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Convexity

« Key Concept in optimization, both in theory and f(@) = |zl
algorithm design

o More important than differentiability

o Powerful algorithms and software for convex
problems have been developed

f(x) = Huber flz) = 5”5’7”%
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Beyond Convex

o Often we want to minimize functions that are NOT SCALAR EXAMPLE

convex

» Example:  f(m) = ||D — RH_l[m]QHi,

e Even so, some convex structure remains:

f(m) =D — RH[m]Q|%

VELOCITY

RED: CONVEX
BLUE: DIFFERENTIABLE
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Convex Composite

o Convex composite optimization:

h CONVEX
f(m) = h(g(m))
g DIFF.
e Includes all smooth functions: h(fE) — X
e Includes all convex functions: g(m) =m

e Includes many non-smooth non-convex problems

o Why is this interesting?
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Extensions to FWI

e We would like to consider formulations SCALAR EXAMPLE

mn%jn Proise(D — RH ™ m]Q) + preg(m)

o Two key applications: Robustness to outliers and

. . . VELOCITY
sparsity regularization.

Thursday, December 9, 2010



Robust FWI

. 2
« The standard FWI formulation (punoise = || - ||%)
is equivalent to a normal error model for
measurement errors:

D =RH 'Im]Q + ¢
e ~ N(0,1)

o Data error in the real world may not have this
distribution, may have large outliers, or may have
large systematic features we cannot model.

[Brossier et al. 2010, Guitton & Symes 2003]
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« When there are outliers in the data, Huber and L1 recover better.

[Brossier et al. 2010]
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Heavy Tailed Modeling
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[Aravkin 2010]
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Regularized FWI

o The standard FWI formulation (perror = 0)

does not exploit the fact that the solutions to FWI are
sparse in Fourier, Wavelets, and Curvelets

« Adding a sparsity regularization term  (perror = ||C * x||1)
is a good regularization strategy for FWI

o Resulting problems are again Convex Composite!
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Fourier reconstruction

Offset (m) Offset (m)
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1 % of coefficients

Seismic Laboratory for Imaging and Modeling
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Wavelet reconstruction

Offset (m) Offset (m)
1000 1500 2000 2500 3000 1000 1500 2000 2500 3000

1 % of coefficients

Seismic Laboratory for Imaging and Modeling
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Curvelet reconstruction

Offset (m) Offset (m)
1000 1500 2000 2500 3000 1000 1500 2000 2500 3000

Time (s)

1 % of coefficients

Seismic Laboratory for Imaging and Modeling
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Behavior at 0
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[Aravkin 2010]
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Convex Composite

o Convex composite optimization:

h CONVEX

g DIFF.

e Includes many non-smooth non-convex problems,
e.g. Robust/Sparsity Regularized FWI

« How do we exploit this structure to design
algorithms?
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Gauss-Newton Method

o Objective: mﬂ@bn |d — g(m) H%
o Iterative algorithm: m? Tt =m? 4+ ~, 5"
o Direction s” solves Iglin |d —g(m"”) — Vg(m”)émH%

e The subproblem for s”is convex! CONVEX IN dM
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Extension of Gauss-Newton

o ObjECtiVEZ min h(d — g(m))
™m
o Iterative algorithm: m? Tt =m? 4+ ~, 5"

o Direction s” solves

o The subproblem for s" is convex! CONVEX IN 0Mm

min h(d — g(m"”) — Vg(m")dm)

om

[Burke & Ferris 1993]
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Examples

CONVEX COMPOSITE

OBJECTIVE CONVEX SUBPROBLEM

|d — g(m)]|3 + A|m]s |d — g(m”) — Vg(m”)om||2 | searsity
_|_ )\Hm _l_ 5mH1 PROMOTION
pr(d—g(m)) pr(d—g(m”) —Vg(m”)dm) ROBUST

OPTIMIZATION

pr(d—g(m”) — Vg(m”)om)

pr(d—g(m)) + Almll; + Alm +om),

SPARSE &
ROBUST
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Constrained Optimization

min h(x)

e Convex programs:
s.t. x€()

« More explicit representation: Q={c;(x) <0, Az = b}

o Polyhedral constraints: Q0 ={C(z) <e¢, Ax = b}

@
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Examples

CONSTRAINT

FORMULATION
REGION

min ||Ax — b3
s.t. x| <7
(x € 7Br,)

LASSO
(STATISTICS)

7'61

min ||z||;
BASIS PURSUIT
DENOISE

O'BQ

(I1,u2) (w1, us)

. 2
1in ||A£C - b||2 REGRESSION
S.T. [<x<u w/BoX CONSTR.

(ll,lg) (Ulle)
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e Suppose we wanted a LASSO type constraint for FWI

Back 1o FWI

in the Curvelet frame:

min
S.T.

D — RH'[C*z]Q||%
Tt <7

(CIZ’ -~ 7'81)

o We are still in the convex composite setting!

SCALAR EXAMPLE

VELOCITY
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More Convex Composite

. Objective: min h(d — g(m))
s.t.  f(m) € Q
o lterative algorithm: m? Tt =m? 4+ ~, 5"

min  h(d — g(m”) — Vg(m"”)om)

e Direction s” solves om

e The subproblem for s” is convex! CONVEX IN 01

s.t.  f(mY) 4+ Vf(m")om € ()

[Burke 1989]
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CONVEX COMPOSITE
OBJECTIVE

More Examples

CONVEX SUBPROBLEM

|d — g(m”) — Vg(m”)om|3

min |[d — g(m)||3 min
s.t. |ml <7 st |lm” +om| <7

min ||m|; I?in |m¥+dml|f;

s.t. [[d—g(m)]ls <o s.t.  |[d—g(m¥)—Vg(m”)dml|s <o
min pr(d—g(m)) Igl?gl pr(d—g(m”) — Vg(m”)om)
st. [ <m<u s.t. [ <mY+om <u

NONLINEAR
LASSO

NONLINEAR
BPDN

ROBUST &
BoOX
CONSTR.
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Exploiting Sparsity in FWI: Nonlinear BPDN _
S NBAD &
Presenter: Aleksandr Aravkin &
Tristan van Leeuwen

True Model

o Cross-well setting, 101 sources and
receivers

o True modelissparse w.rttoa
constant reference model in pixel
space

o Use of simultaneous shots to reduce
computational load

o Compare to L-BFGS recovery without
sparsity constraints

Simulateneous Shots: 5 Simulateneous Shots: 5

L-BFGS NBPDN

Thursday, December 9, 2010



The Road Ahead

o Convex Composite optimization provides a solid theoretical framework for
algorithm development

o Applications to FWI :

min ||m||;
m
st.  |ld—g(m)|2 <o

2) Outlier-robust misfit (e.g. Huber) v

3) Using prior information (e.g. constraints for velocity modeling).

1) Sparsity promotion (NBPDN)
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