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Drivers
Our incessant  

• demand for hydrocarbons while we are no longer finding oil...

• desire to understand the Earth’s inner workings 

Push for improved seismic inversion to

• create more high-resolution information 

• from noisier and incomplete data
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Controversial 
statements

Size of our discretizations is dictated by 

• a far too pessimistic Nyquist-sampling criterion compounded by 
the curse of dimensionality

• our insistence to sample periodically and/or sequentially

Our desire to work with all data

• leads to “over emphasis” on data collection & full-data processing

• prohibits inversion that requires multiple passes through data
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Wish list
Acquisition & inversion costs determined by structure of data & 
complexity of the subsurface

‣ sampling criteria that are dictated by transform-domain 
sparsity and not by the size of the discretization

Controllable error that depends on 

‣ degree of subsampling / dimensionality reduction

‣ available computational resources
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Main themes

1. Randomized sampling and sparsifying transforms

2. Convex optimization

3. Randomized dimensionality reduction

4. Tutorials & Software
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Seismic Laboratory for Imaging and Modeling
the University of British Columbia

Theme I: Randomized sampling 
and sparsifying transforms
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Problem statement

Consider the following (severely) underdetermined system of 
linear equations:

Is it possible to recover x0 accurately from b?

The new field of Compressive Sensing attempts to answer this.

unknown

data
(measurements
/observations
/simulations)

x0

A

=

b
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Sparse recovery

x0

A

A := RFH=

Fourier coefficients
(sparse)

with

Fourier
transform

restriction
operator

signal

b
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Coarse sampling schemes

Fourier

transform

✓

✗

3-fold under-sampling

significant 
coefficients detected

ambiguity

few significant 
coefficients

Fourier

transform

Fourier

transform

[Hennenfent & Herrmann, ’08]
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Seismic Laboratory for Imaging and Modeling

 “noise”
– due to AHA ≠ I
– defined by AHAx0-αx0 = AHy-αx0

Undersampling “noise”

less acquired data

3 detectable Fourier modes 2 detectable Fourier modes

1 out of 2 1 out of 4 1 out of 6 1 out of 8

Thursday, December 9, 2010



SLIM
Sparse one-norm recovery

Signal model

and      k sparse

Sparse one-norm recovery

with             where N is the ambient dimension

Study recovery as a function of

• the subsampling ratio n/N

• “over sampling” ratio k/n

x̃ = arg min
x

||x||1
def=

N∑

i=1

|x[i]| subject to b = Ax

b = Ax0 where b ∈ Rn

n! N

x0

[Sacchi ’98]
[Candès et.al, Donoho, ’06]
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Case study I
Acquisition design according to Compressive Sensing

• Periodic subsampling vs randomized jittered sampling 
of sequential sources

• Subsampling with randomized jittered sequential sources vs 
randomized phase-encoded simultaneous sources

[Hennenfent & Herrmann, ’08]
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seismic line
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Seismic Laboratory for Imaging and Modeling

missing shots

 
50% subsampled shot
from regularly missing

shot positions
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Seismic Laboratory for Imaging and Modeling

regularized

SNR = 8.9 dB
50% subsampled shot
from regularly missing

shot positions
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Jittered sampling

shot
positions

shot
positions

PDF

shot
positions

PDF

Typical spatial 
convolution kernel

Sampling schemeType
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[Hennenfent & FJH, ’08]
[Gang et.al., ‘09]
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Seismic Laboratory for Imaging and Modeling

missing traces

 
50% subsampled shot

from randomized 
jittered shots
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Seismic Laboratory for Imaging and Modeling

regularized

SNR = 10.9 dB
50% subsampled shot

from randomized 
jittered shots
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Seismic Laboratory for Imaging and Modeling

interpolated

SNR = 8.9 dB
50% subsampled shot
from regularly missing

shot positions
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1 & 2-D jittered samplings

Spectra become increasingly “blue”
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Figure 2: Different types of sampling: (a) regular, (b) uniform random along one axis
and regularly sampled along other, (c) jittered sampling along one axis and regularly
sampled along other, (d) 2D jittered sampling, with jittered sample positions along
one axis, and positions determined by another jittered sampling pattern on other axis,
(e) 2D jittered sampling, jittered positions along receiver axis, and different jittered
positions along each cable inline (non-separable), (f) Fully 2D jittered sampling.

