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signals – find efficient digital representation of analog signals.
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signals – find efficient digital representation of analog signals.

How is this done - classical approach

Sampling

(I)

Quantization

(II)

Compression

(III)

Signal f

(analog)

{ f(nT): n ∈Ι } { fq(n): n ∈Ι } { bj: j∈Ι' }

A/D conversion: 

measurement & truncation

A/D conversion: 

measurement & truncation
Source coding:

truncation & compression

(or other processing)



Classical Approach (ctd)

Stage I (Sampling)

I samples obtained on a dense temporal/spatial grid,

I an appropriate sampling theorem ties resolution of
“reconstruction” with the grid density.

Example.

I Audio signals... bandlimited, thus perfect reconst. from
samples taken at Nyquist rate or higher via Shannon-Nyquist
Sampling Theorem. Phones: 8kHz, CDs: 44.1 kHz.

I Images... Sampling imposes a bandlimit although images are
not bandlimited. So, sampling on denser grids in principle
improves quality. (Some low-pass filtering happens in the
human visual system...)



Classical Approach (ctd)

Stage II (Quantization)

I round-off (in a clever way) after sampling,

I can be combined with Stage III,

I not our emphasis today...theory is rich...

See the AIM Workshop (August 18-22) on:

“Frames for the finite world: Sampling, coding, and quantization”

co-organized by Gunturk, Pfander, Rauhut, and OY.
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Stage III (Compression or “Transform Coding”)

I Sampled (and quantized) signal lives in R
N (N very large).

I Find a “nice” basis for R
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Classical Approach (ctd)

Stage III (Compression or “Transform Coding”)

I Sampled (and quantized) signal lives in R
N (N very large).

I Find a “nice” basis for R
N .

“nice”:= only a few basis coef. relatively large in magnitude,
i.e., basis coef. of signals of interest are approx. sparse.

I Exploit this sparsity and discard small coefficients.

I This is called transform coding.

I Example: “jpeg” format for images...
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images, audio.

B = [b1|...|bN ] an orthonormal basis for R
N .



Classical Approach (ctd)

Stage III (Compression or “Transform Coding”)

Formally. F ⊂ R
N : signals of interest, e.g., seismic signals,

images, audio.

B = [b1|...|bN ] an orthonormal basis for R
N .

I f ∈ F ⇒ f = Bx where x = BT f is the coef. vector.



Classical Approach (ctd)

Stage III (Compression or “Transform Coding”)

Formally. F ⊂ R
N : signals of interest, e.g., seismic signals,

images, audio.

B = [b1|...|bN ] an orthonormal basis for R
N .

I f ∈ F ⇒ f = Bx where x = BT f is the coef. vector.

I Choose B such that x = BT f is sparse for f ∈ F , e.g.,
seismic: curvelets, images: wavelets, audio: Gabor...
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Stage III (Compression or “Transform Coding”)

Formally. F ⊂ R
N : signals of interest, e.g., seismic signals,

images, audio.

B = [b1|...|bN ] an orthonormal basis for R
N .

I f ∈ F ⇒ f = Bx where x = BT f is the coef. vector.

I Choose B such that x = BT f is sparse for f ∈ F , e.g.,
seismic: curvelets, images: wavelets, audio: Gabor...

Definitions. Let x ∈ R
N .

1. “0-norm” ‖x‖0 := #non-zero entries of x.

2. x is S-sparse if ‖x‖0 ≤ S .

3. x is compressible if sorted entries of x decay fast.



Classical Approach (ctd)

Example

Suppose F=linear combination of discrete sinusoids with period T

in R
N . Then use BDFT := N-point DFT matrix.
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Note. f has 62 non-zero coef. wrt. standard basis for R
64. On

the other hand, it has only 4 non-zero coef. wrt. DFT basis.



Classical Approach: Shortcomings (Transform Coding)

Sparsity is the key! One can obtain much sparser representations
by using an appropriate redundant dictionary rather than a basis.

Example. Let g(n) = f (n) + δ(n − 19).
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I g = BDFTx , unique solution x = ĝ has 64 non-zero entries.

I A := [BDFT | Id64]. g = Ax̃∗ where x̃∗ has 5 non-zero terms (4
terms for the sinusoids, one term for the dirac)!

I Difficulty: A is not a basis, so there are infinitely many x̃ that
solve the equation

g = [BDFT | Id64] x̃

Among the solutions, we want the sparsest.



Classical Approach: Shortcomings (Sampling)

How many samples (measurements) for required resolution?

Example. Consider a 1 Megapixel image (1024 x 1024).

