Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2018 SINBAD consortium - SLIM group @ The University of British Columbia.

Bayesian signal separation applied to ground-roll removal

Two adaptive separation schemes Many Problems

Carson Yarham

Introduction

Introduction

Adaptive Subtraction Schemes

Sparsity

Block Coordinate Relaxation (BCR)

Bayesian Formulation

Parameters

Synthetic Example

Data

Benchmark Tests

Parameter Sensitivity

Results

Real Data Example

Shell Test Data

Conclusions

Adaptive Subtraction Schemes

Block Coordinate Relaxation (BCR)

Introduced by Starck, Elad, Donoho 2004.

Modified for seismic images using curvelets to separate multiples by Herrmann, Boeniger and Verschuur, 2007.

Used for ground roll removal by Yarham, Boeniger and Herrmann, 2006.

Bayesian Separation

Developed at SLIM by Saab, Wang, Yilmaz and Herrmann, 2007.

Adapted to Multiple and Ground Roll Separation.

Adaptive Subtraction Schemes

Formulate The Problem...

- b Recorded Data
- Signal 1 (Reflectors)
- Signal 2 (Surface Wave)

$$\mathbf{b} = \mathbf{s}_1 + \mathbf{s}_2 + \mathbf{n}$$

$${\cal N}=2$$
 Signals

$$\mathbf{s}_i = \mathbf{A}_i \mathbf{x}_i + \mathbf{n}_i \qquad i \dots N$$

$$A_i$$
 Sparsity Promoting Transform

b₁ Predicted Reflectors
b₂ Predicted Surface Wave

$$\mathbf{b} = \mathbf{b}_1 + \mathbf{b}_2$$

Adaptive Subtraction Schemes Sparsity

Adaptive Subtraction Schemes Block Coordinate Relaxation

$$\begin{split} \min_{x} ||x||_{\mathbf{w},1} & \text{subject to} & ||\mathbf{b} - \mathbf{A}\mathbf{x}||_{2} \leq \epsilon \\ \hat{\mathbf{b}}_{1} = \mathbf{A}_{i} \hat{\mathbf{x}}_{i} & i \dots N \\ \text{given:} & \mathbf{b}_{1} \text{ and } \mathbf{w}(\mathbf{b}, \mathbf{b}_{1}) \end{split}$$

$$\hat{\mathbf{x}}_j = \arg\min_{\mathbf{x}_j} \frac{1}{2} ||] \mathbf{b} - \mathbf{A}_j \mathbf{x}_j - \sum_{i \neq j} \mathbf{A}_i \mathbf{x}_i ||_2^2 + ||\mathbf{x}_j||_{1,\gamma \cdot \mathbf{w}_j}$$

Algorithm derived in paper: Nonlinear primary-multiple separation with directional curvelet frames F. J. Herrmann and U. Boeniger and D. J. Verschuur, 2007

Adaptive Subtraction Schemes Bayesian Formulation

- **n** Recorded Noise
- **n**₁ Reflector Prediction Noise

$$\mathbf{n} = \mathbf{n}_1 + \mathbf{n}_2 \qquad N(0, \sigma_2^2)$$

Rewrite surface wave and reflectors as:

$$\mathbf{b}_2 = \mathbf{A}\mathbf{x}_2 + \mathbf{n}_2$$
$$\mathbf{b}_1 = \mathbf{A}\mathbf{x}_1 + \mathbf{n} - \mathbf{n}_2$$

Adaptive Subtraction Schemes Bayesian Formulation

We need to find the curvelet vectors that maximize the posterior probability

$$P(\mathbf{x}_1, \mathbf{x}_2 | \mathbf{b}_1, \mathbf{b}_2) = \frac{P(\mathbf{x}_1, \mathbf{x}_2) P(\mathbf{b}_1 | \mathbf{x}_1, \mathbf{x}_2) P(\mathbf{b}_2 | \mathbf{b}_1, \mathbf{x}_1, \mathbf{x}_2)}{P(\mathbf{b}_1, \mathbf{b}_2)}$$

We have independent and identically distributed white gaussian noise distributions with a priori information in the form of predictions

$$\arg\max_{x_1,x_2} P(x_1,x_2|b_1,b_2) = \arg\min_{x_1,x_2} f(x_1,x_2)$$

Adaptive Subtraction Schemes Bayesian Formulation

Minimize the function:

$$f(\mathbf{x}_1, \mathbf{x}_2) = \lambda_1 ||\mathbf{x}_1||_{1, \mathbf{w}_1} + \lambda_2 ||\mathbf{x}_2||_{1, \mathbf{w}_2} + ||\mathbf{A}\mathbf{x}_2 - \mathbf{b}_2||_2^2 + \eta ||\mathbf{A}(\mathbf{x}_1 + \mathbf{x}_2) - \mathbf{b}||_2^2$$

