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HP and Shell Sensing System

HP and Shell are collaborating to develop a wireless sensing system to
acquire extremely high-resolution seismic data on land. HP and Shell will
use their complementary knowledge and experience to produce a
groundbreaking solution that can sense, collect and store geophysical data.

p 1000.000 channel systems (up from 40.000)
p will increase size data volumes by orders of magnitude
p aside from increasing # of cores no speedup on the horizon

p seismic data processing & inversion have become challenging
because of processor & 10 limitations

source http://www.hp.com/hpinfo/newsroom/press Kkits/2010/sensingsolutions/index.html

Thursday, December 9, 2010


http://www.hp.com/hpinfo/newsroom/press_kits/2010/sensingsolutions/index.html
http://www.hp.com/hpinfo/newsroom/press_kits/2010/sensingsolutions/index.html
http://www.hp.com/hpinfo/newsroom/press_kits/2010/sensingsolutions/index.html
http://www.hp.com/hpinfo/newsroom/press_kits/2010/sensingsolutions/index.html

Multiexperiment unconstrained optimization problem:

N=ngsXngs
min Y 2D - Fm; Q|2 with Fm; Qi = P;H, ' [m]Q,
meM ‘= 2
D; = Monochromatic single-source data
P; = Detection operator for each source experiment
H,; = Inverse of time-harmonic Helmholtz
Q; = DMonochromatic source
m = Unknown model, e.g. ¢”?(z)
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Implicit solves of Helmholtz system for each experiment
Hmju=q and H'm|v=r

with

=P*(d — Fm, q)

and compute gradient via

om = %(Zw Z (u® v) ,w>




FWI formulation

[complete datd]

Multiexperiment unconstrained optimization problem:

N:nSan
1
min —|D; — Fm; Q, 2 with Flm:Q;] := PH '[m|Q;
i ; 5| | /12 | | m|]
D = Multi-source and multi-frequency data volume
P = Single detection operator
Q = Seismic sources
m = Unknown model, e.g. ¢ ?(z)

[Tarantola, 84; Pratt, '98; Plessix, ‘06]
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Multiexperiment unconstrained optimization problem:

min —HD Fm; Q]||5

with : .= PH !
i th  Flm; Q] m|Q

* requires large number of PDE solves
* linear in the sources

* apply randomized dimensionality reduction
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Multiexperiment unconstrained optimization problem:

min —HD F|m; Q] with Flm; Q| := PH 'Q

meM 2

* requires smaller number of PDE solves

* explores linearity in the sources & block-diagonal structure
of the Helmholtz system

* uses randomized frequency selection and phase encoding
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[FJH et.al. '08-’

10]

Batch/mini experiment

adapted from FJH et. al. ,09

separated source
960

N
N
20 |
0 i
T 40 i
> i e
g | i
3 | P
O i1 "
S 80
L " P
100 €%
s i1 m | - 1. m 1| Pann 11 I o\%
o
0 500 1000 1500 O 0 500 1000 1500 O 2

Reciever Offset (m) Shot Position (m)

Q Q=RMQ

Collection of K simultaneous-source experiments
(supershots)with Katchnsize n), < ny x n,

Thursday, December 9, 2010



Compressive-sampling operator

RM = vec™ 'blockdiag |(RM);...,s | vec

with (RM);, = (R¥*,M* @ I ® R*})
’Gaussian matrix’
/_/%
and M? = sign(n) ® Fs"e/Fs5

where 6 € Uniform(—mn, 7|, and € Normal(0, 1)
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Interpretations

Consider randomized dimensionality reduction as instances of
® stochastic optimization & machine learning [+:ber, Chung, and FlH710]

® compressive sensing [ et al, ‘0810
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Stochastic

optimization

Replace deterministic-optimization problem
N
1

1
' m) = — —||d; — Flm;q,]|3
Hllfréljr\l/tf( ) N;:;z” m;q|5

with sum cycling over different sources & corresponding
monochromatic shot records (columns of D & Q)

[Natterer, '01]
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Stochastic average

@ p prOXi m d'l'iO N [Haber, Chung, and FH, "10]

by a stochastic-optimization problem

min By {f(m,w) = _[Dw - Flm:Qwl|}

—Z—H Flm;q,]l3

withw € N(0,1) and Ew{ww?} =1

2

andd; = Dw;, q; = Qw;
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In the limit K — o0, stochastic & deterministic formulations
are identical

We gain as longas K < N ..,

Since the error in Monte-Carlo methods decays only slowly
(O(K™1/%))

this approach may be problematic...

However, the location for the minimum of the misfit may be
relatively robust...
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Stylized example

Search direction for batch size K:

z [km]

full K=1 K=5
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Decay

107, —

lerrorl

error between full and sampled gradient

Thursday, December 9, 2010



Misfit functional

K [adapted from Haber, Chung, and F|H, 1 0]

1

1
fre(gr) = 72 > 5 lld; = Flm + age: qj]|I3
j=1

x 10° x 10°

15 * * * * 3
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Randomized frace

estimates

FWI relies on computation of

S
e

| D — Fm; Q] [|7

which corresponds to computing the trace
trace(S*S) = ||S||%

Approximate this trace stochastically.
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[Hutchinson., 90, Avron and S. Toledo, "10]

Randomized frace

estimates
Use
Hg = + Zfil wiBw; with w; 4.7.d.
and B =S"S.

