Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

### Dimensionality reduction for full-waveform inversion

Felix J. Herrmann

SLIM Seismic Laboratory for Imaging and Modeling the University of British Columbia

## **Recent driver**

#### HP and Shell Sensing System

HP and Shell are collaborating to develop a wireless sensing system to acquire extremely high-resolution seismic data on land. HP and Shell will use their complementary knowledge and experience to produce a groundbreaking solution that can sense, collect and store geophysical data.

- 1000.000 channel systems (up from 40.000)
- will increase size data volumes by orders of magnitude
- aside from increasing # of cores no speedup on the horizon
- seismic data processing & inversion have become challenging because of processor & IO limitations

SI IM

[Tarantola, 84; Pratt, '98; Plessix, '06]

## FWI formulation

Multiexperiment unconstrained optimization problem:

$$\min_{\mathbf{m}\in\mathcal{M}} \sum_{i=1}^{N=n_s\times n_f} \frac{1}{2} \|\mathbf{D}_i - \mathcal{F}[\mathbf{m};\mathbf{Q}_i]\|_2^2 \quad \text{with} \quad \mathcal{F}[\mathbf{m};\mathbf{Q}_i] := \mathbf{P}_i \mathbf{H}_i^{-1}[\mathbf{m}] \mathbf{Q}_i$$

SLIM 🔮

- $\mathbf{D}_i$  = Monochromatic single-source data
- $\mathbf{P}_i$  = Detection operator for each source experiment
- $\mathbf{H}_i$  = Inverse of time-harmonic Helmholtz
- $\mathbf{Q}_i$  = Monochromatic source
- $\mathbf{m}$  = Unknown model, e.g.  $c^{-2}(x)$

[Pratt et. al., '98] [Plessix '06]

## Adjoint state

Implicit solves of Helmholtz system for each experiment  $\mathbf{H}[\mathbf{m}]\mathbf{u}=\mathbf{q} \quad ext{and} \quad \mathbf{H}^*[\mathbf{m}]\mathbf{v}=\mathbf{r}$ 

SLIM 🛃

with

$$\mathbf{r} = \mathbf{P}^*(\mathbf{d} - \mathcal{F}[\mathbf{m},\mathbf{q}])$$

and compute gradient via

$$\delta \mathbf{m} = \Re \left( \sum_{\omega} \omega^2 \sum_{s} \left( \bar{\mathbf{u}} \odot \mathbf{v} \right)_{s,\omega} \right)$$

## FWI formulation [complete data]

Multiexperiment unconstrained optimization problem:

$$\min_{\mathbf{m}\in\mathcal{M}} \sum_{i=1}^{N=n_s\times n_f} \frac{1}{2} \|\mathbf{D}_i - \mathcal{F}[\mathbf{m};\mathbf{Q}_i]\|_2^2 \quad \text{with} \quad \mathcal{F}[\mathbf{m};\mathbf{Q}_i] := \mathbf{P}\mathbf{H}^{-1}[\mathbf{m}]\mathbf{Q}_i$$

- $\mathbf{D}$  = Multi-source and multi-frequency data volume
- $\mathbf{P}$  = Single detection operator
- $\mathbf{Q}$  = Seismic sources
- $\mathbf{m}$  = Unknown model, e.g.  $c^{-2}(x)$

[Tarantola, 84; Pratt, '98; Plessix, '06]

## FWI formulation [equivalent]

Multiexperiment unconstrained optimization problem:

 $\min_{\mathbf{m}\in\mathcal{M}}\frac{1}{2}\|\mathbf{D}-\mathcal{F}[\mathbf{m};\mathbf{Q}]\|_{2,2}^2 \quad \text{with} \quad \mathcal{F}[\mathbf{m};\mathbf{Q}]:=\mathbf{P}\mathbf{H}^{-1}[\mathbf{m}]\mathbf{Q}$ 

- requires large number of PDE solves
- linear in the sources
- apply randomized dimensionality reduction

[Tarantola, 84; Pratt, '98; Plessix, '06]

[FJH et.al., '08-10', Krebs et.al., '09, Operto et. al., '09] [Haber, Chung, and FJH, '10]

## Reduced FWI formulation

*Multiexperiment* unconstrained optimization problem:

