Sparse optimization and the ℓ_{1}-norm

 Tim Lin
SLIM
 University of British Columbia

Convex optimization

- Often written as:

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

- Where f_{o}, f_{i} are convex (if they appear)
- Any optimal local solution is also a optimal global solution

Convex optimization

- Often written as:

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

- Where f_{0}, f_{i} aro convov (if thoy anpear)
- Any optimal local solution is also a optimal global solution

Convex optimization

- Often written as:

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

- Where f_{0}. faro convo․ (if thoy anpear)
- Steepest descent, Newton, Gauss-Newton, etc al converges globally, usually quickly

Convex functions

$f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex if $\operatorname{dom} f$ is a convex set and

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

for all $x, y \in \operatorname{dom} f, 0 \leq \theta \leq 1$

- f is concave if $-f$ is convex

Convex functions

convex

not convex

Convex functions

$f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex if $\operatorname{dom} f$ is a convex set and

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

for all $x, y \in \operatorname{dom} f, 0 \leq \theta \leq 1$

- f is concave if $-f$ is convex

Concave functions

- t ! ! concan $!t-t$! 2 conл $6 x$

$$
\mathfrak{t}\left(\theta^{x}+(J-\theta) A\right)<\theta t(x)+(I-\theta) \neq(A)
$$

Example: least-squares

minimize $\|A x-b\|_{2}^{2}$

- analytical solution $x^{\star}=A^{\dagger} b\left(A^{\dagger}\right.$ is pseudo-inverse $)$
- can add linear constraints, e.g., $l \preceq x \preceq u$

A is $m \times n$ matrix:

$$
\begin{aligned}
& m=n \\
& m>n \\
& m<n \quad x
\end{aligned}
$$

Example: least-squares

Composition preserves convexity*

- analytical solution $x^{\star}=A^{\dagger} b\left(A^{\dagger}\right.$ is pseudo-inverse $)$
- can add linear constraints, e.g., $l \preceq x \preceq u$

A is $m \times n$ matrix:

$$
\begin{aligned}
& m=n \\
& m>n \\
& m<n \quad x
\end{aligned}
$$

Example: Reg. least-squares

$$
\begin{array}{ll}
\operatorname{minimize} & \|A x-b\|_{2}^{2} \\
\text { subject to } & \|x\|_{2} \leq \sigma
\end{array}
$$

- Signal regularization, etc
- makes sure value don't spike too high

Sparse regularization

$$
\begin{array}{ll}
\operatorname{minimize} & \|A x-b\|_{2} \\
\text { subject to } & \operatorname{card}(x) \leq k
\end{array}
$$

variations:

- minimize card (x) subject to $\|A x-b\|_{2} \leq \epsilon$
$-\operatorname{minimize}\|A x-b\|_{2}+\lambda \operatorname{card}(x)$
- Signal regularization, etc
- Is it a convex optimization problem?

Sparse signal reconstruction

- estimate signal x, given
- noisy measurement $y=A x+v, v \sim \mathcal{N}\left(0, \sigma^{2} I\right)$
- prior information $\operatorname{card}(x) \leq k$
- maximum likelihood estimate \hat{x}_{ml} is solution of

$$
\begin{array}{ll}
\operatorname{minimize} & \|A x-y\|_{2} \\
\text { subject to } & \operatorname{card}(x) \leq k
\end{array}
$$

Ex: Denoising

- Know seismic signal is "sparse" in FK domain
- $A:=\mathcal{F}$
- Replace $\operatorname{card}(x) \leq k$ with $\operatorname{card}(x)=k$

$$
\begin{array}{ll}
\operatorname{minimize} & \|\mathcal{F} x-b\|_{2} \\
\text { subject to } & \operatorname{card}(x)=k
\end{array}
$$

- has well-defined solution via thresholding (ie, pick k largest coefs and zero the rest)

Don't know k?

- Sometimes (most of the time) k is difficult to predict
- Your best best is to solve:

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{card}(x) \\
\text { subject to } & \|A x-b\|_{2} \leq \sigma
\end{array}
$$

Don't know k?