Corresponds to SA via ‘source encoding’ for
monochromatic experiments

p how to choose K and W’s such that
Pr (|Hy, — trace(B)| < e trace(B)) > 1 -0

for some (¢, §).
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[Hutchinson., 90, Avron and S. Toledo, "10]

Randomized frace

estimates

Set (¢,0) = (0.2,0.1), yielding a possible error in the
estimate of 25.

Estimates for K from the table are
K = (15,12,13,100) x 10°
p pessimistic
p cross-overat N = 15 x 10°

p can we do better as seen with CS!?

Thursday, December 9, 2010



Example

Hard model Smoothed model Matrix B = (S S}

N\

3//

2// 411 40// / o// 171 2/
||u$/&#)** - !_nﬁ/&,#)*_# _

® Modeled at 20 Hz with 256 sources

® significant amount of off-diagonal energy
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Example
[for fixed N/K=16]

| | | | |
0 10 20 30 40 50 60 70
IT—TOI

p different method perform similarly except for the
phase encoding, which is better

p order of magnitude speedup
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Use different simultaneous shots for each subproblem,i.e.,
k
Q - Q

Requires fewer PDE solves for each GN subproblem...
® corresponds to stochastic approximation
® related to Kaczmarz ("37) method applied by Natterer, Ol

® supersedes ad hoc approach by Krebs et.al.,"09

Thursday, December 9, 2010
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SAA:

p Random trace estimates insightful but unclear how
they relate to estimates for the model

SA
p Renewals improve convergence significantly

p Averaging removes noise instability but is detrimental to
the convergence

Both produce ‘noisy’ results ... Sounds familiar?
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Leverage findings from sparse recovery & compressive sensing

® consider phase-encoded Gauss-Newton updates as
separate compressive-sensing experiments

® remove interferences by curvelet-domain sparsity
promotion

® exploit properties of Pareto curves in combination with
stochastic optimization

® turn ‘overdetermined’ problems into ‘undetermined’
ones via randomization
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Wavefields are compressible in curvelet frames

® correlations between source & residual wavefields are
compressible

® velocity distributions of sedimentary basins are also
compressible

Linearized subproblems are convex

Assume proximity Pareto curves for successive linearizations
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Gauss-Newion

Algorithm 1: Gauss Newton

Result: Output estimate for the model m
m <— mg; k<— 0 ; // initial model
while not converged do

pF «— arg min,, %]‘5d — VF[m*; Q]pl||3 + M\*||pll2; // search dir.
m*t! «— mF +~FpF ; // update with linesearch
k<+— k-+1;

end

Thursday, December 9, 2010



Algorithm 1: Gauss Newton with renewed phase encodings

Result: Output estimate for the model m

m «— mg; k«— 0 ; // initial model
while not converged do

pF — arg min, %‘]5Qk — V]:[mk,gk]pH% + N¥|pl||3 ; // search dir.
m~t —— mF + ~Fp” // update with linesearch
k+— k+1;

end
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[Wang & Sacchi, ’07]

Sparse recovery

Least-squares migration with sparsity promotion

~ 1
om = S™ arg min §H5Xugl subject to |[0d — VF | mg; Q]S™ x|l < o
dx o
0x = Sparse curvelet-coefficient vector

S>I<

Curvelet synthesis

leads to significant speedup as long as

El 62
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Compressive

updates

Algorithm 1: Gauss Newton with sparse updates

Result: Output estimate for the model m

m «— mg; k«— 0 ; // initial model
while not converged do

p® «— S* arg min_ %H5Qk — Vf[mk;gk]S*XH% st ||x|[p < 7F
m*t! «—— m* + +Fp” ; // update with linesearch
k+— k+1;

end

[van den Berg & Friedlander, '08]
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Solution sirategy

® Draw new CS experiment
when Pareto curve is

250

reached - :
L 5 E
® Do new linearization s ;
& — [
, 5
® Sweep from low to hight ¢
frequencies d o
50

b B
L]
-
L
L
L]
---
L]

Pareto curve
- @ = Solution path

1.5 2
one-norm of solution (x1 04)
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Example

FWI specs:

® Committed inversion crime
® Frequency continuation over |0 bands

® |5 simultaneous shots with |0 frequencies each

K =10 x 15 <« 100 x 384
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True model
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Initial model
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Inverted model
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Initial model
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Inverted model
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True model
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Difference
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Performance

Remember per subproblem

61 22

~ {2 ~

K = 150 K 33400

SPEEDUPof |13 X
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v

m}zn b — Atotalll2 m}in b — Arxlls st. ||x||1 <75

overdetermined underdetermined
expensive cheap

U

A X() b A

Choose a new set of simultaneous sources after each ‘GN’
subproblem is solved

S
S
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Seismic inversion involves very large full matrices

N

AN
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[de Hoop et al.,"08-'09]
[Smit et. al.,"09]

Find a representation to “diagonalize”
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“Holy grail”

Major engineering effort to keep track of matrix permutations
® killed by constants

® |eaks to off diagonals
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[FJH & Lin.,‘07]
[Demanet & Peyre, 08]

Model-size reduction by CS
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CS alternative

Leverage invariance under solution operators <=>
preservation of sparsity

Sparsity promotion takes care of keeping track of the
permutations implicitly ...}
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Leveraged
p curvelet-domain sparsity on the model

p invariance under solution operators <=> preservation
of sparsity

Indications that compressive sensing supersedes the stochastic
approximation by sparse recovery of dimensionality reduced
subproblems
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