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Recent driver
HP and Shell Sensing System

HP and Shell are collaborating to develop a wireless sensing system to 
acquire extremely high-resolution seismic data on land. HP and Shell will 
use their complementary knowledge and experience to produce a 
groundbreaking solution that can sense, collect and store geophysical data.

‣ 1000.000 channel systems (up from 40.000)

‣ will increase size data volumes by orders of magnitude

‣ aside from increasing # of cores no speedup on the horizon

‣ seismic data processing & inversion have become challenging 
because of processor & IO limitations

source http://www.hp.com/hpinfo/newsroom/press_kits/2010/sensingsolutions/index.html
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SLIM

min
m∈M

N=ns×nf∑

i=1

1
2
‖Di −F [m;Qi]‖2

2 with F [m;Qi] := PiH−1
i [m]Qi

Di = Monochromatic single-source data
Pi = Detection operator for each source experiment
Hi = Inverse of time-harmonic Helmholtz
Qi = Monochromatic source
m = Unknown model, e.g. c−2(x)

FWI formulation

Multiexperiment unconstrained optimization problem:

[Tarantola, 84; Pratt, ’98; Plessix, ‘06]
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Adjoint state
Implicit solves of Helmholtz system for each experiment 

with

and compute gradient via

H[m]u = q and H∗[m]v = r

[Pratt et. al., ‘98]
[Plessix ‘06]

δm = !
(

∑

ω

ω2
∑

s

(ū" v)s,ω

)

r = P∗(d− F [m,q])
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min
m∈M

N=ns×nf∑

i=1

1
2
‖Di −F [m;Qi]‖2

2 with F [m;Qi] := PH−1[m]Qi

D = Multi-source and multi-frequency data volume
P = Single detection operator
Q = Seismic sources
m = Unknown model, e.g. c−2(x)

FWI formulation
[complete data]

Multiexperiment unconstrained optimization problem:

[Tarantola, 84; Pratt, ’98; Plessix, ‘06]
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FWI formulation
[equivalent]

Multiexperiment unconstrained optimization problem:

• requires large number of PDE solves

• linear in the sources

• apply randomized dimensionality reduction 

min
m∈M

1
2
‖D−F [m;Q]‖2

2,2 with F [m;Q] := PH−1[m]Q

[Tarantola, 84; Pratt, ’98; Plessix, ‘06]
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Reduced FWI 
formulation

Multiexperiment unconstrained optimization problem:

• requires smaller number of PDE solves

• explores linearity in the sources & block-diagonal structure 
of the Helmholtz system

• uses randomized frequency selection and phase encoding

min
m∈M

1
2
‖D−F [m;Q]‖2

2,2 with F [m;Q] := PH−1Q

[FJH et.al., ’08-10’, Krebs et.al., ’09, Operto et. al., ’09] 
[Haber, Chung, and FJH, ’10] 
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Batch/mini experiment

Collection of K simultaneous-source experiments 
(supershots)with batch size

Q Q = RMQ

adapted from FJH et. al. ,09

[FJH et. al.  ’08-’10]

K = n′
f × n′

s " nf × ns
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Math
Compressive-sampling operator

with

and

where θ ∈ Uniform(−π, π], and η ∈ Normal(0, 1)

[Romberg, ’07, FJH, ’08-’10]

RM = vec−1blockdiag
[
(RM)1···n′

s

]
vec

(RM)k = (RΣ
kMΣ ⊗ I⊗RΩ

k)

MΣ =

’Gaussian matrix’︷ ︸︸ ︷
sign(η)! FΣ

HejθFΣ
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Interpretations

Consider randomized dimensionality reduction as instances of

• stochastic optimization & machine learning

• compressive sensing [FJH et. al, ’08-’10]

[Haber, Chung, and FJH, ’10] 
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Stochastic 
optimization

Replace deterministic-optimization problem

with sum cycling over different sources & corresponding 
monochromatic shot records (columns of D & Q)

min
m∈M

f(m) =
1
N

N∑

i=1

1
2
‖di − F [m;qi]‖2

2

[Natterer, ’01]
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Stochastic average 
approximation

by a stochastic-optimization problem

with

and

w ∈ N(0, 1) and Ew{wwH} = I

min
m∈M

Ew{f(m,w) =
1
2
‖Dw − F [m;Qw]‖22}

≈ 1
K

K∑

j=1

1
2
‖dj − F [m;qj ]‖22

 [Haber, Chung, and FJH, ’10] 

dj = Dwj , qj = Qwj
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Stochastic average 
approximation

In the limit             , stochastic & deterministic formulations 
are identical

We gain as long as              ...

Since the error in Monte-Carlo methods decays only slowly 

this approach may be problematic...

However, the location for the minimum of the misfit may be 
relatively robust...

K ! N

(O(K−1/2))

K →∞
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Stylized example
Search direction for batch size K:
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gK ≈
1
K

K∑

j=1

∇F∗[m;qj ]δdj
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Decay
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K
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error between full and sampled gradient
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SLIMMisfit functional
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K

K∑

j=1

1
2
‖dj − F [m + αgK ;qj ]‖2

2

 [adapted from Haber, Chung, and FJH, ’10] 
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Randomized trace 
estimates

FWI relies on computation of

which corresponds to computing the trace

Approximate this trace stochastically.

