Stable sparse expansions via non-convex optimization

Özgür Yılmaz
The University of British Columbia

February 19, 2008

Joint work with:

- Rayan Saab (UBC)
- Rick Chartrand (Los Alamos)

To be presented at ICASSP 2008.

Motivation: Digital Signal Processing

Inherently analog signals: Audio, images, seismic, etc.
Objective: Use digital technology to store and process analog signals - find efficient digital representation of analog signals.

Motivation: Digital Signal Processing

Inherently analog signals: Audio, images, seismic, etc.
Objective: Use digital technology to store and process analog signals - find efficient digital representation of analog signals.

How is this done - classical approach

Classical Approach (ctd)

Stage I (Sampling)

- samples obtained on a dense temporal/spatial grid,
- an appropriate sampling theorem ties resolution of "reconstruction" with the grid density.

Example.

- Audio signals... bandlimited, thus perfect reconst. from samples taken at Nyquist rate or higher via Shannon-Nyquist Sampling Theorem. Phones: $8 \mathrm{kHz}, \mathrm{CDs}: 44.1 \mathrm{kHz}$.
- Images... Sampling imposes a bandlimit although images are not bandlimited. So, sampling on denser grids in principle improves quality. (Some low-pass filtering happens in the human visual system...)

Classical Approach (ctd)

Stage II (Quantization)

- round-off (in a clever way) after sampling,
- can be combined with Stage III,
- not our emphasis today...theory is rich...

See the AIM Workshop (August 18-22) on:
"Frames for the finite world: Sampling, coding, and quantization" co-organized by Gunturk, Pfander, Rauhut, and OY.

Classical Approach (ctd)

Stage III (Compression or "Transform Coding")

- Sampled (and quantized) signal lives in \mathbb{R}^{N} (N very large).
- Find a "nice" basis for \mathbb{R}^{N}.

Classical Approach (ctd)

Stage III (Compression or "Transform Coding")

- Sampled (and quantized) signal lives in \mathbb{R}^{N} (N very large).
- Find a "nice" basis for \mathbb{R}^{N}.
"nice":= only a few basis coef. relatively large in magnitude, i.e., basis coef. of signals of interest are approx. sparse.
- Exploit this sparsity and discard small coefficients.
- This is called transform coding.
- Example: "jpeg" format for images...

Classical Approach (ctd)

Stage III (Compression or "Transform Coding")
Formally. $F \subset \mathbb{R}^{N}$: signals of interest, e.g., seismic signals, images, audio.
$B=\left[b_{1}|\ldots| b_{N}\right]$ an orthonormal basis for \mathbb{R}^{N}.

Classical Approach (ctd)

Stage III (Compression or "Transform Coding")

Formally. $F \subset \mathbb{R}^{N}$: signals of interest, e.g., seismic signals, images, audio.
$B=\left[b_{1}|\ldots| b_{N}\right]$ an orthonormal basis for \mathbb{R}^{N}.

- $f \in F \Rightarrow f=B x$ where $x=B^{T} f$ is the coef. vector.

Classical Approach (ctd)

Stage III (Compression or "Transform Coding")

Formally. $F \subset \mathbb{R}^{N}$: signals of interest, e.g., seismic signals, images, audio.
$B=\left[b_{1}|\ldots| b_{N}\right]$ an orthonormal basis for \mathbb{R}^{N}.

- $f \in F \Rightarrow f=B x$ where $x=B^{T} f$ is the coef. vector.
- Choose B such that $x=B^{T} f$ is sparse for $f \in F$, e.g., seismic: curvelets, images: wavelets, audio: Gabor...

Classical Approach (ctd)

Stage III (Compression or "Transform Coding")

Formally. $F \subset \mathbb{R}^{N}$: signals of interest, e.g., seismic signals, images, audio.
$B=\left[b_{1}|\ldots| b_{N}\right]$ an orthonormal basis for \mathbb{R}^{N}.

- $f \in F \Rightarrow f=B x$ where $x=B^{T} f$ is the coef. vector.
- Choose B such that $x=B^{T} f$ is sparse for $f \in F$, e.g., seismic: curvelets, images: wavelets, audio: Gabor...

Definitions. Let $x \in \mathbb{R}^{N}$.