Algorithm is derived in technical report: Bayesian wavefield separation by transform-domain sparsity promotion Deli Wang, Rayan Saab, Ozgur Yilmaz and Felix J. Herrmann, 2008

 η Confidence parameter λ_1 Reflector expected sparsity parameter λ_2 Surface wave expected sparsity parameter

Adaptive Subtraction Schemes Parameters

Block Coordinate Relaxation:

 C_1 Reflector 1-norm minimization threshold decay rate

 C_2 Surface wave 1-norm minimization threshold decay rate

Bayesian Formulation:

- η Confidence parameter
- λ_1 Reflector expected sparsity parameter
 - Surface wave expected sparsity parameter

<u>Synthetic Example</u> Data - Elastic Finite Difference

Reflectors 10m grid **3** Reflectors 500 (m) flat 1500 (m) dipping right 2650 (m) dipping left Surface Wave 1m Grid 25m Surface Layer Linear Increase in parameters

Synthetic Example Benchmark Tests - Predictions

Synthetic Example Benchmark Tests - Results

Noise Prediction	Initial SNR	Subtraction	Bayesian	Block Coordinate Relaxation
Exact Noise	-1.673	147.960	17.922	15.504
5% Model Error	-1.673	-4.377	9.592	9.424
5% Model Error + Noise	-1.923	-4.515	9.470	3.528
Hilbert Transform	-1.673	-4.670	13.103	13.331
Phase Inverse	-1.673	-7.694	14.083	13.099

Synthetic Example Parameter Sensitivity - Bayesian Solver

SNR (dB)	$0.1\cdot(\lambda_1^*,\lambda_2^*)$	$2\cdot\lambda_1^*,\lambda_2^*$	λ_1^*,λ_2^*	$\lambda_1^*, 2 \cdot \lambda_2^*$	$10 \cdot (\lambda_1^*, \lambda_2^*)$
$0.1\cdot\eta^*$	8.349	3.331	4.457	4.458	1.558
$0.5\cdot\eta^*$	1.860	5.828	8.875	9.001	3.332
η^*	1.758	6.925	9.592	9.023	4.454
$2\cdot\eta^*$	-3.899	6.479	1.266	2.782	5.974
$10 \cdot \eta^*$	-4.280	-2.561	-3.384	-3.180	8.052

Synthetic Example Parameter Sensitivity - BCR Solver

SNR (dB)	$0.1 \cdot c_1^*$	$0.5 \cdot c_1^*$	c_1^*	$2 \cdot c_1^*$	$10 \cdot c_1^*$
$0.1 \cdot c_2^*$	6.242	0.353	2.995	-1.566	-1.672
$0.5 \cdot c_2^*$	4.085	8.829	0.618	-1.348	-1.659
c_2^*	2.995	5.011	9.414	-0.556	-1.240
$2 \cdot c_2^*$	1.658	2.468	4.021	7.846	8.420
$10 \cdot c_2^*$	0.002	0.005	0.121	0.145	0.211

Synthetic Example Results - Block Coordinate Relaxation

<u>Synthetic Example</u> Results - Bayesian Formulation

<u>Real Data Example</u> Shell Test Data

Shell Test Data

Provided Reflectors

Estimated Reflectors

Estimated Reflectors

Raw Data

Real Data Example Provided Reflectors

Estimated Reflectors

Conclusions

Two signal separation schemes for surface wave removal

Block coordinate relaxation

More sensitive parameters

Might degrade small amount of reflector information

Bayesian Formulation

Less sensitive

More control over separation

Less effect on reflector information than block coordinate relaxation scheme

Both methods effective on synthetic data.

Bayesian method shown on real data.

SLIMpy user demos now contains a demo with the synthetic example and an example with the Oz25 data set.

Future Work:

Full 3D data Interferometric Predictions.

Acknowledgments

SLIM team members

S. Ross Ross, H. Modzelewski, and C. Brown for SLIMpy (slim.eos.ubc.ca/SLIMpy)

Shell Canada for the real datasets

E. J. Candès, L. Demanet, D. L. Donoho, and L. Ying for CurveLab (www.curvelet.org)

S. Fomel, P. Sava, and the other developers of Madagascar (rsf.sourceforge.net)

This presentation was carried out as part of the SINBAD project with financial support, secured through ITF, from the following organizations: BG, BP, Chevron, ExxonMobil, and Shell. SINBAD is part of the collaborative research & development (CRD) grant number 334810-05 funded by the Natural Science and Engineering Research Council (NSERC).

