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Our incessant
® demand for hydrocarbons while we are no longer finding oil...

® desire to understand the Earth’s inner workings

Push for improved seismic inversion to
® create more high-resolution information

® from noisier and incomplete data
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Size of our discretizations is dictated by

® a far too pessimistic Nyquist-sampling criterion compounded by
the curse of dimensionality

® our insistence to sample periodically and/or sequentially
Our desire to work with all data
® |eads to “over emphasis” on data collection & full-data processing

® prohibits inversion that requires multiple passes through data
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Acquisition & inversion costs determined by structure of data &
complexity of the subsurface

p sampling criteria that are dictated by transform-domain
sparsity and not by the size of the discretization

Controllable error that depends on
p degree of subsampling / dimensionality reduction

p available computational resources
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Main themes

|. Randomized sampling and sparsifying transforms

2. Convex optimization

3. Randomized dimensionality reduction

4. Tutorials & Software
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Theme |: Randomized sampling
and sparsifying transforms

SLIM
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Additional faculty
Ozgur Yilmaz
Associate professor Math

+ M. A., Bogazict University, Turkey
+ Ph.D., Princeton

+ Applied harmonic analysis

+ Signal processing

+ Information theory
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Imaging and Modeling
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MSc. Student
Haneet Wason

+ BSc Geophysics, University of Calgary

+ Shearlets, curvelets, and simultaneous-source
data

SLIM

Seismic Laboratory for

Imaging and Modeling
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Postdoc
Rayan Saab

+ M.A.Sc. 1n Electrical Eng., UBC

+ B.E. in Computer and Communications Eng.,
American Univ. of Beirut

+ Blind Source Separation
+ Statistical Signal Processing
+ Discrete Optimization

+ Seismic and Biomedical Signal Processin% G

Seismic Laboratory for
Imaging and Modeling
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Post Doctoral Fellow
Hassan Mansour

+ Joined September 2009

+ Ph.D. from Electrical Engineering, UBC, 2009
in video coding.

+ Current research interests: L 1-minimization
and compressed sensing.

SLIM

Seismic Laboratory for

Imaging and Modeling
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Consider the following (severely) underdetermined system of
linear equations:

/observations
/simulations)

data
(measurements —— E =
b

0

1

unknown

s it possible to recover Xopaccurately from b?

The new field of Compressive Sensing attempts to answer this.

Thursday, December 9, 2010



Sparse recovery
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Coarse sampling schemes

Fourier 3~
— £
transform 7 LL |
° % o1 o2 o3 o4 os
Normalized wavenumber (cycle)
3-fold under-sampling
Fourier 2.
—> &
transform
Normalized wavenumber (cycle)
Fourier 3_
—>
transform “Z___{____________ _
I AN

0 0.1
Normalized wavenumber (cycle)

0.2

0.3

0.4

0.5

v

X

few significant
coefficients

significant
coefficients detected

ambiguity

[Hennenfent & Herrmann, '08]
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Undersampling “noise”
® "noise’
— dueto APA #1

— defined by A#AXo-0xxo = Afy-0iXo

1 out of 2 1 out of 4 1 out of 6 I out of §

less acquired data

3 detectable Fourier modes 2 detectable Fourier modes
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Signal model
b= Axy where beR"
and X( k sparse

SP&I’SE one-norm recovery

N
X = arg min HXHldéf Z x|i|| subject to b= Ax
® i=1

with n<< N where N is the ambient dimension
Study recovery as a function of
® the subsampling ratio n/N

® “over sampling” ratio k/n
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Acquisition design according to Compressive Sensing

® Periodic subsampling vs randomized jittered sampling
of sequential sources

® Subsampling with randomized jittered sequential sources vs
randomized phase-encoded simultaneous sources
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960 seismic line
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Seismic Laboratory for Imaging and Modeling
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960 missing shots

975

50% subsampled shot
from regularly missing
shot positions
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Seismic Laboratory for Imaging and Modeling
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0 1000 0
Receiver position (m)