 $\min_{\mathbf{m}\in\mathcal{M}}\frac{1}{2}\|\mathbf{D}-\mathcal{F}[\mathbf{m};\mathbf{Q}]\|_{2,2}^2 \quad \text{with} \quad \mathcal{F}[\mathbf{m};\mathbf{Q}]:=\mathbf{P}\mathbf{H}^{-1}\mathbf{Q}$ 

SLIM 🔮

- requires smaller number of PDE solves
- explores linearity in the sources & block-diagonal structure of the Helmholtz system
- uses randomized frequency selection and phase encoding

[FJH et. al. '08-'10]

## Batch/mini experiment

#### adapted from FJH et. al. ,09

SLIM 🛃



Collection of K simultaneous-source experiments (supershots) with  $I_{atchn} \leq n_s \ll n_f \times n_s$ 

Math [Romberg, '07, FJH, '08-'10]

Compressive-sampling operator

$$\mathbf{RM} = \operatorname{vec}^{-1} \operatorname{blockdiag} \left[ (\mathbf{RM})_{1 \dots n'_{s}} \right] \operatorname{vec}$$

SLIM 🛃

with 
$$(\mathbf{RM})_k = (\mathbf{R}^{\Sigma}{}_k \mathbf{M}^{\Sigma} \otimes \mathbf{I} \otimes \mathbf{R}^{\Omega}{}_k)$$

'Gaussian matrix'

and  $\mathbf{M}^{\Sigma} = \operatorname{sign}(\eta) \odot \mathbf{F}_{\Sigma}^{H} e^{j\theta} \mathbf{F}_{\Sigma}$ 

where  $\theta \in \text{Uniform}(-\pi, \pi]$ , and  $\eta \in \text{Normal}(0, 1)$ 

## Interpretations

Consider randomized dimensionality reduction as instances of

- stochastic optimization & machine learning [Haber, Chung, and FJH, '10]
- compressive sensing [FJH et. al, '08-'10]

# Stochastic optimization

Replace deterministic-optimization problem

$$\min_{\mathbf{m}\in\mathcal{M}} f(\mathbf{m}) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} \|\mathbf{d}_i - \mathcal{F}[\mathbf{m};\mathbf{q}_i]\|_2^2$$

with sum cycling over different sources & corresponding monochromatic shot records (columns of D & Q)

[Natterer, '01]

## Stochastic average approximation [Haber, Chung, and FJH, '10]

by a stochastic-optimization problem

$$\min_{\mathbf{m}\in\mathcal{M}} \mathbf{E}_{\mathbf{w}} \{ f(\mathbf{m}, \mathbf{w}) = \frac{1}{2} \|\mathbf{D}\mathbf{w} - \mathcal{F}[\mathbf{m}; \mathbf{Q}\mathbf{w}]\|_{2}^{2} \}$$
$$\approx \frac{1}{K} \sum_{j=1}^{K} \frac{1}{2} \|\underline{\mathbf{d}}_{j} - \mathcal{F}[\mathbf{m}; \underline{\mathbf{q}}_{j}]\|_{2}^{2}$$

with  $\mathbf{w} \in N(0, 1)$  and  $\mathbf{E}_{\mathbf{W}} \{ \mathbf{w} \mathbf{w}^H \} = \mathbf{I}$ 

and 
$$\underline{\mathbf{d}}_j = \mathbf{D}\mathbf{w}_j, \, \underline{\mathbf{q}}_j = \mathbf{Q}\mathbf{w}_j$$

# Stochastic average approximation

In the limit  $K \to \infty$ , stochastic & deterministic formulations are identical

We gain as long as  $K \ll N \dots$ 

Since the error in Monte-Carlo methods decays only slowly  $(\mathcal{O}(K^{-1/2}))$ 

this approach may be problematic...

However, the location for the *minimum* of the *misfit* may be relatively *robust*...

Stylized example

Search direction for batch size K:



SLIM 🛃







## Randomized trace estimates

FWI relies on computation of

 $\|\overbrace{\mathbf{D}-\boldsymbol{\mathcal{F}}[\mathbf{m};\mathbf{Q}]}^{\mathbf{S}}\|_{F}^{2}$ 

SLIM 🔮

which corresponds to computing the trace

$$\mathsf{trace}(\mathbf{S}^*\mathbf{S}) = \|\mathbf{S}\|_F^2$$

Approximate this trace stochastically.