positions of shots (for marine surveys) are jittered with the same distribution. It is
conceivably possible for both jittered distributions to be independent of each other,
and this case is illustrated in Figure 2(e). Figure 2(f) shows fully two-dimensional
jittered sampling for positioning of geophones, where the positions are not determined
by the Kronecker product of two one-dimensional jittered distributions, but instead
by a jittered distribution determined by a two-dimensional rectangular tiling of the
acquisition plane. From our experiments, we found that jittered sampling is better
than uniform discrete random sampling in one dimension, so it is natural to extend it
to two dimensions (László, 1995) in the hope that it would also be better than uniform
random sampling in this higher dimensional case.

In addition, we also introduce another two types of blue-noise sampling schemes,
Poisson Disk sampling (Cook, 1986) and Farthest Point sampling (Eldar et al., 1997).
As previously stated, a blue-noise signal refers to a signal whose energy is concentrated
at high frequencies with little energy concentrated at lower non-zero frequencies.
Sampling patterns with blue-noise spectra, common in the field of image processing,
scatter aliasing artifacts out of the signal band into high frequencies and have been
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Figure 2: Different types of sampling: (a) regular, (b) uniform random along one axis
and regularly sampled along other, (c) jittered sampling along one axis and regularly
sampled along other, (d) 2D jittered sampling, with jittered sample positions along
one axis, and positions determined by another jittered sampling pattern on other axis,
(e) 2D jittered sampling, jittered positions along receiver axis, and different jittered
posit ions along each cable inline (non-separable), (f ) Fully 2D j it tered sampling.

positions of shots (for marine surveys) are jittered with the same distribution. It is
conceivably possible for both jittered distributions to be independent of each other,
and this case is illustrated in Figure 2(e). Figure 2(f) shows fully two-dimensional
jittered sampling for positioning of geophones, where the positions are not determined
by the Kronecker product of two one-dimensional jittered distributions, but instead
by a jittered distribution determined by a two-dimensional rectangular tiling of the
acquisition plane. From our experiments, we found that jittered sampling is better
than uniform discrete random sampling in one dimension, so it is natural to extend it
to two dimensions (László, 1995) in the hope that it would also be better than uniform
random sampling in this higher dimensional case.

In addition, we also introduce another two types of blue-noise sampling schemes,
Poisson Disk sampling (Cook, 1986) and Farthest Point sampling (Eldar et al., 1997).
As previously stated, a blue-noise signal refers to a signal whose energy is concentrated
at high frequencies with little energy concentrated at lower non-zero frequencies.
Sampling patterns with blue-noise spectra, common in the field of image processing,
scatter aliasing artifacts out of the signal band into high frequencies and have been

regular uniform jittered

separable
2d jittered

non-seperable
2d jittered

fully 2d
jittered

[Tang et. al., ’09-’10]
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Recovery from 1-2D jittered samplings (25%)

Spectra become increasingly “blue”

regular
(3.91 dB)

uniform
(7.20 dB)

jittered
(8.94 dB)

separable
2d jittered (9.45 dB)

non-seperable
2d jittered (10.03 dB)

fully 2d
jittered (10.86 dB)

21
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Figure 11: Reconstructions from 75% missing traces: (a) 2D regular sampling,
SNR=3.91 dB, (b) regular along source axis, discrete uniform random along re-
ceiver axis, SNR=7.30 dB, (c) regular along source axis, jittered along receiver axis,
SNR=8.94 dB, (d) 2D jittered sampling, jittered sampling along receiver and source
axes, same source pos. for all receivers, SNR=9.65 dB, (e) 2D jittered sampling along
receiver and source axes, different source pos. for each receiver, SNR=10.03 dB, (f)
Fully 2D jittered sampling, SNR=10.86 dB
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Figure 11: Reconstructions from 75% missing traces: (a) 2D regular sampling,
SNR=3.91 dB, (b) regular along source axis, discrete uniform random along re-
ceiver axis, SNR=7.30 dB, (c) regular along source axis, jittered along receiver axis,
SNR=8.94 dB, (d) 2D jittered sampling, jittered sampling along receiver and source
axes, same source pos. for all receivers, SNR=9.65 dB, (e) 2D jittered sampling along
receiver and source axes, different source pos. for each receiver, SNR=10.03 dB, (f)
Fully 2D jittered sampling, SNR=10.86 dB
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Case study II
Acquisition design according to Compressive Sensing