Seismic Laboratory for Imaging and Modeling

regularized

SNR =8.9 dB

50% subsampled shot
from regularly missing
shot positions

Shot position (m)
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[Hennenfent & FJH, '08]
[Gang et.al.,"09]

Jittered sampling
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0 1000 0
Receiver position (m)

Seismic Laboratory for Imaging and Modeling

missing traces

50% subsampled shot
from randomized
jittered shots

1000
Shot position (m)
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0 1000 0
Receiver position (m) Shot position (m)

Seismic Laboratory for Imaging and Modeling

regularized

SNR =10.9 dB

50% subsampled shot
from randomized
jittered shots

1000
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960 interpolated

SNR =8.9 dB

50% subsampled shot
from regularly missing
shot positions

0 1000 0 1000
Receiver position (m) Shot position (m)

Seismic Laboratory for Imaging and Modeling
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1 & 2-D jittered samplings [Tang et.al.,"09-’ 0]
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Spectra become increasingly “blue”
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Recovery from 1-2D jittered samplings (25%)

regular uniform jittered
(3.91 dB) (7.20 dB) (8.94 dB)

separable non-seperable fully 2d
2d jittered (9.45 dB) 2d jittered (10.03 dB) jittered (10.86 dB)

Spectra become increasingly “blue”
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Acquisition design according to Compressive Sensing

® Subsampling with randomized jittered sequential sources vs
randomized phase-encoded simultaneous sources

Thursday, December 9, 2010



Simultaneous & incoherent sources
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Unblending/

Demultiplexing

$$$5555$$
Blending versus unblending ...




045 multiplexed

945
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Seismic Laboratory for Imaging and Modeling
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0 1000 0
Receiver position (m)

Seismic Laboratory for Imaging and Modeling

demultiplexed

SNR = 16.1 dB

50% subsampled shot
from randomized
simultaneous shots

1000
Shot position (m)
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0 1000 0
Receiver position (m) Shot position (m)

Seismic Laboratory for Imaging and Modeling

recovered

SNR =10.9 dB

50% subsampled shot
from randomized
jittered shots

1000
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Recent resulis

Recovery of seismic lines based

® on “separable” sparsifying transform
S=CW

® favorable simultaneous acquisition

Consider “Marine” case
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Simultaneous sources

Marine case
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Recovered data
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Recovery is possible & stable as long as each subset S of k
columns of A € R™*" with k < N the # of nonzeros

approximately behaves as an orthogonal basis.

In that case, we have
(1= dn)llxsllz, < [Asxsllz, < (1+0k)[xsllz,,
where S runs over all sets with cardinality < &

e the smaller the restricted isometry constant (RIP) ¢, the
more energy is captured and the more stable the

inversion of A

® determined by the mutual coherence of the cols in A

Thursday, December 9, 2010



RIP constant is bounded by

AN

Ok < (k—1)p
where
_ H_
:u_ 1;@1;8]"-};]\;‘&@ aJ‘

Matrices with small 0; contain subsets of k incoherent columns.
Gaussian random matrices with i.i.d. entries have this property.

One-norm solvers recover Xo as long it is k sparse and

n
E<(C - ,
- log, (N /1)

yields an oversampling ratio of

n/k~C-logy N
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[ sparsifying transform

e typically localized in the time-space domain to handle the complexity of seismic
data

7] advantageous coarse randomized sampling

® generates incoherent random undersampling “noise” in the sparsifying domain

[ sparsity-promoting solver

@ requires few matrix-vector multiplications
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Fourier reconstruction
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1 % of coefficients

Seismic Laboratory for Imaging and Modeling
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Wavelet reconstruction
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Seismic Laboratory for Imaging and Modeling
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Curvelet reconstruction
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Seismic Laboratory for Imaging and Modeling
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[Demanet et. al.,‘06]

Curvelets
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Extend CS framework:

H
A = RMS
) T
restriction measurement sparsity
matrix matrix matrix

Expected to perform well when
p= max |(RMs')" RMSs|
1<i#j<N
Generalizes to redundant transforms for cases where
® max of RIP constants for M, S are small

H .
® or 5SS x remains sparse for X sparse

Open research topic...