- Sometimes (most of the time) k is difficult to predict
- Your best best is to solve:

card(x) in 1D

Don't know k?

- Sometimes (most of the time) k is difficult to predict
- Your best best is to solve:

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\|_{1} \\
\text { subject to } & \|A x-b\|_{2} \leq \sigma
\end{array}
$$

Approximating sparsity

Argument 1: convex envelope of $\operatorname{card}(\mathrm{x})$ is $\|x\|_{1}$

Approximating sparsity

Argument 2: minimizing $\|x\|_{1}$ tends to produce many zeros

Approximating sparsity

Argument 3: geometric (in 2D)

LI Ball

L2 Ball

Approximating sparsity

L1 Solution

L2 Solution

Solving L1 minimization

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\|_{1} \\
\text { subject to } & \|A x-b\|_{2}<\sigma
\end{array}
$$

- Method 1: SPG-L1 (projection)
- Method 2: reweighting
- Method 3: Continuation / Huber norm

Solving L1 minimization

Why no steepest descent / Newton?

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\|_{1} \quad \text { Non-differentiable } \\
\text { subject to } & \|A x-b\|_{2}<\sigma
\end{array}
$$

- Method 1: SPG-L1 (projection)
- Method 2: Reweighting
- Method 3: Continuation / Huber norm

Solving L1 minimization

Use SPGI1 (van den Berg, Friedlander, 2008)

- a projected gradient based method (seismic data-volumes are huge)
- uses root-finding to find the final one-norm

Solving L1 minimization

minimize $\quad\|x\|_{1}$
subject to $\|A x-b\|_{2}<\sigma$

Solving L1 minimization

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\|_{1} \\
\text { subject to } & \|A x-b\|_{2} \leq \sigma
\end{array}
$$

Solving L1 minimization

Original problem breaks down into a series of new problems:

Projected Gradient
 minimize $\quad\|A x-b\|_{2}$
 subject to $\|x\|_{1} \leq \tau$

Projected Gradient

minimize $\quad\|A x-b\|_{2}$
subject to $\|x\|_{1} \leq \tau$

minimize $\quad\|A x-b\|_{2}$
 Projected Gradient subject to $\|x\|_{1} \leq \tau$

Projected Gradient
 minimize $\quad\|A x-b\|_{2}$
 subject to $\|x\|_{1} \leq \tau$

step size:
"Spectral gradient method"
$\frac{\Delta x^{T} \Delta x}{\Delta x^{T} \Delta g}$

Method 2: Reweighting

1st order approx. of a Log function

$$
\log (x) \approx \log \left(x_{k}\right)+\frac{1}{x_{k}}\left(x-x_{k}\right)
$$

Method 2: Reweighting

IRLS: Iteratively re-weighted least-squares

$$
x_{k} \text { obtained from } \begin{array}{ll}
\text { minimize } & \left\|\left(\frac{1}{x_{k-\frac{\tilde{1}}{}}}\right) x\right\|_{2} \\
\text { subject to }
\end{array}\|A x-b\|_{2} \leq \sigma
$$

Method 3: Continuation

Method 3: Continuation

"Huber Norm"

Method 3: Continuation

"Huber Norm"

Method 3: Continuation

"Huber Norm"

Method 3: Continuation

Gradual shrinkage of curvature

Method 3: Continuation

Gradual shrinkage of curvature

Method 3: Continuation

Gradual shrinkage of curvature Rapidly accelerates convergence

- Use sparsity to exploit structure \& a-priori knowledge about solution
- Not convex, ergo ℓ_{1}
- Not differentiable, ergo tricks
- Three main classes of methods: Projection, Reweighting, Continuation

Acknowledgements

- BP EPT for motivation \& feedback
- Material based on Boyd \& Vandenberghe

S NBAD

NSERC CRSNG

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BP, Chevron, ConocoPhillips, Petrobras, Total SA, and WesternGeco.

