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SLIM

• Key Concept in optimization, both in theory and 
algorithm design

• More important than differentiability 

• Powerful algorithms and software for convex 
problems have been developed

Convexity
f(x) = ‖x‖1

f(x) =
1

2
‖x‖22f(x) = Huber
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SLIM

• Often we want to minimize functions that are NOT 
convex

• Example:

• Even so, some convex structure remains:

Beyond Convex
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f(m) =
∥∥D −RH−1[m]Q
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F

Scalar Example

Velocityf(m) = ‖D −RH−1[m]Q‖2F

Red: Convex
Blue: Differentiable
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SLIM

• Convex composite optimization:

• Includes all smooth functions:   

• Includes all convex functions: 

• Includes many non‐smooth non‐convex problems

• Why is this interesting?

Convex Composite

Convex

 Diff.

h
g

f(m) = h(g(m))

h(x) = x

g(m) = m
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SLIM

• We would like to consider formulations

 

• Two key applications: Robustness to outliers and 
sparsity regularization.                 

Extensions to FWI
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min
m

ρnoise(D −RH−1[m]Q) + ρreg(m)
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SLIM

• The standard FWI formulation                                          
is equivalent to a normal error model for 
measurement errors:

• Data error in the real world may not have this 
distribution, may have large outliers, or may have 
large systematic features we cannot model.

Robust FWI

D = RH−1[m]Q+ ε
ε ∼ N (0, I)

[Brossier et al. 2010, GuiVon & Symes 2003]

(ρnoise = ‖ · ‖2F )
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SLIM

[Brossier et al. 2010]

used for themodel update. The source estimationwas quite robust in
the presence of noise for the examples shown hereafter: The error
does not exceed 5% in amplitude and 1% in phase. The robustness of
the source estimation can be attributed to the strong redundancy of
the data for themonofrequency scalar source estimation.
For all numerical tests in this study, the threshold value  for the

Huber and hybrid criteria was fixed to   0.2 mean  dobsi  . This
valuewas shown practically to be less sensitive to outliers in the data
than the one indicated by Guitton and Symes  2003 , based on
max  dobsi  .

NUMERICAL TESTS: THE OFFSHORE
VALHALL MODEL

Inversion setup
Afirst numerical example is based on the synthetic Valhall model

 Figure 2 , representative of oil and gas fields in shallow-water envi-
ronments of theNorth Sea  Munns, 1985 . Themain targets are a gas
cloud in the large sediment layer and, in a deeper part of the model,
the trapped oil beneath the cap rock, which is formed of chalk. Gas
clouds are easily identified by the low P-wave velocities, whereas
their signature ismuchweaker in theVS model. The selected acquisi-
tion mimics a four-component ocean-bottom cable  OBC survey
 Kommedal et al., 2004 , with a line of 315 explosive sources posi-
tioned 5 m below the water surface and 315 three-component sen-
sors on the seabed. This geologic setting leads to a particularly ill-
posed problem for S-wave velocity reconstruction as a result of the
relatively small shear-wave velocity contrast at the seabed, which
prevents recording of significant P-to-S convertedwaves.Asuccess-
ful inversion requires amultistep hierarchical strategy in themanner
of Sears et al.  2008 and as developed in Brossier et al.  2009b for
noise-free data. In this study, we assess the same approach for noisy
data.
In the first step, the P-wave velocity is reconstructed from the hy-

drophone data. The forward problem is performed with the elastic
discontinuous Galerkin method, but the VS model is left unchanged
during FWI. The aim of step 1 is to improve theVP model so as to de-
crease the P-wave residuals significantly. During step 1, a coarse
mesh adapted to theVP wavelength is designed for computational ef-
ficiency. In this case, S-wave modeling is affected by numerical dis-
persion that does not significantly impact reconstruction of the VP
model. This first step is justified by the fact that the P-to-S converted
waves have a minor footprint in the hydrophone component. This

negligible sensitivity of the hydrophone data to the VS structure al-
lows the successful acoustic inversion of the elastic data computed
in theValhall model  Brossier et al., 2009b .
In step 2, the VP and VS models are reconstructed simultaneously

from the horizontal and vertical components of the geophones. An
amplification with a gain given by the power of two of the source/re-
ceiver offset is applied to the data through the matrix Sd. This
weighting increases the weight of the intermediate-to-long-offset
data at which the converted P-to-S arrivals are recorded.
Five frequencies were inverted successively  2, 3, 4, 5, and 6 Hz .

