Dimensionality reduction for full-waveform inversion

Felix J. Herrmann

SLIM ${ }^{(1)}$
Seismic Laboratory for Imaging and Modeling the University of British Columbia

Recent driver

HP and Shell Sensing System

HP and Shell are collaborating to develop a wireless sensing system to acquire extremely high-resolution seismic data on land. HP and Shell will use their complementary knowledge and experience to produce a groundbreaking solution that can sense, collect and store geophysical data.

- 1000.000 channel systems (up from 40.000)
- will increase size data volumes by orders of magnitude
\rightarrow aside from increasing \# of cores no speedup on the horizon
- seismic data processing \& inversion have become challenging because of processor \& IO limitations

FWI formulation

Multiexperiment unconstrained optimization problem:

$\min _{\mathbf{m} \in \mathcal{M}} \sum_{i=1}^{N=n_{s} \times n_{f}} \frac{1}{2}\left\|\mathbf{D}_{i}-\mathcal{F}\left[\mathbf{m} ; \mathbf{Q}_{i}\right]\right\|_{2}^{2} \quad$ with $\quad \mathcal{F}\left[\mathbf{m} ; \mathbf{Q}_{\mathbf{i}}\right]:=\mathbf{P}_{i} \mathbf{H}_{i}^{-1}[\mathbf{m}] \mathbf{Q}_{i}$
$\mathbf{D}_{i}=$ Monochromatic single-source data
$\mathbf{P}_{i}=$ Detection operator for each source experiment
$\mathbf{H}_{i}=$ Inverse of time-harmonic Helmholtz
$\mathbf{Q}_{i}=$ Monochromatic source
$\mathbf{m}=$ Unknown model, e.g. $c^{-2}(x)$

Adjoint state

Implicit solves of Helmholtz system for each experiment

$$
\mathbf{H}[\mathbf{m}] \mathbf{u}=\mathbf{q} \quad \text { and } \quad \mathbf{H}^{*}[\mathbf{m}] \mathbf{v}=\mathbf{r}
$$

with

$$
\mathbf{r}=\mathbf{P}^{*}(\mathbf{d}-\mathcal{F}[\mathbf{m}, \mathbf{q}])
$$

and compute gradient via

$$
\delta \mathbf{m}=\Re\left(\sum_{\omega} \omega^{2} \sum_{s}(\overline{\mathbf{u}} \odot \mathbf{v})_{s, \omega}\right)
$$

FWI formulation [complete data]

Multiexperiment unconstrained optimization problem:
$\min _{\mathbf{m} \in \mathcal{M}} \sum_{i=1}^{N=n_{s} \times n_{f}} \frac{1}{2}\left\|\mathbf{D}_{i}-\mathcal{F}\left[\mathbf{m} ; \mathbf{Q}_{i}\right]\right\|_{2}^{2} \quad$ with $\quad \mathcal{F}\left[\mathbf{m} ; \mathbf{Q}_{\mathbf{i}}\right]:=\mathbf{P H}^{-1}[\mathbf{m}] \mathbf{Q}_{\mathbf{i}}$
$\mathbf{D}=$ Multi-source and multi-frequency data volume
$\mathbf{P}=$ Single detection operator
$\mathrm{Q}=$ Seismic sources
$\mathbf{m}=$ Unknown model, e.g. $c^{-2}(x)$

FWI formulation

 [equivalent]Multiexperiment unconstrained optimization problem:
$\min _{\mathbf{m} \in \mathcal{M}} \frac{1}{2}\|\mathbf{D}-\mathcal{F}[\mathbf{m} ; \mathbf{Q}]\|_{2,2}^{2} \quad$ with $\quad \mathcal{F}[\mathbf{m} ; \mathbf{Q}]:=\mathbf{P H}^{-1}[\mathbf{m}] \mathbf{Q}$

- requires large number of PDE solves
- linear in the sources
- apply randomized dimensionality reduction

Reduced FWI formulation

Multiexperiment unconstrained optimization problem:
$\min _{\mathbf{m} \in \mathcal{M}} \frac{1}{2}\|\underline{\mathbf{D}}-\mathcal{F}[\mathbf{m} ; \underline{\mathbf{Q}}]\|_{2,2}^{2} \quad$ with $\quad \mathcal{F}[\mathbf{m} ; \underline{\mathbf{Q}}]:=\mathbf{P} \underline{\mathbf{H}}^{-1} \underline{\mathbf{Q}}$

