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Motivation

Curse of dimensionality for d>2

• Exponentially increasing data volumes

• Helmholtz requires iterative solvers to address bandwidth

• Computational complexity grows linearly with # RHS’s

• Multi-dimensional correlations between source wavefield 
and residual wavefield

• High-resolution image
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Wish list
An imaging technology that 

• is based on a time-harmonic PDE solver, which is easily 
parallelizable, and scalable to 3D 

• does not require multiple iterations with all data

• removes the linearly increasing costs of iterative solvers for 
increasing numbers of frequencies & RHS’s

• produces high-resolution least square migration result for full-
waveform inversion
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Key technologies

Simultaneous sources & phase encoding 

• supershots

Stochastic optimization & machine learning [Bertsekas, ’96]

• stochastic gradient descent

Compressive sensing [Candès et.al, Donoho, ’06]

• sparse recovery & randomized subsampling 

[Krebs et.al., ’09, Operto et. al., ’09, Herrmann et.al., ’08-10’] 

[Beasley, ’98, Berkhout, ’08]

[Morton, ’98, Romero, ’00]
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Imaging
Least-squares migration:

δm̃ = arg min
δm

1
2
‖δd−∇F [m0;Q]δm‖22

δd = Multi-source multi-frequency data residue

∇F [m0;Q] = Linearized Born-scattering operator

m0 = Background velocity model

Q = Sources

δm̃ = image

[Nemeth et. al. ’99]

Thursday, December 9, 2010



SLIM

Adjoint state

H[m]u = q and H∗[m]v = r

[Pratt et. al., ‘98]
[Plessix ‘06]

r = D∗(p− F [m,q])

q

δm = !
(

∑

ω

ω2
∑

s

(ū" v)s,ω

)

Solves of Helmholtz system for each source 

with

and compute gradient by
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Multishot gradient
Post-stack migration:

with

and the multi-experiment

F [m, Q] = DH−1[m]Q

[Plessix ‘06]

δd = vec(P−F [m,Q])

δm = !
(

∑

ω

ω2
∑

s

(ū" v)s,ω

)
= ∇F∗[m,Q]δd
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Simultaneous source Randomized amplitudes
 along the shot line

Phase encoding

Create supershot via superposition
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Sequential-source
wavefield

Simultaneous shot
at 5 Hz

Simultaneous-source
wavefield
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Image
at 5 Hz
Sequential-source

image
Simultaneous-source

image
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Supershot

Collection of K simultaneous-source experiments with batch 
size

Q Q = RMQ

K ! nf × ns

[Herrmann et. al.  ’08-’10]

adapted from Herrmann et. al. ,09
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Phase encoding
Least-squares migration:

δm̃ = arg min
δm

1
2
‖δd−∇F [m0;Q]δm‖22

δd = Simultaneous-source data residue
Q = Simultaneous sources
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Sparse recovery
Least-squares migration with sparsity promotion

leads to significant speedup as long as

δx = Sparse curvelet-coefficient vector
S∗ = Curvelet synthesis

δm̃ = S∗ arg min
δx

1
2
‖δx‖"1 subject to ‖δd−∇F [m0;Q]S∗δx‖2 ≤ σ

n!1
PDE ×K " n!2

PDE × nf × ns

[Wang & Sacchi, ’07]
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Pareto Curve
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Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

Lasso problem

δm̃ = S∗ arg min
δx

1
2
‖δx‖"1 subject to ‖δd−∇F [m0;Q]S∗δx‖2 ≤ σ

min
x

‖Ax− b‖2 s.t ‖x‖1 ≤ τ
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Renewals
Redraw different simultaneous shots and frequencies when the 
pareto curve is reached, i.e.,

• does NOT increase the size of the problem

• gives “new” information

Q !→ Qk

f !→ fk
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Experiment
Linearized sparsity promoting least-squares migration