The starting frequency  2 Hz is lower than the one available in the
real OBC hydrophone data of Valhall  3.5 Hz  Sirgue et al., 2009 .
However, a starting frequency as small as 2 Hz recently was used to
perform acoustic FWI of ocean-bottom-seismometer data  Plessix,
2009 . The use of such low starting frequency is required becauseVS
has a higher resolution power than VP; the shorter propagated wave-
length requires a lower starting frequency or amore accurate starting
model. Ourmain concern in this study is to tune the elastic FWIwith
a reasonably realistic experimental setup such that differences in the
behaviors of the different functionals are highlighted. In the follow-
ing,we do not readdress the impact of starting frequency and starting
model in FWI; rather, we focus on the comparative performances of
different data residual functionals for a given starting-frequency/
model pair.
During each frequency inversion, we used three time-damping

factors    2,0.33,0.1 s  1 applied in cascade to the monochro-
matic data. For the smaller damping factor, the entire wavefield, in-
cluding convertedwaves and free-surfacemultiples,was involved in
the inversion. Startingmodelswere built by smoothing the truemod-
els with a Gaussian filter, the vertical correlation length of which in-
creased linearly from25 to 1000 mwith depth; the horizontal corre-
lation length was fixed at 500 m  Figure 3 . This smoothing reason-
ably mimicked the spatial resolution of a velocity model developed
by refraction traveltime tomography  Prieux et al., 2009 . The deep
part of the startingmodelwas clearly smoother than a velocitymodel
inferred from reflection traveltime tomography, as the one shown in
Sirgue et al.  2009; their Figure 3 .
Ten iterations were performed per damping factor, leading to 30

iterations per frequency inversion. VP and VS are the reconstructed
parameters. The density is constant and assumed to be known in the
inversion.
Two tests were performed with and without outliers in the data.

For both tests, random uniform white noise was introduced into the
observed data and computed using the forward-problem engine im-
plemented in the inversion code  the so-called inverse crime . The
observed data were computed using a  Dirac delta function for the

a)

b) V (km/s)S

V (km/s)P

Figure 2. The true synthetic Valhall model for  a P-wave and  b 
S-wave velocities.

a)

b)

V (km/s)P

V (km/s)S

Figure 3.  a VP and  b VS starting models for FWI, as inferred by
Gaussian smoothing of the truemodels  Figure 2 .
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used for the model update. The source estimation was quite robust in
the presence of noise for the examples shown hereafter: The error
does not exceed 5% in amplitude and 1% in phase. The robustness of
the source estimation can be attributed to the strong redundancy of
the data for the monofrequency scalar source estimation.

For all numerical tests in this study, the threshold value ! for the
Huber and hybrid criteria was fixed to ! !0.2 mean!"dobsi

"#. This
value was shown practically to be less sensitive to outliers in the data
than the one indicated by Guitton and Symes !2003", based on
max!"dobsi
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relatively small shear-wave velocity contrast at the seabed, which
prevents recording of significant P-to-S converted waves.Asuccess-
ful inversion requires a multistep hierarchical strategy in the manner
of Sears et al. !2008" and as developed in Brossier et al. !2009b" for
noise-free data. In this study, we assess the same approach for noisy
data.

In the first step, the P-wave velocity is reconstructed from the hy-
drophone data. The forward problem is performed with the elastic
discontinuous Galerkin method, but the VS model is left unchanged
during FWI. The aim of step 1 is to improve the VP model so as to de-
crease the P-wave residuals significantly. During step 1, a coarse
mesh adapted to the VP wavelength is designed for computational ef-
ficiency. In this case, S-wave modeling is affected by numerical dis-
persion that does not significantly impact reconstruction of the VP

model. This first step is justified by the fact that the P-to-S converted
waves have a minor footprint in the hydrophone component. This

negligible sensitivity of the hydrophone data to the VS structure al-
lows the successful acoustic inversion of the elastic data computed
in the Valhall model !Brossier et al., 2009b".