- requires smaller number of PDE solves
- explores linearity in the sources \& block-diagonal structure of the Helmholtz system
- uses randomized frequency selection and phase encoding

Batch/mini experiment

$\mathbf{Q} \quad \underline{\mathbf{Q}}=\mathbf{R M Q}$
separated source

Collection of K simultaneous-source experiments (supershots)with\#atehnsjze $n_{s}^{\prime} \ll n_{f} \times n_{s}$

Compressive-sampling operator

$$
\mathbf{R M}=\operatorname{vec}^{-1} \text { blockdiag }\left[(\mathbf{R M})_{1 \cdots n_{s}^{\prime}}\right] \mathrm{vec}
$$

with

$$
(\mathbf{R M})_{k}=\left(\mathbf{R}_{k}^{\boldsymbol{\Sigma}} \mathbf{M}^{\boldsymbol{\Sigma}} \otimes \mathbf{I} \otimes \mathbf{R}_{k}^{\Omega}\right)
$$

'Gaussian matrix'
and

$$
\mathbf{M}^{\boldsymbol{\Sigma}}=\overbrace{\operatorname{sign}(\eta) \odot \mathbf{F}_{\boldsymbol{\Sigma}}{ }^{H} e^{j \theta} \mathbf{F}_{\boldsymbol{\Sigma}}}
$$

where $\theta \in \operatorname{Uniform}(-\pi, \pi]$, and $\eta \in \operatorname{Normal}(0,1)$

Interpretations

Consider randomized dimensionality reduction as instances of

- stochastic optimization \& machine learning [Haber, Chung, and FJH, '। 0]
- compressive sensing [FJH et. al, '08-'10]

Stochastic optimization

Replace deterministic-optimization problem

$$
\min _{\mathbf{m} \in \mathcal{M}} f(\mathbf{m})=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{2}\left\|\mathbf{d}_{i}-\mathcal{F}\left[\mathbf{m} ; \mathbf{q}_{i}\right]\right\|_{2}^{2}
$$

with sum cycling over different sources \& corresponding monochromatic shot records (columns of D \& Q)

Stochastic average approximation [Hber: Churg and fyr

by a stochastic-optimization problem

$$
\begin{aligned}
\min _{\mathbf{m} \in \mathcal{M}} \mathbf{E}_{\mathbf{w}}\{f(\mathbf{m}, \mathbf{w}) & \left.=\frac{1}{2}\|\mathbf{D} \mathbf{w}-\mathcal{F}[\mathbf{m} ; \mathbf{Q} \mathbf{w}]\|_{2}^{2}\right\} \\
& \approx \frac{1}{K} \sum_{j=1}^{K} \frac{1}{2}\left\|\underline{\mathbf{d}}_{j}-\mathcal{F}\left[\mathbf{m} ; \underline{\mathbf{q}}_{j}\right]\right\|_{2}^{2}
\end{aligned}
$$

with $\mathbf{w} \in N(0,1)$ and $\mathbf{E}_{\mathbf{w}}\left\{\mathbf{w} \mathbf{w}^{H}\right\}=\mathbf{I}$
and $\underline{\mathbf{d}}_{j}=\mathbf{D} \mathbf{w}_{j}, \underline{\mathbf{q}}_{j}=\mathbf{Q} \mathbf{w}_{j}$

Stochastic average approximation

In the limit $K \rightarrow \infty$, stochastic \& deterministic formulations are identical

We gain as long as $K \ll N \ldots$
Since the error in Monte-Carlo methods decays only slowly ($\mathcal{O}\left(K^{-1 / 2}\right)$)
this approach may be problematic...
However, the location for the minimum of the misfit may be relatively robust...

