‖Ax− b‖2
subject to ‖x‖1 ≤ τ

Steepest descent direcDon
A†(Ax− b)

Projected Gradient
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!1ball

(‖x‖1 = τ)

minimize ‖Ax− b‖2
subject to ‖x‖1 ≤ τ

Subtract away shortest L2 
distance to the ball

Projected Gradient
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!1ball

(‖x‖1 = τ)

minimize ‖Ax− b‖2
subject to ‖x‖1 ≤ τ

“projected gradient”

Projected Gradient
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!1ball

(‖x‖1 = τ)

minimize ‖Ax− b‖2
subject to ‖x‖1 ≤ τ

step size:
“Spectral gradient method”

∆xT ∆x

∆xT ∆g

Projected Gradient
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“Spectral Projected-Gradient for L1 problems”

Get gradient 
(apply adjoint)

Scale by spectral 
step-length

Project onto 
current L1 ball

Converged? 
(check 

improvement)

residual norm 
small enough?

Terminate

Increase 
allowed L1 

norm

No

Yes

No

Yes

Initialize with 
zeroes

SPGL1
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F igu re 3: A t t he origin, t he canonical  0 sparsi ty count f 0 (t) is bet ter approxima ted by t he
log-sum penal ty funct ion f l og ,  (t) t han by t he t radi t ional convex  1 relaxa t ion f 1 (t).

many possibili t ies of t his na t ure and t hey tend to work well (somet imes bet ter t han t he log-sum
penal ty). B ecause of space limi t a t ions, however, we will limi t ourselves to empirical st udies of t he
performance of t he log-sum penal ty, and leave t he choice of other penal t ies for fur t her research.

2.5 Historical progression

T he development of t he reweighted  1 algori t hm has an interest ing historical parallel wi t h t he use
of I tera t ively R eweighted L east Squares (I R LS) for robust st a t ist ical est ima t ion [37–39]. Consider
a regression problem A x = b where t he observa t ion ma t rix A is overdetermined. I t was not iced t ha t
st andard least squares regression, in which one minimizes ‖r‖2 where r = A x − b is t he residual
vector, lacked robust ness vis a vis ou t liers. To defend against t his, I R LS was proposed as an
i tera t ive met hod to minimize instead t he ob ject ive

min
x

∑

i

 ( ri( x )),

where  (·) is a penal ty funct ion such as t he  1 norm [37, 40]. T his minimiza t ion can be accomplished
by solving a sequence of weighted least-squares problems where t he weights {wi} depend on t he
previous residual wi =  ′( ri) / ri . For typical choices of  t his dependence is in fact inversely
propor t ional—large residuals will be penalized less in t he subsequent i tera t ion and vice versa—
as is t he case wi t h our reweighted  1 algori t hm. Interest ingly, just as I R LS involved i tera t ively
reweight ing t he  2-norm in order to bet ter approxima te an  1-like cri terion, our algori t hm involves
i tera t ively reweight ing t he  1-norm in order to bet ter approxima te an  0-like cri terion.

3 Numerical experiments

We present a series of experiments demonst ra t ing t he benefi ts of reweight ing t he  1 penal ty. We
will see t ha t t he requisi te number of measurements to recover or approxima te a signal is typi-
cally reduced, in some cases by a subst ant ial amount . We also demonst ra te t ha t t he reweight ing
approach is robust and broadly applicable, providing examples of sparse and compressible signal
recovery, noise-aware recovery, model select ion, error correct ion, and 2-dimensional tot al-varia t ion
minimiza t ion. M eanwhile, we address impor t ant issues such as how one can choose  wisely and
how robust is t he algori t hm to t his choice, and how many reweight ing i tera t ions are needed for
convergence.

9

1st order approx. of a Log funcDon

log(x) ≈ log(xk) +
1
xk

(x− xk)

Method 2: Reweighting
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IRLS:  IteraDvely re‐weighted least‐squares

xk obtained from

Method 2: Reweighting

*minimize ‖
(

1
xk−1

)
x‖2

subject to ‖Ax− b‖2 ≤ σ
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Method 3: Continuation
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“Huber Norm”

Method 3: Continuation
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“Huber Norm”

Zero Hessian Zero Hessian

Method 3: Continuation
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“Huber Norm”

Zero Hessian Zero Hessian

Method 3: Continuation
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Gradual shrinkage of curvature

Method 3: Continuation
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Gradual shrinkage of curvature

Method 3: Continuation
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Gradual shrinkage of curvature
Rapidly accelerates convergence

Method 3: Continuation
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• Use sparsity to exploit structure & a‐priori 
knowledge about soluDon

• Not convex, ergo

• Not differenDable, ergo tricks

• Three main classes of methods: ProjecDon, Re‐
weighDng, ConDnuaDon

!1

Summary
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• BP EPT 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& feedback
• Material 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& 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