[Hutchinson., '90, Avron and S. Toledo, '10]

## Randomized trace estimates

Use

$$H_K = \frac{1}{K} \sum_{j=1}^{K} \mathbf{w}_j^* \mathbf{B} \mathbf{w}_j$$
 with  $\mathbf{w}_j$  *i.i.d.*

SLIM 🛃

and  $\mathbf{B} = \mathbf{S}^* \mathbf{S}$ .

Corresponds to SA via 'source encoding' for monochromatic experiments

how to choose K and w's such that  

$$\Pr(|H_k - \operatorname{trace}(\mathbf{B})| \le \epsilon \operatorname{trace}(\mathbf{B})) \ge 1 - \delta$$

for some  $(\epsilon, \delta)$ .

[Hutchinson., '90, Avron and S. Toledo, '10]

# Randomized trace estimates

Set  $(\epsilon, \delta) = (0.2, 0.1)$ , yielding a possible error in the estimate of 25.

SLIM 🛃

Estimates for K from the table are

 $K = (15, 12, 13, 100) \times 10^3$ 

pessimistic

- cross-over at  $N = 15 \times 10^3$
- can we do better as seen with CS?

## Example



- Modeled at 20 Hz with 256 sources
- significant amount of off-diagonal energy

## Example [for fixed N/K=16]



- different method perform similarly except for the phase encoding, which is better
- order of magnitude speedup

# Stochastic approximation [Bertsekas,' '96; Nemirovski, '09] Use different simultaneous shots for each subproblem, i.e., $Q \mapsto Q^k$

Requires fewer PDE solves for each GN subproblem...

- corresponds to stochastic approximation [Nemirovski, '09]
- related to Kaczmarz ('37) method applied by Natterer, '01
- supersedes ad hoc approach by Krebs et.al., '09

## K=1 w and w/o redraw [noise-free case]

SLIM 🛃



## Observations

#### SAA:

Random trace estimates insightful but unclear how they relate to estimates for the model

#### SA

- Renewals improve convergence significantly
- Averaging removes noise instability but is detrimental to the convergence

Both produce 'noisy' results ... Sounds familiar?

## **Combined** approach

Leverage findings from sparse recovery & compressive sensing

- consider phase-encoded Gauss-Newton updates as separate compressive-sensing experiments
- remove interferences by curvelet-domain sparsity promotion
- exploit properties of Pareto curves in combination with stochastic optimization
- turn 'overdetermined' problems into 'undetermined' ones via *randomization*

## Rationale

Wavefields are compressible in curvelet frames

- correlations between source & residual wavefields are compressible
- velocity distributions of sedimentary basins are also compressible

Linearized subproblems are convex

Assume proximity Pareto curves for successive linearizations

## Gauss-Newton

Algorithm 1: Gauss Newton

**Result**: Output estimate for the model **m**   $\mathbf{m} \leftarrow \mathbf{m}_0; k \leftarrow 0;$  // initial model while not converged **do**   $| \mathbf{p}^k \leftarrow \arg\min_{\mathbf{p}} \frac{1}{2} || \delta \mathbf{d} - \nabla \mathcal{F}[\mathbf{m}^k; \mathbf{Q}] \mathbf{p} ||_2^2 + \lambda^k ||\mathbf{p}||_2^2;$  // search dir.  $\mathbf{m}^{k+1} \leftarrow \mathbf{m}^k + \gamma^k \mathbf{p}^k;$  // update with linesearch  $k \leftarrow k+1;$ end

SLIM 🔮

## Phase encoding

Algorithm 1: Gauss Newton with renewed phase encodings

**Result**: Output estimate for the model **m**   $\mathbf{m} \leftarrow \mathbf{m}_0; k \leftarrow 0;$  // initial model while not converged **do**   $\begin{vmatrix} \mathbf{p}^k \leftarrow \arg\min_{\mathbf{p}} \frac{1}{2} \| \delta \mathbf{d}^k - \nabla \mathcal{F}[\mathbf{m}^k; \mathbf{Q}^k] \mathbf{p} \|_2^2 + \lambda^k \| \mathbf{p} \|_2^2;$  // search dir.  $\mathbf{m}^{k+1} \leftarrow \mathbf{m}^k + \gamma^k \mathbf{p}^k;$  // update with linesearch  $k \leftarrow k+1;$ end