• Subsampling with randomized jittered sequential sources vs 
randomized phase-encoded simultaneous sources

[Beasley et. al., ’98 ]
[Berkhout ’08]
[Herrmann ’09-’10]
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Simultaneous & incoherent sources
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Unblending/
Demultiplexing

Blending versus unblending ...

?

✓

$$$$$$$$$ $
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multiplexed

 
50% subsampled shots

from randomized
simultaneous shots
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demultiplexed

SNR = 16.1 dB
50% subsampled shot

from randomized
simultaneous shots
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Seismic Laboratory for Imaging and Modeling

recovered

SNR = 10.9 dB
50% subsampled shot

from randomized 
jittered shots

Thursday, December 9, 2010



SLIM

Recent results
Recovery of seismic lines based 

• on “separable” sparsifying transform

• favorable simultaneous acquisition

Consider  “Marine” case

S = C⊗W

Thursday, December 9, 2010



SLIM

Simultaneous sources
Marine case
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Original data
original data

20 40 60 80 100 120

50

100

150

200

250

300

350

400

450

500

Thursday, December 9, 2010



SLIM

Recovered data
40 % of shots in 20 % of recording time

recoverd data
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The math of Compressive Sensing

Recovery is possible & stable as long as each subset S of k 
columns of                  with            the # of nonzeros 
approximately behaves as an orthogonal basis.

In that case, we have 

where S runs over all sets with cardinality

• the smaller the restricted isometry constant (RIP)    the 
more energy is captured and the more stable the 
inversion of A

• determined by the mutual coherence of the cols in A

A ∈ Rn×N k ≤ N

(1− δ̂k)‖xS‖2!2 ≤ ‖ASxS‖2!2 ≤ (1 + δ̂k)‖xS‖2!2 ,

≤ k

δ̂k

[Candès et.al, ’06]
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Math cont’ed

RIP constant is bounded by 

where

Matrices with small     contain subsets of k incoherent columns.

Gaussian random matrices with i.i.d. entries have this property.

One-norm solvers recover x0 as long it is k sparse and

yields an oversampling ratio of

δ̂k ≤ (k − 1)µ

µ = max
1≤i "=j≤N

|aH
i aj |

δ̂k

k ≤ C · n

log2(N/n)
,

n/k ≈ C · log2 N

[Candès et.al, ’06]
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Key elements

sparsifying transform

• typically localized in the time-space domain to handle the complexity of seismic 
data

advantageous coarse randomized sampling

• generates incoherent random undersampling “noise” in the sparsifying domain

sparsity-promoting solver

• requires few matrix-vector multiplications

Thursday, December 9, 2010
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Fourier reconstruction

1 % of coefficients
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Wavelet reconstruction

1 % of coefficients
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Curvelet reconstruction

1 % of coefficients
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Curvelets

-0.4

-0.2

0

0.2

0.4

-0.4 -0.2 0 0.2 0.4

[Demanet et. al., ‘06]
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Extension

Extend CS framework:

Expected to perform well when

Generalizes to redundant transforms for cases where

• max of RIP constants for M, S are small

• or            remains sparse for x sparse

Open research topic...

restriction
matrix

measurement
matrix

sparsity
matrix

A := RMSH

µ = max
1≤i "=j≤N

|
(
RMsi

)H RMsj |

SSHx [Candès et.al, ’10]

[Rauhut et.al, ’06]
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Empirical 
performance analysis

Selection of the appropriate sparsifying transform

➡nonlinear approximation error

• recovery error

• oversampling ratio

SNR(ρ) = −20 log
‖f − fρ‖
‖f‖ with ρ = k/P

SNR(δ) = −20 log
‖f − f̃ δ‖
‖f‖ with δ = n/N

δ/ρ with ρ = inf{ρ̃ : SNR(δ) ≤ SNR(ρ̃)}
[FJH, ’10]
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Nonlinear approximation error
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common receiver gather recovery error

