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Convex oplimization

® Often written as:

minimize  fo(x)
subject to fz( ) <0, i=1,...,m
Ar =0

® Where /o, Jiare convex (if they appear)

® Any optimal local solution is also a optimal global
solution
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Convex oplimization

® Often written as:

minimize  fo(x)
subject to fz( )
Qj —

>~ I/\
|
\t—\
S

® Where

Steepest descent, Newton, Gauss-Newton, etc ¢
converges globally, usually quickly
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Convex functions

f:R" — R is convex if dom f is a convex set and

fllz+(1—0)y) <0f(x)+(1-0)f(y)

forall z,y edom f, 0 <0 <1

(y, f(y))
(z, f(x))

e f is concave if —f is convex
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Convex functions

convex Nnot convex
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Concave functions
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Example: least-squares

minimize || Ax — bl|3

e analytical solution x* = ATb (AT is pseudo-inverse)

e can add linear constraints, e.qg., [ =z < u

A 1S m X n matrix:
m=n
m>n VvV
m<n X
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Example: least-squares

Composition preserves convexity*

——

minimize HAQE — bH% }Normsare convex

W_J

Linear/Affine transforms are convex
e analytical solution x* = ATb (AT is pseudo-inverse)

e can add linear constraints, e.q., | <z <X u

A 1S m X n matrix:
m=n
m>n VvV
m<n X
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Example: Reg. least-squares

minimize || Ax — b||3
subject to  ||z||s < o

® Signhal regularization, etc

® makes sure value don’t spike too high
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Sparse regularization

minimize  ||Ax — b||5
subject to card(x) <k

variations:

— minimize card(z) subject to ||Ax — b||s < €
— minimize ||Az — b||2 + A card(z)

® Signal regularization, etc

® Is it a convex optimization problem?
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Sparse signal reconstruction

e estimate signal x, given

— noisy measurement y = Az +v, v ~ N (0, 0°1)
— prior information card(z) < k

e maximum likelihood estimate Z,, Is solution of

minimize  |Az — y||2
subject to card(z) <k
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® Know seismic signal is “sparse” in FK domain
o A =F
® Replace card(z) < k with card(z) =k

minimize  ||[Fx — b||2
subject to card(xz) =k

® has well-defined solution via thresholding
(ie, pick k largest coefs and zero the rest)
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Don’t know k?

® Sometimes (most of the time) k is difficult to
predict

® Your best best is to solve:

minimize  card(z)
subject to ||Az — bl < o
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Don’t know k?

® Sometimes (most of the time) k is difficult to
predict

® Your best best is to solve:

Not Convex
minimize  card(z)
subject to ||Ax —blls < o
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card(x)in 1D




Don’t know k?

® Sometimes (most of the time) k is difficult to
predict

® Your best best is to solve:

minimize  ||z||1
subject to  ||Ax —blls < 0o
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Approximating sparsity

Ji(1)

] ﬁﬂg,s(l)
Jo(?)
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|

0 /

Argument 1: convex envelope of card(x) is ||x||1




Approximating sparsity
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Argument 2: minimizing ||z|1 tends to produce many zeros
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Approximating sparsity

Argument 3: geometric (in 2D)
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Approximating sparsity
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Approximating sparsity
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Approximating sparsity
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Solving L1 minimization

minimize  ||x|
subject to  [|Ax —bl|s < o

® Method 1: SPG-L1 (projection)
® Method 2: reweighting

® Method 3: Continuation / Huber norm
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Solving L1 minimization

Why no steepest descent / Newton?

minimize  ||x||1  Non-differentiable
subject to  [|Ax —bl|s < o

® Method 1: SPG-L1 (projection)
® Method 2: Reweighting

® Method 3: Continuation / Huber norm
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Solving L1 minimization

Use SPGI1 (van den Berg, Friedlander, 2008)
- a projected gradient based method (seismic data-volumes are huge)
- uses root-finding to find the final one-norm

Pareto curve

25
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two—norm of residual
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2 3 4
one—norm of solution
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Solving L1 minimization

minimize  ||x|
subject to  ||Ax —bl|s < o
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10 feasible solution with smallest H«T H 1

two—norm of residual

0 1 2 3 4 5 6 7
one—norm of solution
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Solving L1 minimization

minimize  ||z||1
subject to  ||Az — bl|s < o

25

two—norm of residual

one—norm of solution
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Solving L1 minimization

Original problem breaks down into a series of new problems:

250
3
2007 : Pareto curve
ro I - @ = Solution path
D) |
O ¢
@ 150 — [
B ......
< N - ..
5 14 minimize  ||Ax — b2
- 100 — .
: subject to  ||z||; < T
50 - (Projected Gradient)
0 |
0 0.5 1 1.5 2

one-norm of solution (x1 04)
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minimize  ||Ax — b||2

Projected Gradient swbiectto izl <7

ZlbaH
(zll =)

Steepest descent direction

AT (Ax — b)

Possible solutions of Ax=b
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minimize  ||Ax — b||2

Projected Gradient swbiectto izl <7

élbaH
(zll =)

Subtract away shortest L2
distance\to the ball

AN
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minimize  ||Ax — b||2

Projected Gradient swiectto |zl <7

ZlbaH
(zll =)

“projected gradient”
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minimize  ||Ax — b||2

Projected Gradient swbiectto izl <7

élbaH
(zll =)

step size:
“Spectral gradient method”

Azt Ax
Azt Ag
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SPGLI

“Spectral Projected-Gradient for L1 problems”

Initialize with
zeroes

Get gradient
(apply adjoint)

Increase
allowed L1
norm

?
Scale by spectral Project onto Converged" residual norm
(check Yes
step-length current L1 ball : small enough?
improvement)

Yes

Y

Terminate
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Method 2: Reweighting

'}

J1(1)

] flng,s(l)
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1st order approx. of a Log function

log(x) ~ log(xy) - xlk (x — x1)




Method 2: Reweighting

IRLS: Iteratively re-weighted least-squares

Tk obtained from

minimize

subject to
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Method 3: Continuation




Method 3: Continuation
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“Huber Norm”




Method 3: Continuation
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Method 3: Continuation
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Method 3: Continuation

Gradual shrinkage of curvature




Method 3: Continuation

NS

Gradual shrinkage of curvature




Method 3: Continuation

N\

Gradual shrinkage of curvature
Rapidly accelerates convergence
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® Use sparsity to exploit structure & a-priori
knowledge about solution

® Not convex, ergo {1
® Not differentiable, ergo tricks

® Three main classes of methods: Projection, Re-
weighting, Continuation
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