In step 2, the VP and VS models are reconstructed simultaneously
from the horizontal and vertical components of the geophones. An
amplification with a gain given by the power of two of the source/re-
ceiver offset is applied to the data through the matrix Sd. This
weighting increases the weight of the intermediate-to-long-offset
data at which the converted P-to-S arrivals are recorded.

Five frequencies were inverted successively !2, 3, 4, 5, and 6 Hz".
The starting frequency !2 Hz# is lower than the one available in the
real OBC hydrophone data of Valhall !3.5 Hz# !Sirgue et al., 2009".
However, a starting frequency as small as 2 Hz recently was used to
perform acoustic FWI of ocean-bottom-seismometer data !Plessix,
2009". The use of such low starting frequency is required because VS

has a higher resolution power than VP; the shorter propagated wave-
length requires a lower starting frequency or a more accurate starting
model. Our main concern in this study is to tune the elastic FWI with
a reasonably realistic experimental setup such that differences in the
behaviors of the different functionals are highlighted. In the follow-
ing, we do not readdress the impact of starting frequency and starting
model in FWI; rather, we focus on the comparative performances of
different data residual functionals for a given starting-frequency/
model pair.

During each frequency inversion, we used three time-damping
factors !" !2,0.33,0.1 s"1# applied in cascade to the monochro-
matic data. For the smaller damping factor, the entire wavefield, in-
cluding converted waves and free-surface multiples, was involved in
the inversion. Starting models were built by smoothing the true mod-
els with a Gaussian filter, the vertical correlation length of which in-
creased linearly from 25 to 1000 m with depth; the horizontal corre-
lation length was fixed at 500 m !Figure 3". This smoothing reason-
ably mimicked the spatial resolution of a velocity model developed
by refraction traveltime tomography !Prieux et al., 2009". The deep
part of the starting model was clearly smoother than a velocity model
inferred from reflection traveltime tomography, as the one shown in
Sirgue et al. !2009; their Figure 3".

Ten iterations were performed per damping factor, leading to 30
iterations per frequency inversion. VP and VS are the reconstructed
parameters. The density is constant and assumed to be known in the
inversion.

Two tests were performed with and without outliers in the data.
For both tests, random uniform white noise was introduced into the
observed data and computed using the forward-problem engine im-
plemented in the inversion code !the so-called inverse crime". The
observed data were computed using a !Dirac" delta function for the

a)

b) V (km/s)S

V (km/s)P

Figure 2. The true synthetic Valhall model for !a" P-wave and !b"
S-wave velocities.
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Figure 3. !a" VP and !b" VS starting models for FWI, as inferred by
Gaussian smoothing of the true models !Figure 2".
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source wavelet. Therefore, each frequency com-

ponent of the data had the same S/N because

white noise was considered. However, the source

wavelet spectrum had negligible influence in fre-

quency-domain FWI,where single frequencies or

groups of frequencies of narrow bandwith are

generally inverted sequentially— independently

— in the framework ofmultiscale approaches.

The S/N was set to 10 dB, based on the power

value P of the signal defined for one frequency by
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Figure 4 shows the 4-Hz noise-free and noisy

data in the source/receiver domain for the hydro-

phone data.

Results

During the first test, we considered only the

ambient noise. The VP and VS models inferred

from the fourminimization criteria   2,  1, Huber,
hybrid after the second inversion step are shown in Figure 5. These
reveal very good results for VP models for all functionals, whereas

only the robust  1-norm and the Huber and hybrid criteria provide
acceptableVS models.

