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Motivation

Curse of dimensionality for d>2

• Exponentially increasing data volumes

• Helmholtz requires iteratively solvers to address bandwidth

• Computational complexity grows linearly with # RHS’s

• Makes computation of the misfit functional & gradients 
prohibitively expensive
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Wish list
An inversion technology that 

• is based on a time-harmonic PDE solver, which is easily 
parallelizable, and scalable to 3D 

• does not require multiple iterations with all data

• removes the linearly increasing costs of implicit solvers for 
increasing numbers of frequencies & RHS’s

• produces high-resolution inversion results
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Key technologies

Simultaneous sources & phase encoding 

• supershots

Stochastic optimization & machine learning [Bertsekas, ’96]

• stochastic gradient decent

Compressive sensing [Candès et.al, Donoho, ’06]

• sparse recovery & randomized subsampling 

[Krebs et.al., ’09, Operto et. al., ’09, Herrmann et.al., ’08-10’] 

[Beasley, ’98, Berkhout, ’08]

[Morton, ’98, Romero, ’00]
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Sparse recovery
Least-squares migration with sparsity promotion

leads to significant speedup as long as

δx = Sparse curvelet-coefficient vector
S∗ = Curvelet synthesis

δm̃ = S∗ arg min
δx

1
2
‖δx‖"1 subject to ‖δd−∇F [m0;Q]S∗δx‖2 ≤ σ

n!1
PDE ×K " n!2

PDE × nf × ns

[Wang & Sacchi, ’07]
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Pareto Curve
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Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

Lasso problem

δm̃ = S∗ arg min
δx

1
2
‖δx‖"1 subject to ‖δd−∇F [m0;Q]S∗δx‖2 ≤ σ

min
x

‖Ax− b‖2 s.t ‖x‖1 ≤ τ
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Experiment
Linearized sparsity promoting least-squares migration

• Marmousi model (128x384) with grid size 24 m

• 12 Hz ricker wavelet

• use different 

‣ # of simultaneous shots 

‣ # of frequencies
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Linearized sparse 
inversion

14 simultaneous shots 7 random frequencies

L2 recovery with all data sparse recovery with curvelet

Speed up:  x8.3
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FWI formulation
Multiexperiment unconstrained optimization problem:

• requires large number of PDE solves

• linear in the sources

• apply randomized dimensionality reduction

min
m∈M

1
2
‖D−F [m;Q]‖2

2,2 with F [m;Q] := PH−1Q

[Tarantola, 84; Pratt, ’98; Plessix, 06] 
[Haber, Chung, and Herrmann, ’10]

Thursday, December 9, 2010



SLIM

Gauss-Newton

Algorithm 1: Gauss Newton

Result: Output estimate for the model m
m ←− m0; k ←− 0 ; // initial model

while not converged do
pk ←− argminp

1
2‖δd−∇F [mk;Q]p‖22 + λk‖p‖22 ; // search dir.

mk+1 ←− mk + γkpk ; // update with linesearch

k ←− k + 1;
end
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FWI with phase 
encoding

Multiexperiment unconstrained optimization problem:

• requires smaller number of PDE solves

• exploits linearity in the sources & block-diagonal structure 
of the Helmholtz system

• uses randomized frequency selection and phase encoding

min
m∈M

1
2
‖D−F [m;Q]‖2

2,2 with F [m;Q] := PH−1Q

 [Krebs et.al., ’09, Operto et. al., ’09 ; Herrmann et. al. ’08-’10]
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Renewals
Use different simultaneous shots for each subproblem, i.e.,

Requires fewer PDE solves for each GN subproblem...

• motivated by stochastic approximation

• related to Kaczmarz (’37) method applied by Natterer, ‘01

• supersedes ad hoc approach by Krebs et.al., 2009

[Nemirovski, ’09]

Q !→ Qk
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Phase encoding

Algorithm 1: Gauss Newton with renewed phase encodings
Result: Output estimate for the model m
m ←− m0; k ←− 0 ; // initial model

while not converged do
pk ←− arg minp

1
2‖δd

k −∇F [mk;Qk]p‖22 + λk‖p‖22 ; // search dir.

mk+1 ←−mk + γkpk ; // update with linesearch

k ←− k + 1;
end
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Observations
Stochastic optimization 

• introduces noisy search directions

• interferences go down slowly as batch size increases

• requires averaging over previous model updates

Formulation does not exploit sparsity on the model

[Bertsekas, ’96]

[Krebs et.al, ’09]
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Our approach
Leverage findings from sparse recovery & compressive sensing

• consider each phase-encoded Gauss-Newton update as 
separate compressive-sensing experiment

• remove interferences by curvelet-domain sparsity 
promotion

• exploit properties of the Pareto curve

[Candes et al., ’06; Donoho, ’06]

[Demanet et. al. ’07; Herrmann & Li, ’08-’09]
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Compressive 
updates

Algorithm 1: Gauss Newton with sparse updates
Result: Output estimate for the model m
m ←− m0; k ←− 0 ; // initial model

while not converged do
pk ←− S∗ arg minx

1
2‖δd

k −∇F [mk;Qk]S∗x‖22 s.t. ‖x‖1 ≤ τk

mk+1 ←−mk + γkpk ; // update with linesearch

k ←− k + 1;
end

[van den Berg & Friedlander, ’08]
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Phase encoding

Algorithm 1: Gauss Newton with renewed phase encodings
Result: Output estimate for the model m
m ←− m0; k ←− 0 ; // initial model

while not converged do
pk ←− arg minp

1
2‖δd

k −∇F [mk;Qk]p‖22 + λk‖p‖22 ; // search dir.

mk+1 ←−mk + γkpk ; // update with linesearch

k ←− k + 1;
end
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Example
Marmousi model and BP model:

• 128x384 with a mesh size of 24 meters,  100m for BP

• 384 co-located shots and receivers with offset = 3 X depth

• 2.4s recording time for Marmousi, 12s for BP

Explicit Time-harmonic Helmholtz solver

• 9-point finite difference

• Absorbing boundary condition

• 12 Hz Ricker source wavelet and 7 Hz for BPmodel
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Example
FWI specs:

• Committed inversion crime

• Frequency continuation over 10 bands

• 15 simultaneous shots with 10 frequencies each

K = 10× 15" 100× 384
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Source wavelet
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True model
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Initial model
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Inverted model
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Inverted model
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Difference
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Source wavelet
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True model
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Initial model
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Inverted model

Lateral distance (KM)

De
pt

h

 

 

5 10 15 20 25 30 35 40

2

4

6

8

10

12 1500

2000

2500

3000

3500

4000

4500

Thursday, December 9, 2010



SLIM

True model
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Performance
Remember per subproblem

                                     versus

SPEEDUP of 22 X

n!1
PDE ×K " n!2

PDE × nf × ns

n!1
PDE ≈ 100

K = 24

n!2
PDE ≈ 10

K = 5800
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Conclusions

Because Compressive Sensing does not rely on averaging but on 
sparsity, our approach is a viable alternative to the stochastic 
approximation

Sparse recoveries offset random interferences due to source encoding

Hight-quality & high-resolution inversions have been achieved with 
significant accelerations

No need for additional migration step

Improvements come from sparsity promotion & curvelets

Indications that the curse of dimensionality can be removed...
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Future plans
Investigate

• Noise sensitivity

• continuation with batch size 

• explore multiscale structure of curvelets

• incomplete data

• extension to 3D
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Thank you

slim.eos.ubc.ca

Software release is soon!
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