[FJH, ’10]
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Key elements

sparsifying transform

• typically localized in the time-space domain to handle the complexity of seismic 
data

• curvelets 

advantageous coarse sampling 

• generates incoherent random undersampling “noise” in the sparsifying domain

sparsity-promoting solver

• requires few matrix-vector multiplications

✓
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Key elements

sparsifying transform

• typically localized in the time-space domain to handle the complexity of seismic 
data

• curvelets 

advantageous coarse sampling

• generates incoherent random undersampling “noise” in the sparsifying domain

• does not create large gaps for measurement in the physical domain

• does not create coherent interferences in simultaneous acquisition

sparsity-promoting solver

• requires few matrix-vector multiplications

✓

✓
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Data

missing shots sim. shots
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Sparse recovery

recovery
missing shots

recovery
sim. shots
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Sparse recovery error

error
missing shots

error
sim. shots
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Empirical 
performance analysis

Selection of the appropriate sparsifying transform

• nonlinear approximation error

➡recovery error

• oversampling ratio

SNR(ρ) = −20 log
‖f − fρ‖
‖f‖ with ρ = k/P

SNR(δ) = −20 log
‖f − f̃ δ‖
‖f‖ with δ = n/N

δ/ρ with ρ = inf{ρ̃ : SNR(δ) ≤ SNR(ρ̃)}
[FJH, ’10]
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Multiple experiments
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Empirical 
performance analysis

Selection of the appropriate sparsifying transform

• nonlinear approximation error

• recovery error

➡oversampling ratio

SNR(ρ) = −20 log
‖f − fρ‖
‖f‖ with ρ = k/P

SNR(δ) = −20 log
‖f − f̃ δ‖
‖f‖ with δ = n/N

δ/ρ with ρ = inf{ρ̃ : SNR(δ) ≤ SNR(ρ̃)}
[FJH, ’10]
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Oversampling ratios
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Key elements

sparsifying transform

• typically localized in the time-space domain to handle the complexity of seismic 
data

• curvelets 

advantageous coarse sampling (mixing)

• generates incoherent random undersampling “noise” in the sparsifying domain

• does not create large gaps for measurement in the physical domain

• does not create coherent interferences in simultaneous acquisition

sparsity-promoting solver

• requires few matrix-vector multiplications

✓

✓
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Reality check

“When a traveler reaches a fork in the road, 
the 11-norm tells him to take either one way 
or the other, but the l2 -norm instructs him to 
head off into the bushes.”

John F. Claerbout and Francis Muir, 1973 
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One-norm solver

[van den Berg & Friedlander, ’08]
[Hennenfent, FJH, et. al, ‘08]
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(c) Pareto curve and solution path

F i g . 6.1. C or r upted a nd i n te r pola ted i m ages for problem seismic. G raph (c) shows the P a reto
cu r ve a nd the solut ion pa th t aken by S P G L1.

ever, as might be expected of an interior-point method based on a conjuga te-gradient
linear solver, i t can require many ma t rix-vector products.

I t may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast , the (LSτ ) formula tion is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In si tua tions where li t t le is known about
the noise level σ, i t may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this sect ion
we aim to obtain good approxima tions to the Pareto curve for cases in which it is
prohibi t ively expensive to compu te i t in its ent irety.

We test two approaches for interpola tion through a small se t of samples i =
1, . . . , k. In the first , we genera te a uniform dist ribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi ). In the second, we genera te a uni-
form dist ribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
( B Pσi ). We leverage the convexity and differentiabili ty of the Pareto curve to approx-
ima te i t wi t h piecewise cubic polynomials t ha t ma tch funct ion and deriva t ive values
a t each end. W hen a nonconvex fi t is detected, we switch to a quadra tic interpola tion

from http://people.cs.ubc.ca/~mpf/
Thursday, December 9, 2010
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Key elements

sparsifying transform

• typically localized in the time-space domain to handle the complexity of seismic 
data

• curvelets 

advantageous coarse sampling (mixing)