Thursday, December 9, 2010



Empirical
performance analysis

Selection of the appropriate sparsifying transform

= nonlinear approximation error

f—f

SNR(p) = —20log H HprH with p=k/P
® recovery error .
f—f

SNR(d) = —201log | ] sl with 6 =n/N

® oversampling ratio

6/p with p=inf{p: SNR(J) < SNR(p)}

[FJH,’10]
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Nonlinear approximation error
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V] sparsifying transform

e typically localized in the time-space domain to handle the complexity of seismic
data

® curvelets

] advantageous coarse sampling

® generates incoherent random undersampling “noise” in the sparsifying domain

] sparsity-promoting solver

@ requires few matrix-vector multiplications
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V] sparsifying transform

e typically localized in the time-space domain to handle the complexity of seismic
data

® curvelets

[V] advantageous coarse sampling

® generates incoherent random undersampling “noise” in the sparsifying domain
® does not create large gaps for measurement in the physical domain

® does not create coherent interferences in simultaneous acquisition

[ sparsity-promoting solver

@ requires few matrix-vector multiplications

— -
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Sparse recovery error
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Empirical
performance analysis

Selection of the appropriate sparsifying transform

® nonlinear approximation error

f—1f
SNR(p) = —201log H HprH with p=k/P
) recovery error
f—1f
SNR(8) = —20log | ||f||5H with & =n/N

® oversampling ratio

6/p with p=inf{p: SNR(J) < SNR(p)}

[FJH,’10]
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Multiple experiments

simultaneous wavelet

uniform random wavelet
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Empirical
performance analysis

Selection of the appropriate sparsifying transform

® nonlinear approximation error

f—f

SNR(p) = —20log H HprH with p=k/P
® recovery error .
f—f

SNR(d) = —201log | ] sl with 6 =n/N

=) oversampling ratio

6/p with p=inf{p: SNR(J) < SNR(p)}

[FJH,’10]
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Oversampling ratios
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V] sparsifying transform

e typically localized in the time-space domain to handle the complexity of seismic
data

® curvelets

[V] advantageous coarse sampling (mixing)

® generates incoherent random undersampling “noise” in the sparsifying domain
® does not create large gaps for measurement in the physical domain

® does not create coherent interferences in simultaneous acquisition

[ sparsity-promoting solver

@ requires few matrix-vector multiplications

— -
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“When a traveler reaches a fork in the road,
the |-norm tells him to take either one way
or the other, but the |; -norm instructs him to

head off into the bushes.”

John F. Claerbout and Francis Muir, 1973
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[van den Berg & Friedlander, ’08]
[Hennenfent, FJH, et. al,‘08]

One-norm solver

250

200

Pareto curve
- ® = Solution path

.
I
|
|
|
|
?
|

150 —

100 —

two-norm ofresidual

50 —

0 | [ [
0 0.5 1 1.5 2
from http://people.cs.ubc.ca/~mpf/ one-norm of solution (x10%
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http://people.cs.ubc.ca/~mpf/
http://people.cs.ubc.ca/~mpf/

V] sparsifying transform

e typically localized in the time-space domain to handle the complexity of seismic
data

® curvelets

[V] advantageous coarse sampling (mixing)

® generates incoherent random undersampling “noise” in the sparsifying domain
® does not create large gaps for measurement in the physical domain

® does not create coherent interferences in simultaneous acquisition

V] sparsity-promoting solver

@ requires few matrix-vector multiplications

— -
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DNOISE contiributions

Application CS to
® seismic data regularization

® acquisition design that favors curvelet-based
recovery

p recovery from jittered sampling

p demultiplexing simultaneous sources
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Controllable error for reconstruction from randomized subsamplings
Oversampling compared to conventional compression is small

Combination of sampling & encoding into a single linear step has
profound implications

® qacquisition costs no longer determined by resolution & size
® but by transform-domain sparsity & recovery error