In a second test, we introduced outliers into the data. Large errors

 i.e., the noise was locally multiplied by 20 were introduced ran-
domly in one trace out of 100 to simulate a poorly preprocessed data

set. The resulting noise was consequently no longer uniform for this

test. The VP models obtained after the first inversion step with the

four functionals are shown in Figure 6. The  1-norm and the Huber
and hybrid criteria provide accurate VP models, whereas the inver-

sion rapidly converges toward a local minimumwhen the  2-norm is
used. For the  2-norm, the inversion stops close to the first step be-

cause of the convergence toward a local minimum. The results ob-

tained after the second inversion step performedwith the  1-norm re-
liably reconstruct theVP andVS models  Figure 7 , which are close to
those obtained from data without outliers  Figure 5c and d . This
highlights the limited sensitivity of the  1-norm to outliers even for
VS reconstruction.

NUMERICAL TESTS: ONSHORE SEG/EAGE

OVERTHRUST MODEL

Inversion setup

A second numerical example focuses on the SEG/EAGE over-

thrust model. High-amplitude surface waves are present in the data

of this onshoremodel and need to be taken into account during inver-
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Figure 4. Real part of the 4-Hz frequency-domain data in the source/receiver domain for theValhall model.  a Noise-free hydrophone data;  b 
added noise;  c resulting contaminated data used for FWI.
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Figure 5. Reconstructed  left VP and  right VS models for the first Valhall test with the
noisy data after the two FWI steps.  a, b  2-norm;  c, d  1-norm;  e, f Huber criterion;
 g, h hybrid criterion.
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data in the source/receiver domain for the hydro-
phone data.
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ambient noise. The VP and VS models inferred
from the four minimization criteria !!2, !1, Huber,
hybrid" after the second inversion step are shown in Figure 5. These
reveal very good results for VP models for all functionals, whereas
only the robust !1-norm and the Huber and hybrid criteria provide
acceptable VS models.
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!i.e., the noise was locally multiplied by 20" were introduced ran-
domly in one trace out of 100 to simulate a poorly preprocessed data
set. The resulting noise was consequently no longer uniform for this
test. The VP models obtained after the first inversion step with the
four functionals are shown in Figure 6. The !1-norm and the Huber
and hybrid criteria provide accurate VP models, whereas the inver-
sion rapidly converges toward a local minimum when the !2-norm is
used. For the !2-norm, the inversion stops close to the first step be-

cause of the convergence toward a local minimum. The results ob-
tained after the second inversion step performed with the !1-norm re-
liably reconstruct the VP and VS models !Figure 7", which are close to
those obtained from data without outliers !Figure 5c and d". This
highlights the limited sensitivity of the !1-norm to outliers even for
VS reconstruction.

NUMERICAL TESTS: ONSHORE SEG/EAGE
OVERTHRUST MODEL

Inversion setup

A second numerical example focuses on the SEG/EAGE over-
thrust model. High-amplitude surface waves are present in the data
of this onshore model and need to be taken into account during inver-
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added noise; !c" resulting contaminated data used for FWI.
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Figure 5. Reconstructed !left" VP and !right" VS models for the first Valhall test with the
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During the first test, we considered only the
ambient noise. The VP and VS models inferred
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only the robust !1-norm and the Huber and hybrid criteria provide
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In a second test, we introduced outliers into the data. Large errors
!i.e., the noise was locally multiplied by 20" were introduced ran-
domly in one trace out of 100 to simulate a poorly preprocessed data
set. The resulting noise was consequently no longer uniform for this
test. The VP models obtained after the first inversion step with the
four functionals are shown in Figure 6. The !1-norm and the Huber
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those obtained from data without outliers !Figure 5c and d". This
highlights the limited sensitivity of the !1-norm to outliers even for
VS reconstruction.

NUMERICAL TESTS: ONSHORE SEG/EAGE
OVERTHRUST MODEL

Inversion setup

A second numerical example focuses on the SEG/EAGE over-
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• When there are outliers in the data, Huber and L1 recover better. 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Figure 4 shows the 4-Hz noise-free and noisy
data in the source/receiver domain for the hydro-
phone data.

Results

During the first test, we considered only the
ambient noise. The VP and VS models inferred
from the four minimization criteria !!2, !1, Huber,
hybrid" after the second inversion step are shown in Figure 5. These
reveal very good results for VP models for all functionals, whereas
only the robust !1-norm and the Huber and hybrid criteria provide
acceptable VS models.