• generates incoherent random undersampling “noise” in the sparsifying domain

• does not create large gaps for measurement in the physical domain

• does not create coherent interferences in simultaneous acquisition

sparsity-promoting solver

• requires few matrix-vector multiplications

✓

✓

✓
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DNOISE contributions
Application CS to

• seismic data regularization

• acquisition design that favors curvelet-based 
recovery

‣ recovery from jittered sampling

‣ demultiplexing simultaneous sources
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Observations
Controllable error for reconstruction from randomized subsamplings

Oversampling compared to conventional compression is small

Combination of sampling & encoding into a single linear step has 
profound implications

• acquisition costs no longer determined by resolution & size

• but by transform-domain sparsity & recovery error

3-D Curvelets and simultaneous acquisition perform the best
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Talks

Wed 10:00-10:40 AM   Ozgur Yilmaz. Sparse 
approximations and compressive sensing: an overview

Wed 10:40-11:00 AM   Haneet Wason. Sequential source 
data recovery from simultaneous acquisition through                          
transform-domain sparsity promotion 

Wed 11:00-11:30 AM   Chuck Mosher (ConocoPhillips). 
Operator localization with Generalized Windowed                           
Transforms

Wed 11:30-12:00 PM   Rayan Saab. Compressed sensing 
using Kronecker products

Wed 12:00-12:30 PM   Hassan Mansour. Recovering 
compressively sampled signals using partial support 
information
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Seismic Laboratory for Imaging and Modeling
the University of British Columbia

Theme II: Convex optimization
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Additional faculty
Michael Friedlaender
Associate professor CS

Fellow Argonne
B.A., Cornell,   MSc. & Ph.D., Stanford
Numerical optimization
Numerical linear algebra
Design & implementation of constrained 
optimization 
Scientific computing
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M. Sc. Student
Tim Lin

 Graduate in Hon. Physics, UBC
 Joined SLIM in 2006 as summer co-op student 
and now an M. Sc. student

 Compressive Wavefield Modeling and Migration
 Imaging with extensions by Symes
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PDF
Aleksandr Aravkin

 PhD from University of Washington, Math

 Joined SLIM in 2010
 Convex optimization

 Nonlinear inversion with sparsity promotion
 Huber and other norms

Thursday, December 9, 2010



Ph.D. Student
Xiang Li

 M.Sc. in Geophysics from Jilin University 
(awarded 2009).
 Sparsity-promoting migration with phase 
encoding

 Dimensionality-reduced FWI with compressive  
updates
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M. Sc. Student
Mufeed AlMatar

 Previously worked for Aramco in Saudi Arabia

 Curvelet-matched EPSI
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Ph.D. Student
Tu Ning

 M.Sc. from Tsinghua University in 2009 with 
research related to seismic attenuation 
characterization.

 Current research interests: imaging with surface-
related multiples, compressive sensing, sparse 
representations, and related applications in 
seismic exploration.
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Convex optimization
Efficient solvers for problems of the type

and

are instrumental to the success of approach to seismic data 
processing, imaging, and inversion

X̃ = arg min
X

‖X‖1,2 subject to ‖AX−B‖2,2 ≤ σ

x̃ = arg min
x

‖x‖1 subject to ‖Ax− b‖2 ≤ σ
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Prerequisites
The solver needs to

• scale to extremely large problems

• be frugal with # of matrix-vector products

• be like ‘black box’
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Solution strategy
Use continuation method to solve a series of one-norm 
problems

• use properties of the Pareto curve

• divide problem into several subproblems that offer 
control on the components that enter into the solution

• solution to the subproblem offer flexibility to

‣ solve ‘overdetermined’ problems through subsampling

‣ solve alternating optimization problems
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Solution strategy

• Allow components to enter 
the solution slowly by 
solving a series of LASSO’s

• Solution of these 
subproblems is a natural 
intermediate stopping 
criterion
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Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

min
x
‖b−Ax‖2 s.t. ‖x‖1 ≤ τk
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Sparse inversion

Choose a new set of simultaneous sources after each 
subproblem is solved

min
x
‖b−Akx‖2 s.t. ‖x‖1 ≤ τkmin

x
‖b−Atotal‖2

overdetermined underdetermined

x0Abx0Ab

expensive cheap
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sparse recovery with renewal sparse recovery without renewal