Stylized example

Search direction for batch size K:

$$
\mathbf{g}_{K} \approx \frac{1}{K} \sum_{j=1}^{K} \nabla \mathcal{F}^{*}\left[\mathbf{m} ; \underline{\mathbf{q}}_{j}\right] \delta \underline{\mathbf{d}}_{j}
$$

full

$\mathrm{K}=1$

$\mathrm{K}=5$

Decay

error between full and sampled gradient

Misfit functional

$$
f_{K}\left(\mathbf{g}_{K}\right)=\frac{1}{K} \sum_{j=1}^{K} \frac{1}{2}\left\|\underline{\mathbf{d}}_{j}-\mathcal{F}\left[\mathbf{m}+\alpha \mathbf{g}_{K} ; \underline{\mathbf{q}}_{j}\right]\right\|_{2}^{2}
$$

Randomized trace estimates

FWI relies on computation of

which corresponds to computing the trace

$$
\operatorname{trace}\left(\mathbf{S}^{*} \mathbf{S}\right)=\|\mathbf{S}\|_{F}^{2}
$$

Approximate this trace stochastically.

Randomized trace estimates

Use

$$
H_{K}=\frac{1}{K} \sum_{j=1}^{K} \mathbf{w}_{j}^{*} \mathbf{B} \mathbf{w}_{j} \text { with } \mathbf{w}_{j} \text { i.i.d. }
$$

and $\mathbf{B}=\mathbf{S}^{*} \mathbf{S}$.
Corresponds to SA via 'source encoding' for monochromatic experiments

- how to choose K and \mathbf{w} 's such that

$$
\operatorname{Pr}\left(\left|H_{k}-\operatorname{trace}(\mathbf{B})\right| \leq \epsilon \operatorname{trace}(\mathbf{B})\right) \geq 1-\delta
$$

for some (ϵ, δ).

Randomized trace estimates

Set $(\epsilon, \delta)=(0.2,0.1)$, yielding a possible error in the estimate of 25 .

Estimates for K from the table are

$$
K=(15,12,13,100) \times 10^{3}
$$

- pessimistic
cross-over at $N=15 \times 10^{3}$
- can we do better as seen with CS?

Example

- Modeled at 20 Hz with 256 sources
- significant amount of off-diagonal energy

Example [for fixed $\mathrm{N} / \mathrm{K}=16$]

\downarrow different method perform similarly except for the phase encoding, which is better

- order of magnitude speedup

Stochastic

Use different simultaneous shots for each subproblem, i.e.,

Requires fewer PDE solves for each GN subproblem...

- corresponds to stochastic approximation [Nemirovski, '09]
- related to Kaczmarz ('37) method applied by Natterer, '01
- supersedes ad hoc approach by Krebs et.al., '09

K=1 w and w/o redraw [noise-free case]

model error K=1, no averaging

w redraw

Observations

SAA:

- Random trace estimates insightful but unclear how they relate to estimates for the model

SA

- Renewals improve convergence significantly
- Averaging removes noise instability but is detrimental to the convergence

Both produce 'noisy' results ... Sounds familiar?

Combined approach

Leverage findings from sparse recovery \& compressive sensing

- consider phase-encoded Gauss-Newton updates as separate compressive-sensing experiments
- remove interferences by curvelet-domain sparsity promotion
- exploit properties of Pareto curves in combination with stochastic optimization
- turn 'overdetermined’ problems into 'undetermined' ones via randomization

Rationale

Wavefields are compressible in curvelet frames

- correlations between source \& residual wavefields are compressible
- velocity distributions of sedimentary basins are also compressible

Linearized subproblems are convex
Assume proximity Pareto curves for successive linearizations

Gauss-Newton

Algorithm 1: Gauss Newton
Result: Output estimate for the model \mathbf{m}
$\mathbf{m} \longleftarrow \mathbf{m}_{0} ; k \longleftarrow 0 ;$
// initial model
while not converged do $\mathbf{p}^{k} \longleftarrow \arg \min _{\mathbf{p}} \frac{1}{2}\left\|\delta \mathbf{d}-\nabla \mathcal{F}\left[\mathbf{m}^{k} ; \mathbf{Q}\right] \mathbf{p}\right\|_{2}^{2}+\lambda^{k}\|\mathbf{p}\|_{2}^{2} ; \quad / /$ search dir. $\mathbf{m}^{k+1} \longleftarrow \mathbf{m}^{k}+\gamma^{k} \mathbf{p}^{k} ; \quad / /$ update with linesearch $k \longleftarrow k+1 ;$
end