3-D Curvelets and simultaneous acquisition perform the best
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Wed 10:00-10:40 AM Ozgur Yilmaz. Sparse
approximations and compressive sensing: an overview

Wed 10:40-11:00 AM Haneet Wason. Sequential source

data recovery from simultaneous acquisition through
transform-domain sparsity promotion

Wed [ 1:00-11:30 AM Chuck Mosher (ConocoPhillips).
Operator localization with Generalized Windowed
Transforms

Wed |1:30-12:00 PM Rayan Saab. Compressed sensing
using Kronecker products

Wed 12:00-12:30 PM Hassan Mansour. Recovering

compressively sampled signals using partial support
information
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Seismic Laboratory for Imaging and Modeling
the University of British Columbia
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Additional faculty
Michael Friedlaender

Associate professor CS
+ Fellow Argonne
+ B.A., Cornell, MSc. & Ph.D., Stanford

+ Numerical optimization

+ Numerical linear algebra

+ Design & implementation of constrained
optimization

+ Scientific computing

SLIM

Seismic Laboratory for

Imaging and Modeling
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M. Sc. Student
Tim Lin

+ Graduate in Hon. Physics, UBC

+ Joined SLIM 1n 2006 as summer co-op student
and now an M. Sc. student

+ Compressive Wavetield Modeling and Migration

+ Imaging with extensions by Symes
SLIM

Seismic Laboratory for
Imaging and Modeling
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PDF
Aleksandr Aravkin

+ PhD from University of Washington, Math
+ Jomned SLIM 1n 2010

+ Convex optimization
+ Nonlinear inversion with sparsity promotion

+ Huber and other norms
SLIM

Seismic Laboratory for
Imaging and Modeling
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Ph.D. Student
Xiang L1

+ M.Sc. in Geophysics from Jilin University
(awarded 2009).

+ Sparsity-promoting migration with phase
encoding

+ Dimensionality-reduced FWI with compressive

updates
SLIM

Seismic Laboratory for

Imaging and Modeling
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M. Sc. Student
Muteed AlMatar

+ Previously worked for Aramco 1in Saudi Arabia

+ Curvelet-matched EPSI

SLIM

Seismic Laboratory for

Imaging and Modeling
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Ph.D. Student
Tu Ning

y . .
+ M.Sc. from Tsinghua University in 2009 with
research related to seismic attenuation
characterization.

+ Current research interests: 1maging with surface-
related multiples, compressive sensing, sparse
representations, and related applications 1n

seismic exploration.
SLIM

Seismic Laboratory for

Imaging and Modeling
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Efficient solvers for problems of the type

X = argmin ||x||; subject to ||Ax—Db|s <o
X
and

~

X =argmin || X|[12 subject to |[|[AX —Bll22 <0
X

are instrumental to the success of approach to seismic data
processing, imaging, and inversion
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Prerequisites

The solver needs to
® scale to extremely large problems
® be frugal with # of matrix-vector products

® be like ‘black box’
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Use continuation method to solve a series of one-norm
problems

® use properties of the Pareto curve

® divide problem into several subproblems that offer
control on the components that enter into the solution

® solution to the subproblem offer flexibility to
p solve ‘overdetermined’ problems through subsampling

p solve alternating optimization problems
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® Allow components to enter
. 250
the solution slowly by
solving a series of LASSO’s |

Pareto curve
- @ = Solution path

- === =4

min|[|b — Ax|s  s.t. ||x||1 < 7% 2
X § 150
o “6 ........
® Solution of these :
. = 100
subproblems is a natural ¢
intermediate stopping .
criterion
0
0 0.5 1 1.5 2

one-norm of solution (x1 04)
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v

m}zn b — Atotalll2 m}in b — Arxlls st. ||x||1 <75

overdetermined underdetermined
expensive cheap

U

A X() b A

S
S

Choose a new set of simultaneous sources after each
subproblem is solved
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Linearized sparse

inversion

8 simultaneous shots 3 random frequencies

sparse recovery with renewal sparse recovery without renewal
0.1 0.1
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Block-coordinate

descents
mienc |x|[1 subject to ||b— Alqlx|. <o
X,q

C the set of short wavelets

with A and q articulating

upgoing wavefield downgoing wavefield
~ = = N—
P ~ G Q — P]
v

surface-free impulse response

where
Q= 1Iq
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Sparsity vs L1 curorsee

