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Curse of dimensionality for d>2

Exponentially increasing data volumes
Helmholtz requires iterative solvers to address bandwidth
Computational complexity grows linearly with # RHS’s

Multi-dimensional correlations between source wavefield
and residual wavefield

High-resolution image
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An imaging technology that

® is based on a time-harmonic PDE solver, which is easily
parallelizable, and scalable to 3D

® does not require multiple iterations with all data

® removes the linearly increasing costs of iterative solvers for
increasing numbers of frequencies & RHS’s

® produces high-resolution least square migration result for full-
waveform inversion
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Simultaneous sources & phase encoding

® supershots

Stochastic optimization & machine learning
® stochastic gradient descent
Compressive sensing

® sparse recovery & randomized subsampling
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[Nemeth et. al. "99]

Imaging

Least-squares migration:

N 1
om = arg min §H5d — VF[my; QJoml||3
om

0d = Multi-source multi-frequency data residue
VF|my; Q] = Linearized Born-scattering operator
my = DBackground velocity model
Q = Sources

om = image
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Solves of Helmholtz system for each source
Hmju=q and H'm]v=r

with
= D"(p — F[m,q])

and compute gradient by

fm = %(Zw Y (uev) w)




[Plessix ‘06]

Multishot gradient

Post-stack migration:

om = %(Zw Z u®v) w) = VF"m, Q]éd

with
6d = vec(P — F|m, Q)

and the multi-experiment

Flm, Q] = DH 'm|Q




Simultaneous source

Phase encoding
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Simultaneous shot

at 5 Hz

Sequential-source Simultaneous-source
wavefield wavefield
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Image

at 5 Hz
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[Morton, 98, Romero, '00]
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[Herrmann et.al. ’08-’10]

Supershot

separated source
960

adapted from Herrmann et. al.,09

Time (s)

N 0 500 1000 1500
Shot Position (m)

0 500 1000 1500
Reciever Offset (m)

Q

Collection of K simultaneous-source experiments with batch

size K < ny X ng

Q =RMQ
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Phase encoding

Least-squares migration:

N 1
0m — arg min §H5Q — VF[my; Q]dml|5
om o

= Simultaneous-source data residue

— Simultaneous sources

O &
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[Wang & Sacchi, ’07]

Sparse recovery

Least-squares migration with sparsity promotion

~ 1
om = S™ arg min §H5Xugl subject to |[0d — VF | mg; Q]S™ x|l < o
dx o
0x = Sparse curvelet-coefficient vector

S>I<

Curvelet synthesis

leads to significant speedup as long as

El 62
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Pareto Curve
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Redraw different simultaneous shots and frequencies when the
| q
pareto curve is reached, i.e.,

Q —~ Q
f — fF

® does NOT increase the size of the problem

® gives ‘new’ information
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Linearized sparsity promoting least-squares migration
® Marmousi model (128x384) with grid size 24 m
® |2 Hz ricker wavelet
® use different

p # of simultaneous shots

p # of frequencies
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compressive recovery

® 3-|0 sim-shots
® 8-20 fregs

® 200 iterations

Batch size roughly
equals to 50

versus

L2 recovery

® a|l 192 shots
® all 50 fregs

® |0 iterations

Batch size is 8100
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Initial model

Marmousi model experiment

initial model slowness difference
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Linearized sparse

inversion

|4 simultaneous shots 7 random frequencies

L2 recovery with all data sparse recovery with curvelets
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Speed up: x8.3
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Linearized sparse

inversion

8 simultaneous shots 3 random frequencies

L2 recovery with all data sparse recovery with curvelets
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Linearized sparse

inversion

8 simultaneous shots 3 random frequencies

sparse recovery with renewals sparse recovery without renewals
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Linearized sparse

inversion

8 simultaneous shots 3 random frequencies

sparse recovery with L1 solver recovery with L2 solver
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Linearized sparse

inversion
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Subsample ratio 0.0006 0.0013 0.0026 0.0033

n' /m Signal-noise ratio (dB)

2 3.1652 (1.4964) 3.3452 (1.5326) 3.4022 (1.5529) 3.4243 (1.5572)

1 3.2019 (1.5011) 3.3832 (1.5377) 3.4523 (1.5610) 3.4865 (1.5915)

0.5 3.2253 (1.5128) 3.3864 (1.5964) 3.4765 (1.5984) 3.5063 (1.6245)

Speed up (x) 1536 768 384 307
If1l2

SNR = 20 x lOQlO( )

|f = Flls

SNRs for migration without renewals in parentheses
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Performance

Methods L2 L1 with renewals L1 without renewals
Number of freqs 30 3 3
Number of shots 192 8 8
Number of PDE 10 107 107
Number of Matrix Multipulication 21 226 216
Total cost 120960 5424 5184

Speed up (X) 1 22 23

Thursday, December 9, 2010



Reconstruct images
p from randomized subsamplings

p with correct amplitudes

Recovery quality depends on degree of subsampling

Significant speedups attainable...
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A reduction in the # of PDE solves cost by virtue of the reduced
system size

Sparse recoveries offset random interferences due to source encoding

Hight-quality & high-resolution migration images have been achieved
with significant accelerations

Improvements come from sparsity promotion & curvelets
Indications that the curse of dimensionality can be removed...

Use this formulation to solve Gauss-Newton steps part of FWVI
(tomorrow’s talk)
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Thank you

slim.eos.ubc.ca

11:30-12:00 PM Xiang Li
Full-waveform inversion with randomized L1
recovery for the model updates
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