I Need 220 pixel values (sensors)  file size in the order of
megabytes. (Situation is more extreme in seismology!)

I Use transform coding (images are sparse in DCT, so transform
and discard the small coef.)  reduced file size: order of
kilobytes (up to 90% smaller).

I In essence, collect huge amount of data in the sampling stage,
throw most of it away in the compression/processing stage!

I Can we possibly reconstruct the original signal from using
fewer measurements? Alternatively: can we combine sampling
and compression stages to one compressive sampling stage?



Combine sampling and compression: compressive sampling

Signal f ∈ R
n, want to collect information on f . Take “generalized

samples” or “measurements” bj = 〈µj , f 〉 where µj ∈ R
n, i.e.,

b = Mf , µT
j : rows of the “measurement matrix” M.



Combine sampling and compression: compressive sampling

Signal f ∈ R
n, want to collect information on f . Take “generalized

samples” or “measurements” bj = 〈µj , f 〉 where µj ∈ R
n, i.e.,

b = Mf , µT
j : rows of the “measurement matrix” M.

Remarks.

I If M is an invertible square matrix, n measurements (b)
determine f via f = M−1b.

I Can we get f back from fewer than n measurements? Need
additional information on f ...

I If f admits a sparse representation wrt. some known basis B ,

Mf = M Bx
︸︷︷︸

f

= MB
︸︷︷︸

A

x = b.

We again have an undetermined system with infinitely many
solutions. But we know x should be sparse.



Sparse recovery problem

In both cases above (transform coding with redundant dictionaries
and compressive sampling), we need to solve:

Sparse Recovery Problem

Find a sparse / the sparsest x that satisfies

b = Ax + r .
I A ∈ R

m×n,with m < n,

I b ∈ R
m: signal in transform coding, measurements in

compressive sampling,

I r ∈ R
m: additive noise

I x : sparse coef. vector for the signal (wrt a redundant
dictionary in transform coding, wrt a basis in compressive
sampling).



Sparse recovery problem – applications to inverse problems

Let f ∈ R
n be a signal of interest.

I Choose a basis (or dictionary) Φ, so that f = Φx where x is
“sparse”.

I Next, take n measurements (M below is square, invertible,
possibly identity):

Mf = MΦx .

I Now, restrict the measurement matrix – drop some rows of M:

RmM f
︸︷︷︸

want to find

= RmMΦ
︸ ︷︷ ︸

A

x = b
︸︷︷︸

accessible

I Again, A is m × n, m < n. To find f , we need to solve the
sparse recovery problem: find sparse x that solves the
underdetermined system Ax = b.

Note. If we can find x , we can reconstruct f .



Sparse recovery problem – fundamental questions

Consider the undetermined system Ax = b + r . Want to find
sparse(st) solution x .

Fundamental problems.

1. Is there a unique sparsest solution, in particular when r = 0?

2. Can one find a sparse / the sparsest solution in a
computationally tractable way?

3. Robustly in the noisy setting (when r 6= 0)?

4. Fast algorithm that gives solutions guaranteed to be sparse (in
some sense)?

5. How should we choose A so that we have a favorable scenario?



Sparse recovery problem – optimization problems

1. Ideally: Choose the solution that has smallest 0-norm.

Pσ
0 : min

x
‖x‖0 subject to ‖Ax − b‖2 ≤ σ

This problem is combinatorial and NP hard. Need alternatives!

2. Choose the solution that has smallest 2-norm.

Pσ
2 : min

x
‖x‖2 subject to ‖Ax − b‖2 ≤ σ

This is the classical LS problem. The solution is not sparse.

3. Choose the solution that has smallest 1-norm.

Pσ
1 : min

x
‖x‖1 subject to ‖Ax − b‖2 ≤ σ

This can be formulated as a convex program.
Moreover, unlike 2-norm, 1-norm promotes sparsity.



Sparse recovery problem: 1-norm vs. 2-norm

Toy example. Solve

Pq : min
x ,y

‖[x y ]T‖0 subject to [2 1][x y ]T = 1

I q=0 Sparsest solutions (not unique) of 2x + y = 1:
(x , y) = (1/2, 0) and (x , y) = (0, 1).

I q=2 The LS solution is (x , y) = (2/5, 1/5), clearly not sparse.

I q=1 The solution is (x , y) = (1/2, 0), one of the two sparsest
solutions.

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5 affine solution space
level curve of 2−norm ball
2−norm minimizer
level curve of 1−norm ball
1−norm minimizer



Sparse recovery by P1

Recent exciting developments show that

Pσ
0 : min

x
‖x‖0 subject to ‖Ax − b‖2 ≤ σ

can be solved in a computationally tractable way in certain cases.