‖
S︷ ︸︸ ︷

D−F [m;Q] ‖2
F

trace(S∗S) = ‖S‖2
F
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Randomized trace 
estimates

Use 

and 

Corresponds to SA via ‘source encoding’ for 
monochromatic experiments

‣ how to choose K and w’s such that

for some 

[Hutchinson., ’90, Avron and S. Toledo, ’10]

B = S∗S.

HK = 1
K

∑K
j=1 w∗

jBwj with wj i.i.d.

(ε, δ).

Pr
(
|Hk − trace

(
B

)
| ≤ ε trace

(
B

))
≥ 1− δ
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Randomized trace 
estimates

Set                            , yielding a possible error in the 
estimate of 25.

Estimates for K from the table are

‣ pessimistic

‣ cross-over at 

‣ can we do better as seen with CS?

[Hutchinson., ’90, Avron and S. Toledo, ’10]

(ε, δ) = (0.2, 0.1)

N = 15× 103

K = (15, 12, 13, 100)× 103
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Example

• Modeled at 20 Hz with 256 sources

• significant amount of off-diagonal energy

H ard model Smoot hed model M a t rix B =  { S H S }
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F igure 1: Wavefield simula t ions for t he realist synt het ic M armousi model [4]. T he simula t ions were carried
ou t a t 20H z for 256 sources and receivers co-loca ted a t t he surface. T he residue S is calcula ted by t aking t he
between t he simula t ion for t he hard (left ) and smoot hed veloci ty model (middle). B ecause t he simula t ions
are complex valued, t he t race is est ima ted from B = S H S wi t h S H being t he H ermi t ian t ranspose. T he real
par t of B is plot ted on t he right . I t is clear t ha t t his ma t rix has significant energy on i ts off diagonal. In
addi t ion, t he ma t rix B is badly condi t ioned, yielding a large value for κ f .

which converges to I (·, ·; v , Q ) as long as t he Ez { Cov (z ) } = I d. R emember t ha t given t he size of I , we
can implement t he act ion of t his opera tor for single z ’s only, i.e., we apply t he act ion of I for one z
via uv! wi t h u = U z and v = V z .

• we need to aproxima te t he following expect a t ion:

 P h I  2F = trace
(

(P h  I )!(P h  I )
)

= Ew {  
(

P h  I
)

w  2F } . (14)

T here are two complica t ions wi t h t his la t ter expression. F irst , i t cont ains t he expect a t ion to approxima te
t he act ion of t he image volume. Second, we need to deal wi t h P h  = 1, which involves a non-commu t ing
H adamard product .

L et us address t he second issue first by using t he following two ident i t ies (for now we assume to have
“ access to” I (v ) t hrough ma t rix-vector products):

P h  I (v ) = Ew {diag ( I (v )w) P h diag (w) } (15)

or
(P h  I (v )) w = diag (P h diag (w) I (v )!) (16)

T he first ident i ty allows us to wri te

 P h I (v )  2F = Ew  {diag ( I (v )w) P h diag (w) }  2F ≈

∥∥∥∥∥∥
1
K

K∑

j =1

diag ( I (v )w j ) P h diag (w j )

∥∥∥∥∥∥

2

F

. (17)

T his expression can be fur t her simplified using t he ident i ty

vec(diag ( I (v )w j ) P h diag (w j )) = P wj I (v )w j , (18)

where t he ma t rix P wj is defined as

P wj =
[
blockdiag

(
(P hdiag (w j ))1→ , (P hdiag (w j ))2→ , . . . , (P hdiag (w j )) K→

)]! . (19)

5
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Example
[for fixed N/K=16]

‣ different method perform similarly except for the 
phase encoding, which is better

‣ order of magnitude speedup

Hutchingson Gaussian
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Figure 2: Empirical calculations for the cumulative probability distribution functions for randomized trace
estimates of the matrix B plotted in Fig. 1 (right). The calculations are based on the equations summarized
in Table 1 for (ε, δ) = (0.2, 0.1). This choice yields K = (15, 12, 13, 100) × 103, for the four methods
respectively. The corresponding cumulative probability functions are plotted in blue. The other curves are
the same but for smaller values of K, i.e., K "→ ηK. The curves show that the error increases relatively
slowly for decreasing K. As we can see, all of the curves are within ε trace(B) = 25.
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Figure 3: Empirical cumulative probability distribution functions for a K = 16, which represents a sixteen-
fold increase in efficiency, i.e., N/K = 16. Except for the curves yielded for the phase encoding, all curves
behave similarly.
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Stochastic 
approximation

Use different simultaneous shots for each subproblem, i.e.,

Requires fewer PDE solves for each GN subproblem...

