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Full Waveform Inversion

e The Full Waveform Inversion (FWI) problem is to find solutions to the

Helmholtz PDE that match data from source experiments observed on the
surface

o Commonly formulated as nonlinear least-squares problem:

min ||D — RH ™ [m]Q| %

o FWIisill-posed -- the observed data is not sufficient to recover the solution.
1) Need to start close

2) Can’t iterate ‘too long’
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lll-posed Problems

Several techniques are used to deal with ill-posed problems
1) Small fixed iteration count
2) Regularization with respect to initial guess, e.g.:
min | D — RH ™ [m] Q|5 + Allm — mol|;
3) Our approach: use sparsity by imposing L1 penalty

» Images and velocity models are sparse in Curvelets
» Time-lapse difference images are sparse
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e This means we need very few coefficients to capture the model:

m=0C*x
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Sparsity in Curvelets

« Typical velocity model is sparse (compressible) in Curvelets:
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1% of coeff.
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5% of coeff.
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10% of coeff.
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50% of coeff.
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FWI: Sparsity promotion

Sparsity-exploiting formulations

1. min||D — RH ' C*]Q||% + Allz||x
2. min||D— RH'C*2]Q||7 s.t. ||zl <7
3. minllz||; st. ||D—-RH 'C*2]Ql||% <o

Option 3. has a big advantage: we may be able to derive g from the data and we
don’t need to guess the sparsity of the solution in Curvelets.
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FWI: Sparsity promotion

o Sparsity-exploiting formulation:

min ||
s.t. D — RH'C*2]Q||% < o
m = C*x

o Thisis a Convex-Composite optimization problem.

Thursday, December 9, 2010



Strategy

o Consider a toy model problem:

o Implement iterated algorithm:

o Direction s” solves subproblem:

e Subproblem equivalent to BPDN,
which is solved with SPGL1!

min ||m||;
™m
st. |ld—g(m)|a <o

m

min
om
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Algorithm
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Updating the model

min ||m||;

s.t. |ld—g(m)|. <o

o Competing interests: minimize the 1-norm (sparsity) and decrease misfit.

e Main idea: weigh interests differently as the algorithm proceeds.

e Define merit function P,(m) = ||ml||1 + a(||d — g(m)|ls — o)+
« Line search ensures P,(m"” +~v,s") < Py,(m")

e Increase (x asthe algorithm proceeds.
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Updating the model

[l — g(m)]




Numerical results

o preliminary tests on model that is sparse in pixels
o cross-well setting, 101 sources and receivers.
e solve

min ||m||;
X

s.t.  ||D—RH Y mo+m]Q|% <o

e use simultaneous sources to reduce computational
load
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True Model Initial Model

Simulateneous Shots: Full Simulateneous Shots: Full
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True Model Initial Model

Simulateneous Shots: 41 Simulateneous Shots: 41
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True Model Initial Model

Simulateneous Shots: 21 Simulateneous Shots: 21
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True Model Initial Model

Simulateneous Shots: 11 Simulateneous Shots: 12
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True Model Initial Model

Simulateneous Shots: 5 Simulateneous Shots: 5
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True Model Initial Model

Simulateneous Shots: 1 Simulateneous Shots: 1
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Conclusions

o Way to introduce sparsity constraints into FWI

e Non-linear formulation of BDPN does not require us
to guess sparsity level of the solution

e Preliminary results are promising: we can recover a
sparse solution from undersampled data.
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The Road Ahead

o Test on realistic models with Curvelet sparsity and noise on data
o Apply to time-lapse seismic
e Implement renewal strategy for simultaneous shots
o Extend the entire framework to be robust against outliers
(i.e, different norms on the data residual)
e Investigate relation to compressed sensing L1 recovery
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