SLIM 🔮

[Wang & Sacchi, '07]

## Sparse recovery

#### Least-squares migration with sparsity promotion

$$\delta \widetilde{\mathbf{m}} = \mathbf{S}^* \arg\min_{\delta \mathbf{x}} \frac{1}{2} \|\delta \mathbf{x}\|_{\boldsymbol{\ell}_1} \quad \text{subject to} \quad \|\boldsymbol{\delta} \underline{\mathbf{d}} - \nabla \boldsymbol{\mathcal{F}}[\mathbf{m}_0; \underline{\mathbf{Q}}] \mathbf{S}^* \delta \mathbf{x}\|_2 \leq \sigma$$

SLIM 🔮

 $\delta \mathbf{x} = \mathbf{Sparse}$  curvelet-coefficient vector

$$S^* = Curvelet$$
 synthesis

#### leads to significant speedup as long as

$$n_{PDE}^{\ell_1} \times K \ll n_{PDE}^{\ell_2} \times n_f \times n_s$$

#### SLIM 🤚

# Compressive updates

Algorithm 1: Gauss Newton with sparse updates

**Result**: Output estimate for the model 
$$\mathbf{m}$$
  
 $\mathbf{m} \leftarrow \mathbf{m}_0; k \leftarrow 0;$  // initial model  
while not converged do  
 $| \mathbf{p}^k \leftarrow \mathbf{S}^* \arg \min_{\mathbf{x}} \frac{1}{2} || \delta \mathbf{d}^k - \nabla \mathcal{F}[\mathbf{m}^k; \mathbf{Q}^k] \mathbf{S}^* \mathbf{x} ||_2^2 \text{ s.t. } || \mathbf{x} ||_1 \leq \tau^k$   
 $| \mathbf{m}^{k+1} \leftarrow \mathbf{m}^k + \gamma^k \mathbf{p}^k;$  // update with linesearch  
 $k \leftarrow k+1;$   
end

#### [van den Berg & Friedlander, '08]

## Solution strategy

- Draw new CS experiment when Pareto curve is reached
- Do new linearization
- Sweep from low to hight frequencies



## Example

FWI specs:

- Committed inversion crime
- Frequency continuation over 10 bands
- 15 simultaneous shots with 10 frequencies each

$$K = 10 \times 15 \ll 100 \times 384$$

## True model



## Initial model



## Inverted model

![](_page_34_Figure_1.jpeg)

## True model

![](_page_35_Figure_1.jpeg)

## Initial model

![](_page_36_Figure_1.jpeg)

## Inverted model

![](_page_37_Figure_1.jpeg)

## True model

![](_page_38_Figure_1.jpeg)

## Difference

![](_page_39_Figure_1.jpeg)

## Performance

Remember per subproblem

$$n_{PDE}^{\ell_1} \times K \ll n_{PDE}^{\ell_2} \times n_f \times n_s$$

![](_page_40_Figure_4.jpeg)

#### SPEEDUP of 13 X

![](_page_41_Figure_0.jpeg)

SLIM 🛃

Choose a new set of simultaneous sources after each 'GN' subproblem is solved

## Carry home message ...

Seismic inversion involves very large full matrices

![](_page_42_Picture_3.jpeg)

[de Hoop et al., '08-'09] [Smit et. al., '09]

## "Holy grail"

#### Find a representation to "diagonalize"

![](_page_43_Figure_3.jpeg)

SLIM 🔶

## "Holy grail"

Major engineering effort to keep track of matrix permutations

- killed by constants
- leaks to off diagonals

[FJH & Lin., '07] [Demanet & Peyré, '08]

## **CS** alternative

#### Model-size reduction by CS

SLIM 🔶

## **CS** alternative

Leverage *invariance* under solution operators <=> preservation of *sparsity* 

Sparsity promotion takes care of keeping track of the permutations **implicitly** ...!

## Conclusions

Leveraged

- curvelet-domain sparsity on the model
- invariance under solution operators <=> preservation of sparsity

Indications that compressive sensing supersedes the stochastic approximation by sparse recovery of dimensionality reduced subproblems