Linearized sparse 
inversion

8 simultaneous shots 3 random frequencies 
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Block-coordinate 
descents

with A and q articulating

where

min
x,q∈C

‖x‖1 subject to ‖b−A[q]x‖2 ≤ σ

C the set of short wavelets

upgoing wavefield︷︸︸︷
P ≈ G︸︷︷︸

surface-free impulse response

downgoing wavefield︷ ︸︸ ︷
[Q−P]

Q = Iq
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Sparsity vs L1 Gulf of Suez

trace number

tim
e

 (
s)

50 100 150

0

0.5

1

1.5

2

2.5

trace number

tim
e

 (
s)

50 100 150

0

0.5

1

1.5

2

2.5

Thursday, December 9, 2010



SLIM

Sparsity vs L1 Gulf of Suez

Sparse 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Sparsity vs L1

Sparse EPSI       EPSI!1

(zero‐offset)
Gulf of Suez
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Sparsity vs L1

Sparse EPSI       EPSI!1

(zero‐offset zoomed)
Gulf of Suez

trace number

tim
e
 (

s)

50 100 150

0

0.5

1

trace number

tim
e
 (

s)

50 100 150

0

0.5

1

Thursday, December 9, 2010



SLIM

Sparsity vs L1

Sparse EPSI       EPSI!1

(zero‐offset)
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• points

Migration of
multiple-free data
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• points

Sparse inversion of data
with multiples
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• points

Sparse inversion
with EPSI
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DNOISE contributions
Fast solvers for large-scale convex optimization 
problems

(Bi-)Convex formulations for

• sparse linearized inversion

• source- & Green’s function estimation by sparse 
inversion

• linearized inversion with surface-related multiples
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Observations

Curvelet-domain sparsity promotion adds “robustness”.

Incorporating more physics improves results.

First steps towards a new generation of processing and 
imaging technologies.

Dimensionality reduction, which allows us to do sparse 
inversions.
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Talks

Wed 01:30-02:00 PM   Michael Friendlander. Algorithms 
for Sparse Optimization

Wed 02:00-02:40 PM   Tim Lin. Sparse optimization and 
the L1norm

Wed 02:40-03:00 PM   Aleksandr Aravkin. Introduction 
to convex composite optimization

Wed 03:30-03:55 PM   Xiang Li. Compressive imaging 

Wed 03:55-04:40 PM   Tim Lin. Leveraging informed 
blind deconvolution techniques for the estimation ...

Wed 04:40-05:00 PM   Mufeed Ak-Matar. Estimation of 
surface-free data by curvelet-domain ...

Wed 05:00-05:30 PM   Ning Tu. Sparsity promoting 
migration with surface-related multiples
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Seismic Laboratory for Imaging and Modeling
the University of British Columbia

Theme III: Randomized 
dimensionality reduction
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Post-doctoral Fellow
Mark Schmidt

 PhD UBC, CS

 Joined SLIM in 2010
 Machine learning

 Convex optimization
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PhD Student
Aleksandr Aravkin

 PhD from University of Washington, Statistics

 Joined SLIM in 2010
 Convex optimization

 Nonlinear inversion with sparsity promotion
 Kalman filtering & smoothing
Huber and other norms
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Post-doctoral fellow
Peyman Moghaddam

  B.Sc. & M.Sc. in Electrical Eng.,
 Tehran Polytechnic, Iran 
 Reverse-time migration
Migration preconditioning
Stochastic optimization & FWI
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Post-doctoral fellow
Tristan van Leeuwen

 B.Sc./MSc University of Utrecht
 PhD Delft University of Technology
 Joined SLIM in 2010
 Correlation-based migration velocity analysis
 Stochastic optimization & FWI
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Ph.D. Student
Xiang Li

 M.Sc. in Geophysics from Jilin University 
(awarded 2009).
 Sparsity-promoting migration with phase 
encoding

 Dimensionality-reduced FWI with compressive  
updates
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PDF
Aleksandr Aravkin

 PhD from University of Washington, Math

 Joined SLIM in 2010
 Convex optimization

 Nonlinear inversion with sparsity promotion
 Kalman filtering & smoothing
 Huber and other norms
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Confronting the 
‘data deluge ‘