1. "0-norm" $\|x\|_{0}:=\#$ non-zero entries of x .
2. x is S-sparse if $\|x\|_{0} \leq S$.
3. x is compressible if sorted entries of x decay fast.

Classical Approach (ctd)

Example

Suppose $F=$ linear combination of discrete sinusoids with period T in \mathbb{R}^{N}. Then use $B_{\mathrm{DFT}}:=N$-point DFT matrix.

Note. f has 62 non-zero coef. wrt. standard basis for \mathbb{R}^{64}. On the other hand, it has only 4 non-zero coef. wrt. DFT basis.

Classical Approach: Shortcomings (Transform Coding)

Sparsity is the key! One can obtain much sparser representations by using an appropriate redundant dictionary rather than a basis.
Example. Let $g(n)=f(n)+\delta(n-19)$.

- $g=B_{\mathrm{DFT}} X$, unique solution $x=\hat{g}$ has 64 non-zero entries.
- $A:=\left[B_{\mathrm{DFT}} \mid \mathrm{Id}_{64}\right] . g=A \tilde{x}^{*}$ where \tilde{x}^{*} has 5 non-zero terms (4 terms for the sinusoids, one term for the dirac)!
- Difficulty: A is not a basis, so there are infinitely many \tilde{x} that solve the equation

$$
g=\left[B_{\mathrm{DFT}} \mid \mathrm{Id}_{64}\right] \tilde{x}
$$

Among the solutions, we want the sparsest.

Classical Approach: Shortcomings (Sampling)

How many samples (measurements) for required resolution?
Example. Consider a 1 Megapixel image (1024×1024).

- Need 2^{20} pixel values (sensors) \rightsquigarrow file size in the order of megabytes. (Situation is more extreme in seismology!)
- Use transform coding (images are sparse in DCT, so transform and discard the small coef.) \rightsquigarrow reduced file size: order of kilobytes (up to 90% smaller).
- In essence, collect huge amount of data in the sampling stage, throw most of it away in the compression/processing stage!
- Can we possibly reconstruct the original signal from using fewer measurements? Alternatively: can we combine sampling and compression stages to one compressive sampling stage?

Combine sampling and compression: compressive sampling

Signal $f \in \mathbb{R}^{n}$, want to collect information on f. Take "generalized samples" or "measurements" $b_{j}=\left\langle\mu_{j}, f\right\rangle$ where $\mu_{j} \in \mathbb{R}^{n}$, i.e.,

$$
b=M f, \quad \mu_{j}^{T}: \text { rows of the "measurement matrix" } M .
$$

Combine sampling and compression: compressive sampling

Signal $f \in \mathbb{R}^{n}$, want to collect information on f. Take "generalized samples" or "measurements" $b_{j}=\left\langle\mu_{j}, f\right\rangle$ where $\mu_{j} \in \mathbb{R}^{n}$, i.e.,

$$
b=M f, \quad \mu_{j}^{T}: \text { rows of the "measurement matrix" } M .
$$

Remarks.

- If M is an invertible square matrix, n measurements (b) determine f via $f=M^{-1} b$.
- Can we get f back from fewer than n measurements? Need additional information on f...
- If f admits a sparse representation wrt. some known basis B,

$$
M f=M \underbrace{B x}_{f}=\underbrace{M B}_{A} x=b .
$$

We again have an undetermined system with infinitely many solutions. But we know x should be sparse.

Sparse recovery problem

In both cases above (transform coding with redundant dictionaries and compressive sampling), we need to solve:

Sparse Recovery Problem

Find a sparse / the sparsest x that satisfies

$$
b=A x+r
$$

- $A \in \mathbb{R}^{m \times n}$, with $m<n$,
- $b \in \mathbb{R}^{m}$: signal in transform coding, measurements in compressive sampling,
- $r \in \mathbb{R}^{m}$: additive noise
- x: sparse coef. vector for the signal (wrt a redundant dictionary in transform coding, wrt a basis in compressive sampling).

Sparse recovery problem - applications to inverse problems

Let $f \in \mathbb{R}^{n}$ be a signal of interest.

- Choose a basis (or dictionary) Φ, so that $f=\Phi_{x}$ where x is "sparse".
- Next, take n measurements (M below is square, invertible, possibly identity):

$$
M f=M \Phi x
$$

- Now, restrict the measurement matrix - drop some rows of M :

$$
R_{m} M \underbrace{f}_{\text {want to find }}=\underbrace{R_{m} M \Phi}_{A} x=\underbrace{b}_{\text {accessible }}
$$

- Again, A is $m \times n, m<n$. To find f, we need to solve the sparse recovery problem: find sparse x that solves the underdetermined system $A x=b$.
Note. If we can find x, we can reconstruct f.