50 100 50 100
trace number trace number
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Sparsity vs L1

Gulf of Suez
(one shot)

time (s)

time (s)

50 100 150 50 100 150
trace number
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Sparsity vs L1 6ulf of Sue:

(zero-offset)
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Sparsity vs L1 6ulf of Sue:

(zero-offset zoomed)
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Sparsity vs L1

Data minus estimated primary
(zero-offset)
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Migration of
multiple-free data
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Sparse inversion of data
with multiples
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Sparse inversion
with EPSI
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Fast solvers for large-scale convex optimization
problems

(Bi-)Convex formulations for
® sparse linearized inversion

® source- & Green’s function estimation by sparse
Inversion

® l|inearized inversion with surface-related multiples
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Curvelet-domain sparsity promotion adds “robustness”.
Incorporating more physics improves results.

First steps towards a new generation of processing and
imaging technologies.

Dimensionality reduction, which allows us to do sparse
Inversions.
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Wed 01:30-02:00 PM Michael Friendlander. Algorithms
for Sparse Optimization

Wed 02:00-02:40 PM Tim Lin. Sparse optimization and
the LInorm

Wed 02:40-03:00 PM Aleksandr Aravkin. Introduction
to convex composite optimization

Wed 03:30-03:55 PM  Xiang Li. Compressive imaging

Wed 03:55-04:40 PM Tim Lin. Leveraging informed
blind deconvolution techniques for the estimation ...

Wed 04:40-05:00 PM Mufeed Ak-Matar. Estimation of
surface-free data by curvelet-domain ...

Wed 05:00-05:30 PM  Ning Tu. Sparsity promoting
migration with surface-related multiples
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Theme lll: Randomized
dimensionality reduction

SLIM
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Post-doctoral Fellow
Mark Schmidt

+ PhD UBC, CS
+ Joined SLIM 1n 2010

+ Machine learning

+ Convex optimization

SLIM

Seismic Laboratory for

Imaging and Modeling
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PhD Student
Aleksandr Aravkin

+ PhD from University of Washington, Statistics
+ Joined SLIM 1n 2010

+ Convex optimization
+ Nonlinear inversion with sparsity promotion

+ Kalman filtering & smoothing

+Huber and other norms SLIM

Seismic Laboratory for
Imaging and Modeling
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Post-doctoral fellow
Peyman Moghaddam

+ B.Sc. & M.Sc. in Electrical Eng.,
Tehran Polytechnic, Iran

+ Reverse-time migration

+Migration preconditioning

+Stochastic optimization & FWI

SLIM

Seismic Laboratory for
Imaging and Modeling
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Post-doctoral fellow
Tristan van Leeuwen

+ B.Sc./MSc University of Utrecht
+ PhD Delft University of Technology

+ Joined SLIM 1n 2010

+ Correlation-based migration velocity analysis
+ Stochastic optimization & FWI

SLIM

Seismic Laboratory for

e iy e e R e g e T e, — e
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Ph.D. Student
Xiang L1

+ M.Sc. in Geophysics from Jilin University
(awarded 2009).

+ Sparsity-promoting migration with phase
encoding

+ Dimensionality-reduced FWI with compressive

updates
SLIM

Seismic Laboratory for

Imaging and Modeling
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PDF
Aleksandr Aravkin

+ PhD from University of Washington, Math
+ Joined SLIM 1n 2010

+ Convex optimization
+ Nonlinear inversion with sparsity promotion

+ Kalman filtering & smoothing

+ Huber and other norms SLIM

Seismic Laboratory for
Imaging and Modeling
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Remove major impediment of ‘data overload’ through
randomized dimensionality reduction

p artificial randomized simultaneous sources
p stochastic approximation
p compressive sensing