Phase encoding

Algorithm 1: Gauss Newton with renewed phase encodings
Result: Output estimate for the model \mathbf{m}
$\mathbf{m} \longleftarrow \mathbf{m}_{0} ; k \longleftarrow 0$;
// initial model
while not converged do
$\mathbf{p}^{k} \longleftarrow \arg \min _{\mathbf{p}} \frac{1}{2}\left\|\delta \underline{\mathbf{d}}^{k}-\nabla \mathcal{F}\left[\mathbf{m}^{k} ; \underline{\mathbf{Q}}^{k}\right] \mathbf{p}\right\|_{2}^{2}+\lambda^{k}\|\mathbf{p}\|_{2}^{2} ; / /$ search dir. $\mathbf{m}^{k+1} \longleftarrow \mathbf{m}^{k}+\gamma^{k} \mathbf{p}^{k} ; \quad$ // update with linesearch $k \longleftarrow k+1 ;$
end

Sparse recovery

Least-squares migration with sparsity promotion

$\delta \mathrm{x}=$ Sparse curvelet-coefficient vector $\mathbf{S}^{*}=$ Curvelet synthesis
leads to significant speedup as long as

$$
n_{P D E}^{\ell_{1}} \times K \ll n_{P D E}^{\ell_{2}} \times n_{f} \times n_{s}
$$

Compressive updates

```
Algorithm 1: Gauss Newton with sparse updates
    Result: Output estimate for the model \(\mathbf{m}\)
    \(\mathbf{m} \longleftarrow \mathbf{m}_{0} ; k \longleftarrow 0 ; \quad / /\) initial model
    while not converged do
        \(\mathbf{p}^{k} \longleftarrow \mathbf{S}^{*} \arg \min _{\mathbf{x}} \frac{1}{2}\left\|\delta \underline{\mathbf{d}}^{k}-\nabla \mathcal{F}\left[\mathbf{m}^{k} ; \underline{\mathrm{Q}}^{k}\right] \mathbf{S}^{*} \mathbf{x}\right\|_{2}^{2} \quad\) s.t. \(\|\mathbf{x}\|_{1} \leq \tau^{k}\)
        \(\mathbf{m}^{k+1} \longleftarrow \mathbf{m}^{k}+\gamma^{k} \mathbf{p}^{k} ; \quad \quad / /\) update with linesearch
        \(k \longleftarrow k+1 ;\)
    end
```


Solution strategy

- Draw new CS experiment when Pareto curve is reached
- Do new linearization
- Sweep from low to hight frequencies

Example

FWI specs:

- Committed inversion crime
- Frequency continuation over 10 bands
- I5 simultaneous shots with 10 frequencies each

$$
K=10 \times 15 \ll 100 \times 384
$$

True model

Initial model

Inverted model

True model

Initial model

Inverted model

True model

Difference

Performance

Remember per subproblem

$$
n_{P D E}^{\ell_{1}} \times K \ll n_{P D E}^{\ell_{2}} \times n_{f} \times n_{s}
$$

$$
\begin{aligned}
n_{P D E}^{\ell_{1}} & \approx 200 & \text { versus } & n_{P D E}^{\ell_{2}}
\end{aligned} \begin{array}{ll}
& \approx 10 \\
K & =150
\end{array}
$$

SPEEDUP of \| 3 X

Recap

Choose a new set of simultaneous sources after each 'GN' subproblem is solved

Carry home message ...

Seismic inversion involves very large full matrices

"Holy grail"

Find a representation to "diagonalize"

"Holy grail"

Major engineering effort to keep track of matrix permutations

- killed by constants
- leaks to off diagonals

CS alternative

Model-size reduction by CS

Leverage invariance under solution operators <=> preservation of sparsity

Sparsity promotion takes care of keeping track of the permutations implicitly ...!

Conclusions

Leveraged

- curvelet-domain sparsity on the model
- invariance under solution operators <=> preservation of sparsity

Indications that compressive sensing supersedes the stochastic approximation by sparse recovery of dimensionality reduced subproblems