• Marmousi model (128x384) with grid size 24 m

• 12 Hz ricker wavelet

• use different 

‣ # of simultaneous shots 

‣ # of frequencies
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Comparison
compressive recovery L2 recoveryversus

• 3-10 sim-shots

• 8-20 freqs

• 200 iterations

Batch size roughly  
equals to 50

• all 192 shots

• all 50 freqs

• 10 iterations

Batch size is 8100
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Initial model

initial model slowness difference

Marmousi model experiment
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Linearized sparse 
inversion

14 simultaneous shots 7 random frequencies

L2 recovery with all data sparse recovery with curvelets

Speed up:  x8.3
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sparse recovery with curvelets

Linearized sparse 
inversion

8 simultaneous shots 3 random frequencies 

Speed up:  x22

L2 recovery with all data
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sparse recovery with renewals sparse recovery without renewals

Linearized sparse 
inversion

8 simultaneous shots 3 random frequencies 
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sparse recovery with L1 solver recovery with L2 solver

Linearized sparse 
inversion

8 simultaneous shots 3 random frequencies 
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Linearized sparse 
inversion
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Linearized sparse 
inversion
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Linearized sparse 
inversion

SNRs for migration without renewals in parentheses

SNR = 20× log10(
‖f‖2

‖f − f̂‖2
)

Subsample ratio 0.0006 0.0013 0.0026 0.0033

n′
f/n

′
s Signal-noise ratio (dB)

2 3.1652 (1.4964) 3.3452 (1.5326) 3.4022 (1.5529) 3.4243 (1.5572)
1 3.2019 (1.5011) 3.3832 (1.5377) 3.4523 (1.5610) 3.4865 (1.5915)
0.5 3.2253 (1.5128) 3.3864 (1.5964) 3.4765 (1.5984) 3.5063 (1.6245)

Speed up (×) 1536 768 384 307
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Performance

Methods L2 L1 with renewals L1 without renewals

Number of freqs 30 3 3
Number of shots 192 8 8
Number of PDE 10 107 107
Number of Matrix Multipulication 21 226 216
Total cost 120960 5424 5184

Speed up (×) 1 22 23

Thursday, December 9, 2010



SLIM

Observations

Reconstruct images

‣ from randomized subsamplings

‣ with correct amplitudes 

Recovery quality depends on degree of subsampling

Significant speedups attainable...
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Conclusions

A reduction in the # of PDE solves cost by virtue of the reduced 
system size

Sparse recoveries offset random interferences due to source encoding

Hight-quality & high-resolution migration images have been achieved 
with significant accelerations

Improvements come from sparsity promotion & curvelets

Indications that the curse of dimensionality can be removed...

Use this formulation to solve Gauss-Newton steps part of FWI 
(tomorrow’s talk)
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Thank you

slim.eos.ubc.ca

11:30-12:00 PM Xiang Li
Full-waveform inversion with randomized L1 

recovery for the model updates
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Compressive sensing

– Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information by Candes, 06.

– Compressed Sensing by D. Donoho, ’06
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– Phase encoding of shot records in prestack migration by Romero et. al., ’00.

– Efficient Seismic Forward Modeling using Simultaneous Random Sources and Sparsity by N. Neelamani et. al., ’08.

– Compressive simultaneous full-waveform simulation by FJH et. al., ’09.
– Fast full-wavefield seismic inversion using encoded sources by Krebs et. al., ’09

– Randomized dimensionality reduction for full-waveform inversion by FJH & X. Li, ’10

 Stochastic optimization and machine learning:

– A Stochastic Approximation Method by Robbins and Monro, 1951

– Neuro-Dynamic Programming by Bertsekas, ’96
– Robust stochastic approximation approach to stochastic programming by Nemirovski et. al., ’09

– Stochastic Approximation and Recursive Algorithms and Applications by Kushner and Lin
– Stochastic Approximation approach to Stochastic Programming by Nemirovski
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