Bottom line: reduction of # PDE solves in FWI

p makes FWI computationally feasible for realistic data
volumes
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Stochastic average approximation:

p replace sequential sources by fewer # of simultaneous
sources

p converges to full solution if # of random sources
Increases

p corresponds to Monte-Carlo sampling so error decays
slowly
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Stylized example

Search direction for batch size K:

z [km]

full K=1 K=5
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Stochastic approximation:
p replace deterministic gradients by stochastic gradients

p draw a new set of simultaneous sources for each
gradient

p converges to solution after sufficient # of iterations

p becomes unstable when noise added
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FWI with compressively recovered updates

® consider phase-encoded Gauss-Newton updates as
separate compressive-sensing experiments

® remove interferences by curvelet-domain sparsity
promotion

® exploit properties of Pareto curves in combination with
stochastic optimization

® turn ‘overdetermined’ problems into ‘undetermined’
problems via random source encoding
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Xiang Li's examples




Stochastic optimization formalizes ad hoc phase encodings
proposed in the geophysical literature.

Combination of the stochastic approximation with
compressive sensing leads to a dimensionality reduced
formulation of Gauss Newton.

Formulation allows us to tap into convex solvers via
convex-composite arguments.

Concrete prototypes for dimensionality reduced FWVI.
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Curvelet-domain sparsity promotion allows us to
mitigate noise induced by

p source-cross talk
p renewals

Dimensionality reduction, which allows us to do sparse
FWVI.
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Thu 09:00-09:30 AM  Felix . Herrmann. Dimensionality
reduction for full-waveform inversion

Thu 09:30-10:00 AM  Mark Schmidt. Hybrid stochastic-
deterministic methods

Thu 10:30-11:00 AM  Peyman Moghaddam. Randomized
full-waveform inversion

Thu | 1:00-11:30 AM Tristan van Leeuwen.Waveform
inversion by stochastic optimization

Thu 11:30-12:00 PM  Xiang Li. Full-waveform inversion
with randomized L| recovery for the model updates

Thu 12:00-12:30 PM Aleksandr Aravkin & Tristan van

Leeuwen. Exploiting sparsity in full-waveform inversion:
nonlinear basis pursuit denoise algorithm
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Seismic Laboratory for Imaging and Modeling
the University of British Columbia
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Research Faculty
Henryk Modzelewski (Ph.D.)

+ Ph.D. 1n Atmospheric Sciences, UBC
+ Scientific programming

+ High-Performance Computing

+ Development: MPI and Python

+ System administration

SLIM

Seismic Laboratory for
Imaging and Modeling
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Nameet Kumar
(undergraduate COOP)

+ Physics UBC
+ Scientific programmer for pSPOT

SLIM

Seismic Laboratory for

Imaging and Modeling
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Sebastien Pacteau
(undergraduate interm)

+ Geophysics

+ Scientific programmer for Kroneckers 1n
pSPOT

SLIM

Seismic Laboratory for
Imaging and Modeling
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Purchase of Parallel matlab turned underutilized cluster
into fully utilized problem solver.

OO programming allows us to
® seamlessly build in parallelization

® fast prototyping

® compartmentalize our applications into logical units,
linear operators, solvers, etc.

® streamlines dissemination of our technology
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Development of a parallel OO framework for linear
operators

Large-scale for convex optimization problems

Software release for primary-estimation by sparse
Inversion

Planned releases for linearized inversion (with multiples)
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-————

o —

Thu 01:30-01:50 PM  Henryk Modzeleweski. Software
releases and architecture

Thu 01:50-02:10 PM Michael Friedlander. Introduction
to Spot — A Linear-Operator Toolbox

Thu 02:10-02:30 PM Nameet Kumar. Parallelizing
operations with ease using Parallel SPOT

Thu 02:30-02:50 PM Sebastien Pactau. Parallel SPOT
and Kronecker products

Thu 02:50-03:10 PM Tim Lin. Software release:
Estimation of primaries by || inversion
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