- Saab, R., Wang, D., Yilmaz, O., Herrmann, F. 2007, Curvelet-based primary-multiple separation from a Bayesian perspective, SEG International Exposition and 77th Annual Meeting
- Londono, E., Lopez, L. and Kazmierczak, T., 2005, Using the karhunen-loeve transform to suppress ground roll in seismic data. Earth Sci. Res. J., 9, 139-147
- Graves, R., 1996, Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bulletin of the Seismological Society of America, 86, 1091-1106
- McMechan G.A. and Yedlin, M.J., 1981, Analysis of dispersive waves by wavefield transformations. Geophysics, 46, 869-874
- McKay, A.E., 1954, Review of pattern shooting. Geophysics, 19, 420-437
- Holzman, M., 1963, Chebysev optimized geophone arrays. Geophysics, 28, 145-155
- Coruh, C., Costain, J.K., 1983, Noise attenuation by Vibroseis whitening (VSW) processing. Geophysics, 48, 543-554
- Yilmaz, O., 2001, Seismic Data Analysis. Society of Exploration Geophysicists, Tulsa, USA.
- Galbraith, J. N., Wiggins, R. A., 1968, Characteristics of optimum multichannel stacking filters. Geophysics, 33, 36-48
- Embree, P., Burg, J. P., Backus, M. M., 1963, Wide band velocity filtering-the pie-slice process. Geophysics, 28, 948-974
- Fail, J. P., Grau, G., 1963. Les filters on eventail. Geophys. Prospect., 11, 131-163
- Curtis, A., Gerstoft, P., Sato, H., Snieder, R., Wapenaar, K., 2006, Seismic interferometry turning noise into signal. The Leading Edge, 25, 1082-1092

- Liu, X., 1999, Ground roll supression using the Karhuren-Loeve transform. Geophysics, 64, 564-566
- Deighan, A., Watts, D., 1997, Ground-roll supression using the wavelet transform. Geophysics, 62, 1896-1903
- Candès, E., Demanet, L., Donoho, D., and Ying, L., 2005, Fast discrete curvelet transforms. Multiscale Model. Simul., 5 861-899.
- Candès, E., Romberg, J., and Tao, T., 2005, Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math., 59 1207-1223.
- Starck, J. L., Candès, E., and Donoho, D., 2000, The curvelet transform for image denoising. IEEE Transactions on Image Processing, 11 670--684.
- Donoho, D., Elad, M., and Temlyakov, V., 2006, Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inform. Theory. 52, 6-18
- Elad, M., Starck, J.L., Querre, P., and D.L. Donoho, D., Simultaneous Cartoon and Texture Image Inpainting Using Morphological Component Analysis (MCA), Journal on Applied and Computational Harmonic Analysis, Vol. 19, pp. 340-358, November 2005.
- Mallat, S. G., A wavelet tour of signal processing, 1997, Academic Press
- Figueiredo, M., and Nowak, R., 2003, An EM algorithm for wavelet-based image restoration, IEEE Trans. Image Processing, 8, 906-916
- Claerbout, J., 1968, Synthesis of a layered medium from it's acoustic transmission response. Geophysics, 33, 264-269

- Gelisli, K., Karsli, H., 1988, F-k filtering using the Hartley transform. J. Seism. Explor., 7, 101-108
- Karsli, H., Bayrak, Y., 2004, Using the Wiener-Levinson algorithm to suppress ground-roll, Journal of Applied Geophysics, 55, 187-197
- McMechan, G. A., Sun, R., 1991, Depth filtering of first breaks and ground roll. Geophysics, 56, 390-396
- Donoho, D., 1995, De-noising by soft thresholding. IEEE Trans. Inform. Theory. 41, 613-627
- Starck, J.L., Elad, M., and Donoho, D., 2004, Redundant multiscale transforms and their applications to morphological component separation. Advances in Imaging and Electron Physics, 132
- Chen, S., Donoho D., and Saunders, M., 2001, Atomic decomposition by basis pursuit. SIAM J. Sci. Comp., 43, 129-159
- Do, M.N.; Vetterli, M., 2001, Pyramidal directional filter banks and curvelets. Image Processing, 2001. Proceedings. 2001 International Conference on, 3, 158-161
- Herrmann, F., Boeniger, U., and Verschuur, E., 2007, Nonlinear primary-multiple separation with directional curvelet frames. Geoph. J. Int. to appear
- Hennenfent, G., and Herrmann, F. J., 2007, Curvelet reconstruction with sparsity-promoting inversion: successes and challenges, Submitted to EAGE 2007 69th Conference, London
- Demanet, L., Ying, L., 2006, Wave Atoms and Sparsity of Oscillatory Patterns, submitted
- Dong, S., Reiqing, H., Shuster, G., 2006, Interferometric prediction and least squares subtraction of surface waves. SEG 76th Conference, New Orleans