Remove major impediment of ‘data overload’ through 
randomized dimensionality reduction

‣ artificial randomized simultaneous sources

‣ stochastic approximation

‣ compressive sensing

Bottom line: reduction of # PDE solves in FWI

‣ makes FWI computationally feasible for realistic data 
volumes
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Stochastic 
optimization

Stochastic average approximation:

‣ replace sequential sources by fewer # of simultaneous 
sources

‣ converges to full solution if # of random sources 
increases

‣ corresponds to Monte-Carlo sampling so error decays 
slowly
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Stylized example
Search direction for batch size K:
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Stochastic 
optimization

Stochastic approximation:

‣ replace deterministic gradients by stochastic gradients

‣ draw a new set of simultaneous sources for each 
gradient

‣ converges to solution after sufficient # of iterations

‣ becomes unstable when noise added
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K=1
[noisy case]
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Compressive sensing
FWI with compressively recovered updates

• consider phase-encoded Gauss-Newton updates as 
separate compressive-sensing experiments

• remove interferences by curvelet-domain sparsity 
promotion

• exploit properties of Pareto curves in combination with 
stochastic optimization

• turn ‘overdetermined’ problems into ‘undetermined’ 
problems via random source encoding
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Xiang Li’s examples
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DNOISE contributions
Stochastic optimization formalizes ad hoc phase encodings 
proposed in the geophysical literature.

Combination of the stochastic approximation with 
compressive sensing leads to a dimensionality reduced 
formulation of Gauss Newton.

Formulation allows us to tap into convex solvers via 
convex-composite arguments.

Concrete prototypes for dimensionality reduced FWI.
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Observations

Curvelet-domain sparsity promotion allows us to 
mitigate noise induced by

‣ source-cross talk

‣ renewals

Dimensionality reduction, which allows us to do sparse 
FWI.
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Talks

Thu 09:00-09:30 AM   Felix J. Herrmann. Dimensionality 
reduction for full-waveform inversion

Thu 09:30-10:00 AM   Mark Schmidt. Hybrid stochastic-
deterministic methods

Thu 10:30-11:00 AM   Peyman Moghaddam. Randomized 
full-waveform inversion

Thu 11:00-11:30 AM   Tristan van Leeuwen. Waveform 
inversion by stochastic optimization

Thu 11:30-12:00 PM   Xiang Li. Full-waveform inversion 
with randomized L1 recovery for the model updates

Thu 12:00-12:30 PM   Aleksandr Aravkin & Tristan van                          
Leeuwen. Exploiting sparsity in full-waveform inversion: 
nonlinear basis pursuit denoise algorithm
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Seismic Laboratory for Imaging and Modeling
the University of British Columbia

Tutorials & Software
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Research Faculty
Henryk Modzelewski (Ph.D.)

Ph.D. in Atmospheric Sciences, UBC
Scientific programming

High-Performance Computing
Development: MPI and Python

System administration
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Nameet Kumar 
(undergraduate COOP)

Physics UBC
Scientific programmer for pSPOT
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Sebastien Pacteau
(undergraduate interm)

Geophysics 
Scientific programmer for Kroneckers in 
pSPOT
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Recent 
developments

Purchase of Parallel matlab turned underutilized cluster 
into fully utilized problem solver.

OO programming allows us to

• seamlessly build in parallelization

• fast prototyping

• compartmentalize our applications into logical units, 
linear operators, solvers, etc.

• streamlines dissemination of our technology
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Contributions
Development of a parallel OO framework for linear 
operators

Large-scale for convex optimization problems

Software release for primary-estimation by sparse 
inversion

Planned releases for linearized inversion (with multiples)
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Talks

Thu 01:30-01:50 PM   Henryk Modzeleweski. Software 
releases and architecture
Thu 01:50-02:10 PM   Michael Friedlander. Introduction 
to Spot – A Linear-Operator Toolbox

Thu 02:10-02:30 PM   Nameet Kumar. Parallelizing 
operations with ease using Parallel SPOT

Thu 02:30-02:50 PM   Sebastien Pactau. Parallel SPOT 
and Kronecker products

Thu 02:50-03:10 PM   Tim Lin. Software release: 
Estimation of primaries by l1 inversion
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