• corresponds to stochastic approximation

• related to Kaczmarz (’37) method applied by Natterer, ‘01

• supersedes ad hoc approach by Krebs et.al., ‘09

[Nemirovski, ’09]

Q !→ Qk

[Bertsekas,’ ’96; Nemirovski, ’09]
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K=1 w and w/o redraw
[noise-free case]
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Observations
SAA:

‣ Random trace estimates insightful but unclear how 
they relate to estimates for the model

SA 

‣ Renewals improve convergence significantly

‣ Averaging removes noise instability but is detrimental to 
the convergence

Both produce ‘noisy’ results ... Sounds familiar?
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Combined approach
Leverage findings from sparse recovery & compressive sensing

• consider phase-encoded Gauss-Newton updates as 
separate compressive-sensing experiments

• remove interferences by curvelet-domain sparsity 
promotion

• exploit properties of Pareto curves in combination with 
stochastic optimization

• turn ‘overdetermined’ problems into ‘undetermined’ 
ones via randomization
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Rationale
Wavefields are compressible in curvelet frames

• correlations between source & residual wavefields are 
compressible

• velocity distributions of sedimentary basins are also 
compressible

Linearized subproblems are convex

Assume proximity Pareto curves for successive linearizations
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Gauss-Newton

Algorithm 1: Gauss Newton

Result: Output estimate for the model m
m ←− m0; k ←− 0 ; // initial model

while not converged do
pk ←− argminp

1
2‖δd−∇F [mk;Q]p‖22 + λk‖p‖22 ; // search dir.

mk+1 ←− mk + γkpk ; // update with linesearch

k ←− k + 1;
end
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Phase encoding

Algorithm 1: Gauss Newton with renewed phase encodings
Result: Output estimate for the model m
m ←− m0; k ←− 0 ; // initial model

while not converged do
pk ←− arg minp

1
2‖δd

k −∇F [mk;Qk]p‖22 + λk‖p‖22 ; // search dir.

mk+1 ←−mk + γkpk ; // update with linesearch

k ←− k + 1;
end
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Sparse recovery
Least-squares migration with sparsity promotion

leads to significant speedup as long as

δx = Sparse curvelet-coefficient vector
S∗ = Curvelet synthesis

δm̃ = S∗ arg min
δx

1
2
‖δx‖"1 subject to ‖δd−∇F [m0;Q]S∗δx‖2 ≤ σ

n!1
PDE ×K " n!2

PDE × nf × ns

[Wang & Sacchi, ’07]
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Compressive 
updates

Algorithm 1: Gauss Newton with sparse updates
Result: Output estimate for the model m
m ←− m0; k ←− 0 ; // initial model

while not converged do
pk ←− S∗ arg minx

1
2‖δd

k −∇F [mk;Qk]S∗x‖22 s.t. ‖x‖1 ≤ τk

mk+1 ←−mk + γkpk ; // update with linesearch

k ←− k + 1;
end

[van den Berg & Friedlander, ’08]
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Solution strategy

• Draw new CS experiment 
when Pareto curve is 
reached

• Do new linearization

• Sweep from low to hight 
frequencies

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

908 EWOUT VAN DEN BERG AND MICHAEL P. FRIEDLANDER

Trace #

Ti
m

e

50 100 150 200 250

(a) Image with missing traces

Trace #
50 100 150 200 250

(b) Interpolated image

0 0.5 1 1.5 2
0

50

100

150

200

250

one−norm of solution (x104)

tw
o

−n
o

rm
 o

f r
e

sid
ua

l

Pareto curve
Solution path

(c) Pareto curve and solution path

Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation
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Example
FWI specs:

• Committed inversion crime

• Frequency continuation over 10 bands

• 15 simultaneous shots with 10 frequencies each

K = 10× 15" 100× 384
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True model
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Initial model
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Inverted model
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Initial model
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Inverted model
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Difference
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Performance
Remember per subproblem

                                     versus

SPEEDUP of 13 X

n!1
PDE ×K " n!2

PDE × nf × ns

n!1
PDE ≈ 200

K = 150
n!2

PDE ≈ 10
K = 38400
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Recap

Choose a new set of simultaneous sources after each ‘GN’ 
subproblem is solved

overdetermined underdetermined

x0Abx0Ab

expensive cheap

min
x
‖b−Akx‖2 s.t. ‖x‖1 ≤ τkmin

x
‖b−Atotal‖2
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Carry home message ...

Seismic inversion involves very large full matrices
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“Holy grail”
Find a representation to “diagonalize”

[de Hoop et al., ‘08-’09]
[Smit et. al., ‘09]
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“Holy grail”
Major engineering effort to keep track of matrix permutations

• killed by constants

• leaks to off diagonals
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CS alternative
Model-size reduction by CS

[FJH & Lin., ‘07]
[Demanet & Peyré, ‘08]
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CS alternative
Leverage invariance under solution operators <=> 
preservation of sparsity

Sparsity promotion takes care of keeping track of the 
permutations implicitly ...!

Thursday, December 9, 2010



SLIM

Conclusions
Leveraged 

‣ curvelet-domain sparsity on the model

‣ invariance under solution operators <=> preservation 
of sparsity

Indications that compressive sensing supersedes the stochastic 
approximation by sparse recovery of dimensionality reduced 
subproblems
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