In a second test, we introduced outliers into the data. Large errors
!i.e., the noise was locally multiplied by 20" were introduced ran-
domly in one trace out of 100 to simulate a poorly preprocessed data
set. The resulting noise was consequently no longer uniform for this
test. The VP models obtained after the first inversion step with the
four functionals are shown in Figure 6. The !1-norm and the Huber
and hybrid criteria provide accurate VP models, whereas the inver-
sion rapidly converges toward a local minimum when the !2-norm is
used. For the !2-norm, the inversion stops close to the first step be-

cause of the convergence toward a local minimum. The results ob-
tained after the second inversion step performed with the !1-norm re-
liably reconstruct the VP and VS models !Figure 7", which are close to
those obtained from data without outliers !Figure 5c and d". This
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source wavelet. Therefore, each frequency com-
ponent of the data had the same S/N because
white noise was considered. However, the source
wavelet spectrum had negligible influence in fre-
quency-domain FWI, where single frequencies or
groups of frequencies of narrow bandwith are
generally inverted sequentially — independently
— in the framework of multiscale approaches.

The S/N was set to 10 dB, based on the power
value P of the signal defined for one frequency by

S/N!10 log10
Pdata

Pnoise
with P

! !
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irec!1
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* .
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Figure 4 shows the 4-Hz noise-free and noisy
data in the source/receiver domain for the hydro-
phone data.

Results

During the first test, we considered only the
ambient noise. The VP and VS models inferred
from the four minimization criteria !!2, !1, Huber,
hybrid" after the second inversion step are shown in Figure 5. These
reveal very good results for VP models for all functionals, whereas
only the robust !1-norm and the Huber and hybrid criteria provide
acceptable VS models.

In a second test, we introduced outliers into the data. Large errors
!i.e., the noise was locally multiplied by 20" were introduced ran-
domly in one trace out of 100 to simulate a poorly preprocessed data
set. The resulting noise was consequently no longer uniform for this
test. The VP models obtained after the first inversion step with the
four functionals are shown in Figure 6. The !1-norm and the Huber
and hybrid criteria provide accurate VP models, whereas the inver-
sion rapidly converges toward a local minimum when the !2-norm is
used. For the !2-norm, the inversion stops close to the first step be-

cause of the convergence toward a local minimum. The results ob-
tained after the second inversion step performed with the !1-norm re-
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• points
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Heavy Tailed Modeling
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• The standard FWI formulation                                          
does not exploit the fact that the solutions to FWI are 
sparse in Fourier, Wavelets, and Curvelets 

• Adding a sparsity regularization term                                       
is a good regularization strategy for FWI

• Resulting problems are again Convex Composite!

Regularized FWI

(ρerror = 0)

(ρerror = ‖C ∗ x‖1)
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Seismic Laboratory for Imaging and Modeling

Fourier reconstruction

1 % of coefficients
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Seismic Laboratory for Imaging and Modeling

Wavelet reconstruction

1 % of coefficients
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Seismic Laboratory for Imaging and Modeling

Curvelet reconstruction

1 % of coefficients
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• points
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Behavior at 0
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• Convex composite optimization:

• Includes many non‐smooth non‐convex problems, 
e.g. Robust/Sparsity Regularized FWI

• How do we exploit this structure to design 
algorithms?

Convex Composite

Convex

 Diff.

h
g

f(m) = h(g(m))
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• Objective: 

• Iterative algorithm: 

• Direction        solves 

• The subproblem for       is convex!

Gauss-Newton Method
min
m

‖d− g(m)‖22

min
δm

‖d− g(mν)−∇g(mν)δm‖22

mν+1 = mν + γνs
ν

sν

sν Convex in δm
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• Objective: 

• Iterative algorithm: 

• Direction        solves 

• The subproblem for        is convex!