Theorem.[Candès et al., Donoho et al.] Pσ
0 is “equivalent” to Pσ

1

provided:

(i) ∃ a “sufficiently sparse” solution,

(ii) A is “sufficiently similar” to an orthonormal matrix.



Candès-Tao-Romberg Theory – Conditions on A

Next, we want to specify precise conditions on A that ensure
successful sparse recovery via P1.

Restricted isometry constants

Let A = [a1|a2| . . . |an] where aj ∈ R
m, thus A ∈ R

m×n. Suppose
δS > 0 such that ∀ c ∈ R

n, ‖c‖0 ≤ S ,

(1 − δS )‖c‖2
2 ≤ ‖Ac‖2

2 ≤ (1 + δS)‖c‖2
2.

Intuitively, m × S submatrices of A are like isometries.

Note.

I The closer δS to 0, the better the analogy.

I A is orthogonal ⇒ δS = 0.



Candès-Romberg-Tao Theory – Exact Recovery (σ = 0)

Theorem 1.[Candès et al.] Assume ‖x‖0 ≤ S , and b = Ax .
Solving P1 recovers x exactly if for some k

(A1) δkS + kδ(k+1)S < k − 1.

Theorem 2.[Candès et al.] Let A be an m × n Gaussian matrix:
each entry of A is i.i.d. N(0, 1/m). Then A satisfies the above
condition for S w.o.p. if

S ∼ Cm/ log(n/m).

Remark and Question.

I Checking (A1) numerically is intractable as n and m grow.

I Can one construct deterministic measurement matrices which
obey (A1) for S ∼ m/ log(n/m) (optimal)?

I Known constructions (DeVore) have S ∼ √
m.



C-R-T Theory – Compressible and Noisy Cases.

Theorem.[Candès et al.] Assume x ∈ R
n is arbitrary, and

b = Ax + r . Suppose δkS + kδ(k+1)S < k − 1. for some k. Then
the solution x∗ to Pσ

1 obeys

‖x∗ − x‖2 ≤ C1,Sσ + C2,S
‖x − xS‖1√

S
.

Here xS is the truncated vector, obtained by keeping S

largest-in-magnitude entries of x .
Remarks.

I x is S-sparse and σ = 0 ⇒ we get the previous theorem.

I x is S-sparse ⇒ solution is accurate within the noise level.

I x is “compressible” ⇒ solution comparable to best S-term
approx.



C-R-T Theory – Restrictions

Objective. Recover x from b = Ax if ∃ unique sparsest solution.

Theorem. ∃ a unique sparsest solution if ‖x‖0 < S and δ2S < 1.

Compare. Sufficient condition for Pσ
1 to recover x : ‖x‖0 < S

where
δkS + kδ(k+1)S < k − 1.

Set k = 2, then we need δ2S + 2δ3S < 1. This cannot hold unless
δ2S < 1/3. There is a huge gap!

Question. Can we shrink this gap by considering optimization
problems other than P1, possibly non-convex?

Rest of the talk. The answer is YES. We will consider

Pσ
q : min

x
‖x‖q subject to ‖Ax − b‖2 ≤ σ, 0 < q < 1.



Sparse recovery with P
σ
q

Theorem.[Saab, Chartrand, OY] Assume x ∈ R
n is arbitrary, and

b = Ax + r . Suppose for some k

(A2) δkS + k2/p−1δ(k+1)S < k2/p−1 − 1.

Then the solution x∗

q to Pσ
q obeys

‖x∗

q − x‖2 ≤ C 1
q,k,Sσp + C 2

q,k,S

‖x − xS‖p
p

S1−p/2
.

Here xS is the truncated vector, obtained by keeping S largest
entries of x .
Remarks.

I x is S-sparse and σ = 0 ⇒ (A2) implies exact reconstruction.

I x is S-sparse ⇒ solution is accurate within the noise level.

I x is “compressible” ⇒ solution comparable to best S-term
approx.



Significance

Main reasons why going to Pq, q < 1 pays off.

Reason 1. (A2) is less restrictive than (A1).

Take a 256 x 1024 Gaussian matrix...

Region of Applicability for Varying p and s 100 (RED = good, BLUE = bad)

p

s
10 20 30 40 50 60 70 80 90

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



Significance

Reason 2. Better constants, smaller error

Region of applicability for s= 20 (RED = good, BLUE = bad)
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Reason 2. Better constants, smaller error (ctd.)
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Reason 3. Significant improvement with compressible signals
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