Sparse recovery problem - fundamental questions

Consider the undetermined system $A x=b+r$. Want to find sparse(st) solution x.

Fundamental problems.

1. Is there a unique sparsest solution, in particular when $r=0$?
2. Can one find a sparse / the sparsest solution in a computationally tractable way?
3. Robustly in the noisy setting (when $r \neq 0$)?
4. Fast algorithm that gives solutions guaranteed to be sparse (in some sense)?
5. How should we choose A so that we have a favorable scenario?

Sparse recovery problem - optimization problems

1. Ideally: Choose the solution that has smallest 0 -norm.

$$
\mathrm{P}_{0}^{\sigma}: \min _{x}\|x\|_{0} \quad \text { subject to } \quad\|A x-b\|_{2} \leq \sigma
$$

This problem is combinatorial and NP hard. Need alternatives!
2. Choose the solution that has smallest 2-norm.

$$
\mathrm{P}_{2}^{\sigma}: \min _{x}\|x\|_{2} \text { subject to }\|A x-b\|_{2} \leq \sigma
$$

This is the classical LS problem. The solution is not sparse.
3. Choose the solution that has smallest 1-norm.

$$
\mathrm{P}_{1}^{\sigma}: \min _{x}\|x\|_{1} \quad \text { subject to } \quad\|A x-b\|_{2} \leq \sigma
$$

This can be formulated as a convex program.
Moreover, unlike 2-norm, 1-norm promotes sparsity.

Sparse recovery problem: 1-norm vs. 2-norm

Toy example. Solve

$$
P_{q}: \min _{x, y}\left\|\left[\begin{array}{ll}
x & y
\end{array}\right]^{T}\right\|_{0} \quad \text { subject to } \quad\left[\begin{array}{ll}
2 & 1
\end{array}\right]\left[\begin{array}{ll}
x & y
\end{array}\right]^{T}=1
$$

- $\mathrm{q}=0$ Sparsest solutions (not unique) of $2 x+y=1$: $(x, y)=(1 / 2,0)$ and $(x, y)=(0,1)$.
- $\mathrm{q}=2$ The LS solution is $(x, y)=(2 / 5,1 / 5)$, clearly not sparse.
- $\mathrm{q}=1$ The solution is $(x, y)=(1 / 2,0)$, one of the two sparsest solutions.

Sparse recovery by P_{1}

Recent exciting developments show that

$$
\mathrm{P}_{0}^{\sigma}: \min _{x}\|x\|_{0} \quad \text { subject to } \quad\|A x-b\|_{2} \leq \sigma
$$

can be solved in a computationally tractable way in certain cases.
Theorem.[Candès et al., Donoho et al.] P_{0}^{σ} is "equivalent" to P_{1}^{σ} provided:
(i) \exists a "sufficiently sparse" solution,
(ii) A is "sufficiently similar" to an orthonormal matrix.

Candès-Tao-Romberg Theory - Conditions on A

Next, we want to specify precise conditions on A that ensure successful sparse recovery via P_{1}.
Restricted isometry constants
Let $A=\left[a_{1}\left|a_{2}\right| \ldots \mid a_{n}\right]$ where $a_{j} \in \mathbb{R}^{m}$, thus $A \in \mathbb{R}^{m \times n}$. Suppose $\delta_{S}>0$ such that $\forall c \in \mathbb{R}^{n},\|c\|_{0} \leq S$,

$$
\left(1-\delta_{S}\right)\|c\|_{2}^{2} \leq\|A c\|_{2}^{2} \leq\left(1+\delta_{S}\right)\|c\|_{2}^{2}
$$

Intuitively, $m \times S$ submatrices of A are like isometries.
Note.

- The closer δ_{S} to 0 , the better the analogy.
- A is orthogonal $\Rightarrow \delta_{S}=0$.