Extension of Gauss-Newton

Convex in 

min
m

h(d− g(m))

[Burke & Ferris 1993]

min
δm

h(d− g(mν)−∇g(mν)δm)

mν+1 = mν + γνs
ν

sν

sν δm
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Examples

‖d− g(m)‖22 + λ‖m‖1

ρH(d− g(m)) ρH(d− g(mν)−∇g(mν)δm)

‖d− g(mν)−∇g(mν)δm‖22
+ λ‖m+ δm‖1

ρH(d− g(m)) + λ‖m‖1
ρH(d− g(mν)−∇g(mν)δm)
+ λ‖m+ δm‖1

Convex Composite 
Objective Convex Subproblem

Sparsity
promotion

Robust
Optimization

Sparse & 
Robust
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• Convex programs: 

• More explicit representation:

• Polyhedral constraints: 

Constrained Optimization

min h(x)
s.t. x ∈ Ω

Ω = {ci(x) ≤ 0, Ax = b}

Ω = {C(x) ≤ c, Ax = b}

Ω
Thursday, December 9, 2010
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Examples

Lasso
(Statistics)

Basis Pursuit
Denoise

Regression
w/Box Constr.

 τ

Formulation Constraint 
Region

(u1, u2)

(u1, l2)

(l1, u2)

(l1, l2)

σ

min ‖Ax− b‖22
s.t. l ≤ x ≤ u

min ‖Ax− b‖22
s.t. ‖x‖1 ≤ τ

(x ∈ τBL1)

min ‖x‖1
s.t. ‖Ax− b‖2 ≤ σ

(Ax− b ∈ σB2)

τB1

σB2
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• Suppose we wanted a LASSO type constraint for FWI 
in the Curvelet frame:

• We are still in the convex composite setting!

Back to FWI

-0.5

0

0.5

1

1.5

2

Scalar Example

Velocity

min ‖D −RH−1[C∗x]Q‖2F
s.t. ‖x‖1 ≤ τ

(x ∈ τB1)
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• Objective: 

• Iterative algorithm: 

• Direction        solves 

• The subproblem for        is convex!

More Convex Composite

Convex in 

[Burke 1989]

mν+1 = mν + γνs
ν

sν

sν δm

min h(d− g(m))
s.t. f(m) ∈ Ω

min
δm

h(d− g(mν)−∇g(mν)δm)

s.t. f(mν) +∇f(mν)δm ∈ Ω
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More Examples
Convex Composite 

Objective Convex Subproblem

Nonlinear
Lasso

min
m

‖m‖1
s.t. ‖d− g(m)‖2 ≤ σ

min
m

‖d− g(m)‖22
s.t. ‖m‖1 ≤ τ

min
δm

‖d− g(mν)−∇g(mν)δm‖22
s.t. ‖mν + δm‖1 ≤ τ

Nonlinear
BPDN

min
δm

‖mν+δm‖1
s.t. ‖d− g(mν)−∇g(mν)δm‖2 ≤ σ

min
m

ρH(d− g(m))

s.t. l ≤ m ≤ u

min
δm

ρH(d− g(mν)−∇g(mν)δm)

s.t. l ≤ mν+δm ≤ u

Robust &
Box 

Constr.
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Exploiting Sparsity in FWI: Nonlinear BPDN

• Cross‐well setting, 101 sources and 
receivers

• True model is sparse w.r.t to a 
constant reference model in pixel 
space

• Use of simultaneous shots to reduce 
computational load

• Compare to L‐BFGS recovery without 
sparsity constraints

True Model Initial Model

Simulateneous Shots: 1 Simulateneous Shots: 1

True Model Initial Model

Simulateneous Shots: 5 Simulateneous Shots: 5

True Model Initial Model

Simulateneous Shots: 5 Simulateneous Shots: 5

L‐BFGS NBPDN
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• Convex Composite optimization provides a solid theoretical framework for 
algorithm development 

• Applications to FWI :

1) Sparsity promotion (NBPDN)

2) Outlier‐robust misfit (e.g. Huber) 

3) Using prior information (e.g. constraints for velocity modeling). 

The Road Ahead

min
m

‖m‖1
s.t. ‖d− g(m)‖2 ≤ σ
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