Candès-Romberg-Tao Theory - Exact Recovery $(\sigma=0)$

Theorem 1.[Candès et al.] Assume $\|x\|_{0} \leq S$, and $b=A x$. Solving P_{1} recovers x exactly if for some k

$$
\text { (A1) } \delta_{k s}+k \delta_{(k+1) s}<k-1 .
$$

Theorem 2.[Candès et al.] Let A be an $m \times n$ Gaussian matrix: each entry of A is i.i.d. $N(0,1 / m)$. Then A satisfies the above condition for S w.o.p. if

$$
S \sim C m / \log (n / m)
$$

Remark and Question.

- Checking (A1) numerically is intractable as n and m grow.
- Can one construct deterministic measurement matrices which obey (A1) for $S \sim m / \log (n / m)$ (optimal)?
- Known constructions (DeVore) have $S \sim \sqrt{m}$.

C-R-T Theory - Compressible and Noisy Cases.

Theorem.[Candès et al.] Assume $x \in \mathbb{R}^{n}$ is arbitrary, and $b=A x+r$. Suppose $\delta_{k S}+k \delta_{(k+1) S}<k-1$. for some k. Then the solution x^{*} to P_{1}^{σ} obeys

$$
\left\|x^{*}-x\right\|_{2} \leq C_{1, S} \sigma+C_{2, S} \frac{\left\|x-x_{S}\right\|_{1}}{\sqrt{S}}
$$

Here x_{S} is the truncated vector, obtained by keeping S largest-in-magnitude entries of x.
Remarks.

- x is S-sparse and $\sigma=0 \Rightarrow$ we get the previous theorem.
- x is S-sparse \Rightarrow solution is accurate within the noise level.
- x is "compressible" \Rightarrow solution comparable to best S-term approx.

C-R-T Theory - Restrictions

Objective. Recover x from $b=A x$ if \exists unique sparsest solution.
Theorem. \exists a unique sparsest solution if $\|x\|_{0}<S$ and $\delta_{2 S}<1$.
Compare. Sufficient condition for P_{1}^{σ} to recover $x:\|x\|_{0}<S$ where

$$
\delta_{k S}+k \delta_{(k+1) S}<k-1
$$

Set $k=2$, then we need $\delta_{2 S}+2 \delta_{3 S}<1$. This cannot hold unless $\delta_{2 S}<1 / 3$. There is a huge gap!

Question. Can we shrink this gap by considering optimization problems other than P_{1}, possibly non-convex?
Rest of the talk. The answer is YES. We will consider

$$
\mathrm{P}_{q}^{\sigma}: \min _{x}\|x\|_{q} \quad \text { subject to } \quad\|A x-b\|_{2} \leq \sigma, \quad 0<q<1
$$

Sparse recovery with P_{q}^{σ}

Theorem.[Saab, Chartrand, OY] Assume $x \in \mathbb{R}^{n}$ is arbitrary, and $b=A x+r$. Suppose for some k

$$
\text { (A2) } \quad \delta_{k S}+k^{2 / p-1} \delta_{(k+1) S}<k^{2 / p-1}-1
$$

Then the solution x_{q}^{*} to P_{q}^{σ} obeys

$$
\left\|x_{q}^{*}-x\right\|_{2} \leq C_{q, k, S}^{1} \sigma^{p}+C_{q, k, S}^{2} \frac{\left\|x-x_{S}\right\|_{p}^{p}}{S^{1-p / 2}}
$$

Here x_{S} is the truncated vector, obtained by keeping S largest entries of x.

Remarks.

- x is S-sparse and $\sigma=0 \Rightarrow(\mathrm{~A} 2)$ implies exact reconstruction.
- x is S-sparse \Rightarrow solution is accurate within the noise level.
- x is "compressible" \Rightarrow solution comparable to best S-term approx.

Significance

Main reasons why going to $P_{q}, q<1$ pays off.
Reason 1. (A2) is less restrictive than (A1).
Take a 256×1024 Gaussian matrix...

Region of Applicability for Varying pands 100 (RED = good, BLUE = bad)

Significance

Reason 2. Better constants, smaller error

Reason 2. Better constants, smaller error (ctd.)

Reason 3. Significant improvement with compressible signals

Acknowledgements

This presentation was carried out as part of the SINBAD project with financial support, secured through ITF, from the following organizations: BG, BP, Chevron, ExxonMobil, and Shell. SINBAD is part of the collaborative research \& development (CRD) grant number 334810-05 funded by the Natural Science and Engineering Research Council (NSERC).

